

Supplementary Figure 4. Effect of F_1O_2 on P_aCO_2 .

Lines show the P_aCO_2 at each shunt fraction, for F_IO_2 of 1. Red markers show the P_aCO_2 at the corresponding shunt fraction, for F_IO_2 of 0.2. Missing values are for data that is physiologically impossible ($C_{\overline{V}}O_2$ of < 0 would be required), which is more likely when F_IO_2 is low, $\frac{\dot{Q}_S}{\dot{Q}_T}$ is high, and \dot{Q}_{EC} is low. At any given value of \dot{Q}_{EC} and shunt fraction, the maximum difference in P_aCO_2 between F_IO_2 of 1 and at F_IO_2 of 0.2 was 1.3 mm Hg, providing both data points were physiologically tenable.