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Abstract— According to the PIE model, three conditions must be 
met for failure to be observed: 1) the defect is executed, 2) the 
program is infected, and 3) the infection has propagated to the 
output. Weak coincidental correctness (CC) occurs when the 
program produces the correct output, while condition 1) is 
satisfied but 2) and 3) are not satisfied. Strong coincidental 
correctness occurs when a correct output is observed, while both 
conditions 1) and 2) are satisfied but not 3).  

In prior work, we analytically demonstrated that CC is a safety 
reducing factor for coverage-based fault localization (CBFL). 
However, we did not experimentally validate that fact, which we 
do in this paper. Specifically, we comparatively evaluated the 
performance of CBFL using ten different suspiciousness metrics 
when: a) both weak and strong CC tests are present; b) no weak 
nor strong CC tests are present; c) only weak CC tests are present; 
d) only strong CC tests are present. Our experiments showed that 
when the CC tests are discarded, in most cases the suspiciousness 
score of the defective statement increased and its EXAM ranking 
score also improved. The metrics that benefited most from 
discarding CC tests are: Tarantula, Ample, Ochiai, Dstar2, and 
Dstar3. Whereas, discarding CC tests had no effect on Russel, 
Wong1, and Binary. However, the latter three metrics were the 
worst performers in regard to the EXAM score. 

 

Keywords— coverage-based fault localization, coincidental 

correctness, suspiciousness metrics, failed error propagation, fault 

masking 

I.  INTRODUCTION 

Most coverage-based fault localization (CBFL) techniques 
assume that the execution of a defective code location will lead 
to a program failure [1][2][12][13][14][15][16][26]. However, 
this may not always be the case. 

According to the PIE model [27], three conditions must be 
met for failure to be observed: 1) the defect is executed, 2) the 
program is infected, and 3) the infection has propagated to the 
output. Amman and Offutt supported this same notion in their 
RIP (reachability-infection-propagation) model described in [3]. 
Coincidental correctness (CC) [8][10][28] occurs when the 
program produces the correct output, while conditions 1) and 2) 
are satisfied but not 3). We refer to this case as strong 
coincidental correctness to differentiate it from weak 
coincidental correctness which occurs when the program 
produces the correct output, while condition 1) is satisfied but 2) 
and 3) are not satisfied [17][18][19]. 

Several researchers have recognized the negative impact of 
coincidental correctness on the effectiveness of defect detection 

techniques [4][5][6][7][9][10][28]. In previous work, we 
showed [17][18][19] that both weak and strong CC are 
prevalent. We also analytically demonstrated that weak CC is a 
safety reducing factor for CBFL; i.e., when weak CC tests are 
present, the defect will be assigned a suspiciousness score 
smaller than when they are not present. In this paper, we 
experimentally assess the impact of coincidental correctness on 
the effectiveness of CBFL using ten different suspiciousness 
metrics. We do so by considering test suites that fall under the 
following four categories:  

1) TCCw+s: both weak and strong CC tests are present. 

2) TCCØ: no weak nor strong CC tests are present. 

3) TCCw: only weak CC tests are present. 

4) TCCs: only strong CC tests are present. 

 
Since our experiments involve ten different metrics and four 
test suite categories, this paper sheds light on 40 different 
potential environmental setups. 

Section II describes the used CBFL approach and metrics. 
Section III presents our experimental results.  Section IV briefly 
surveys related work, and Section V concludes. 

 

II. COVERAGE-BASED FAULT LOCALIZATION 

This section describes the CBFL techniques evaluated in our 
experiments, namely, the profile elements, the suspiciousness 
metrics, and the ranking approach. 

A. Profiles 

The execution profiles we used encompass def-use pair 
(DUP) coverage information. Specifically, for every pair 
consisting of a variable definition D(x) and a use U(x) such that 
D(x) dynamically reaches U(x) in at least one test, a DUP profile 
contains a flag indicating whether D(x) dynamically reaches 
U(x) in the current test. The suspiciousness score of a given DUP 
is assigned to its component statements, i.e., to both the def and 
use statements. The choice of def-use pair coverage is 
completely arbitrary, as we might have used any other type of 
coverage, such as statement or branch.  

B. Suspiciousness metrics 

This work considers the following ten CBFL suspiciousness 
metrics that were used and/or studied in the literature: 1) 
Tarantula [12][13]; 2) AMPLE [7]; 3) Ochiai [2]; 4) Dstar2; 5) 
Dstar3; 6) Naish1; 7) Naish2; 8) Wong1; 9) Russel; and 10) 
Binary. The first three metrics are among the earliest and/or most 



well-known CBFL measures. Dstar2 and Dstar3 were shown to 
outperform 38 existing metrics [31]. The last 5 metrics were 
theoretically proven to be maximal (i.e., most effective) [30]. 

The following entities need to be first computed in order to 
compute the suspiciousness score of a profile element: 

 𝑎𝑒𝑝: the number of passing test cases that execute the 

profile element. 

 𝑎𝑒𝑓: the number of failing test cases that execute the 

profile element. 

 𝑎𝑛𝑝: the number of passing test cases that do no execute 

the profile element. 

 𝑎𝑛𝑓: the number of failing test cases that do not execute 

the profile element. 

 𝑃: the total number of passing test cases. 

 𝐹: the total number of failing test cases. 

Table 1 shows the suspiciousness metrics we used in our 
experiments. Note how some metrics use all four of the above 
entities and others use part of them. For example, Tarantula use 
all four, whereas Wong1 and Binary only use 𝑎𝑒𝑓. 

C. Ranking approach 

After computing the suspiciousness metrics for all the 
collected def-use pairs, we assign to each Java line of code a 
“collective” suspiciousness score which is equal to the 
maximum score assigned to the def-use pairs traversing it. The 
lines of code are then ranked in decreasing order of collective 
suspiciousness values. We quantify the fault localization 
effectiveness using the EXAM score [31] which measures the 
percentage of lines that are ranked higher than the faulty one. As 
such, lower EXAM scores indicate better performance. In case 
the faulty line is tied with other lines in terms of collective 
suspiciousness score, we rank it in the middle of them. Note that 
even though our underlying analysis is conducted at the Java 
bytecode level, the ranking is conducted at the Java line level; 
the reason stems from the fact that it is easier to define a bug 
location in terms of line number as opposed to byte code offset.  

III. EXPERIMENTAL EVALUATION  

A. Subject Programs  

Our experiments involved 20 defective versions from the 
Siemens benchmark (sir.unl.edu) that we previously converted 
to Java [1]; specifically, two versions from print_tokens, and 
three from each of the remaining six versions. Defects involving 
missing code were omitted since our ranking approach would 
not be applicable in such cases. 

For a given test suite, the test cases were originally classified 
as failing or passing. As part of previous work [19], the passing 
tests were further categorized as true passing, weak CC, or 
strong CC. This was done by manually inserting two code 
checkers near the fault: 1) a checker that detects weak CC tests 
by monitoring whether the fault was reached; and 2) a checker 
that detects strong CC tests by monitoring whether the fault was 
reached and the program has transitioned into an infectious state 
(the condition that captures whether an infection occurred, is 

mostly inferred by comparing the faulty code and its 
corresponding fix). 

B. Suspiciousness Scores Results  

Table 2 and Table 3 present our results related to the 
suspiciousness scores. For each of the four categories of test 
suites, it shows the suspiciousness scores assigned to the faulty 
lines of code. The results are summarized by showing: 1) the 
average score across the 20 defects (Avg); 2) the average 
increase for TCCØ, TCCw, and TCCs compared to TCCw+s 
(AvgIncrease); 3) the number of defects for which the score 
increased compared to TCCw+s (#Improved); and 4) the number 
of defects for which the score was unchanged (#Unchanged). 

For the case of Tarantula, Ample, Ochiai, Dstar2, Dstar3, 
Naish2, and Russel, the suspiciousness scores increased on 
average when the CC tests are discarded (see Avg and 
AvgIncrease). The average increase was largest when both 
weak and strong CCs were discarded (TCCØ), less when weak 
CCs were discarded (TCCs), and least when strong CCs were 
discarded (TCCw). 

For the case of Tarantula, Ample, Ochiai, Dstar2, Dstar3, and 
Russel, the suspiciousness scores of all defects increased or were 
unchanged (see #Improved and #Unchanged). 

Naish1 is the only case where discarding the CC tests resulted in 
many defects to have their suspiciousness scores decrease. 

 

Suspiciousness 

Metrics 

Expression 

Tarantula [12][13] 
𝑎𝑒𝑓

𝑎𝑒𝑓 + 𝑎𝑛𝑓
/(

𝑎𝑒𝑓

𝑎𝑒𝑓 + 𝑎𝑛𝑓
+

𝑎𝑒𝑝

𝑎𝑒𝑝 + 𝑎𝑛𝑝
) 

Ample [7] 
𝑎𝑒𝑓

𝑎𝑒𝑓 + 𝑎𝑛𝑓
 −

𝑎𝑒𝑝

𝑎𝑒𝑝 + 𝑎𝑛𝑝
 

Ochiai [2] 

𝑎𝑒𝑓

√(𝑎𝑒𝑓 + 𝑎𝑛𝑓)(𝑎𝑒𝑓 + 𝑎𝑒𝑝)

 

𝐷𝑠𝑡𝑎𝑟2 [29] 
(𝑎𝑒𝑓)

2

𝑎𝑛𝑓 + 𝑎𝑒𝑝
 

𝐷𝑠𝑡𝑎𝑟3 [29] 
(𝑎𝑒𝑓)

3

𝑎𝑛𝑓 + 𝑎𝑒𝑝
 

Naish1 [29] {
−1 if 𝑎𝑒𝑓 < 𝐹

𝑃 − 𝑎𝑒𝑝 if  𝑎𝑒𝑓 = 𝐹
 

Naish2 [29] 𝑎𝑒𝑓 −
𝑎𝑒𝑝

𝑎𝑒𝑝 + 𝑎𝑛𝑝 + 1
 

Wong1 [29] 𝑎𝑒𝑓   

Russel [29] 
𝑎𝑒𝑓

𝑎𝑒𝑓 + 𝑎𝑛𝑓 + 𝑎𝑒𝑝 + 𝑎𝑛𝑝
 

Binary [29] {
0 if 𝑎𝑒𝑓 < 𝐹

1 if  𝑎𝑒𝑓 = 𝐹
 

Table 1 – Evaluated suspiciousness metrics 

 



Discarding CC tests had no effect on Wong1 and Binary, which 
is expected since neither use 𝑎𝑒𝑝 nor 𝑎𝑛𝑝. Therefore, Wong1 and 

Binary are immune to CC (a positive characteristic), however, 
the EXAM scores they exhibited were lower than those for the 
other metrics (see Tables 4 and 5). 

In summary, discarding the CC tests increased the 
suspiciousness scores of the defects for seven metrics, decreased 
them for one metric, and had no effect for two metrics (that do 
not use 𝑎𝑒𝑝 nor 𝑎𝑛𝑝). 

C. Ranking Scores Results  

Since a lower EXAM score indicates better performance, 
Tables 4 and 5 show the average decrease for TCCØ, TCCw, and 
TCCs compared to TCCw+s (AvgDecrease) as opposed to the 
average increase (AvgIncrease). 

Discarding the CC tests had no effect on the EXAM scores of 
Russel, Wong1, and Binary; which is expected for the latter two.  

For the remaining seven metrics, most of the defects were 
associated with a decrease in the EXAM score. The 
AvgDecrease values were negative in some cases, however, the 
overall #Improved values for these seven metrics were 
considerable. 

In summary, discarding the CC tests had: 1) no effect on the 
EXAM scores of the defects in case of Russel, Wong1, and 
Binary; 2) a strong positive effect in case of Tarantula, Ample, 
Ochiai, Dstar2, and Dstar3; and 3) a mild positive effect in case 
of Naish1 and Naish2. 

 

D. Threats to Validity  

In addition to the fact that our study is very small, there are two 
internal threats to the validity of our experiments:  

1) The EXAM score is computed at the Java line number 

level as opposed to the bytecode level. This, coupled 

with the fact that the Siemens programs are small, might 

lessen the confidence of our findings in regard to the 

effect of CC on the EXAM scores (i.e., Tables 4 and 5). 

However, this concern does not apply to our findings in 

regard to the suspiciousness scores, since for that, the 

analysis is conducted at the bytecode level.  

2) The EXAM score ranking is just one approach of many 

presented in the litterature. Other approaches should 

have also been used to evaluate the effect of CC on 

CBFL metrics. 
 

IV. RELATED WORK  

Closely related work conducted by the authors include: 1) 
showing that both strong and weak CC is prevalent; 2) 
demonstrating that weak CC is a safety reducing factor for 
CBFL ; 3) and cleansing test suites from CC [17][18][19][20]. 

Also, in [21][22]  the authors conducted an empirical study 
in which it was found that most dynamic dependences do not 
convey any measurable information, which means that it is 

likely that many infectious states might not propagate to the 
output, thus, leading to coincidental correctness.  

Wang et al presented a coverage refinement approach [28] 
to reduce the influence of coincidental correctness on fault 
localization. The work introduces a concept called context-
pattern, which is unique for each fault type and describes the 
program behavior before and after the faulty code. Coverage 
results for all statements are refined with the context-pattern 
following a context-pattern matching.  

Bandyopadhyay and Ghosh considered any passing test that 
is similar to failing tests as CC. They proposed an iterative 
approach that leverages user feedback to improve the detection 
of CC tests and consequently CBFL [5]. 

Forgacs and Bertolino [9] introduced the notion of untested 
statements, i.e., statements that failed to exhibit any influence on 
the output via dynamic dependence. They attributed this 
phenomenon to coincidental correctness. 

Hierons [10] recognized the negative effect of CC when 
augmenting Partition Analysis with Boundary Value Analysis. 
He also showed how Boundary Value Analysis can be enhanced 
in order to reduce the likelihood of CC even in an environment 
that involves non-determinism and floating point numbers. 

 

V. CONCLUSIONS   

We presented the results of our experiments that aimed at 
assessing the impact of coincidental correctness on the 
effectiveness of ten CBFL metrics. We observed that when the 
CC tests are discarded, in most cases the suspiciousness score of 
the defective statement increased and its EXAM ranking score 
also improved. 

The metrics that benefited most from discarding CC tests 
are: Tarantula, Ample, Ochiai, Dstar2, and Dstar3. Whereas, 
discarding CC tests had no effect on Russel, Wong1, and Binary. 
However, the latter three metrics were the worst performers in 
regard to the EXAM score. 

In the future, we will conduct larger experiments involving 
more subject programs from different domains, more metrics, 
and more ranking techniques. 

  



 Tarantula Ample Ochiai Dstar2 Dstar3 

 TCCw+s TCCØ TCCw TCCs TCCw+s TCCØ TCCw TCCs TCCw+s TCCØ TCCw TCCs TCCw+s TCCØ TCCw TCCs TCCw+s TCCØ TCCw TCCs 

pt_tok2_v4 0.772 1 1 0.772 0.705 1 1 0.705 0.482 1 1 0.482 100.295 Infinity Infinity 100.295 33297.88 Infinity Infinity 33297.88 

pt_tok2_v7 0.76 1 0.769 0.97 0.685 1 0.7 0.969 0.382 1 0.394 0.842 35.325 Infinity 37.987 504.106 7312.237 Infinity 7863.247 104349.9 

pt_tok2_v8 0.549 1 0.549 1 0.18 1 0.18 1 0.276 1 0.276 1 21.039 Infinity 21.039 Infinity 5385.944 Infinity 5385.944 Infinity 

pt_tok_v2 0.847 1 0.943 0.912 0.768 1 0.821 0.851 0.241 1 0.302 0.37 2.956 Infinity 4.799 7.613 133.029 Infinity 215.936 342.575 

pt_tok_v7 0.938 1 0.938 1 0.934 1 0.934 1 0.308 1 0.308 1 2.925 Infinity 2.925 Infinity 81.91 Infinity 81.91 Infinity 

repl_v16 0.831 1 0.831 0.999 0.796 1 0.797 0.999 0.262 1 0.263 0.971 6.041 Infinity 6.069 1344.8 495.389 Infinity 497.625 110273.6 

repl_v7 0.786 1 0.786 0.998 0.727 1 0.728 0.998 0.23 1 0.23 0.955 4.623 Infinity 4.648 861.125 383.75 Infinity 385.821 71473.38 

repl_v8 0.816 1 0.82 0.99 0.774 1 0.78 0.99 0.514 1 0.521 0.956 149.573 Infinity 154.791 4437.333 62222.38 Infinity 64392.93 1845931 

sched2_v5 0.54 1 0.541 0.641 0.148 1 0.152 0.44 0.118 1 0.119 0.574 0.449 Infinity 0.462 15.754 14.359 Infinity 14.787 504.123 

sched2_v6 0.519 1 1 0.519 0.073 1 1 0.073 0.053 1 1 0.053 0.02 Infinity Infinity 0.02 0.137 Infinity Infinity 0.137 

sched2_v7 0.566 1 0.567 0.688 0.234 1 0.236 0.547 0.122 1 0.123 0.665 0.468 Infinity 0.477 24.641 14.518 Infinity 14.799 763.872 

sched_v2 0.638 1 1 0.638 0.434 1 1 0.434 0.363 1 1 0.363 31.91 Infinity Infinity 31.91 6701.158 Infinity Infinity 6701.158 

sched_v3 0.675 1 0.69 0.908 0.519 1 0.551 0.898 0.342 1 0.362 0.722 21.085 Infinity 24.009 173.158 3352.526 Infinity 3817.359 27532.05 

sched_v4 0.614 1 0.668 0.708 0.371 1 0.503 0.587 0.407 1 0.504 0.568 58.363 Infinity 99.926 140.318 17158.8 Infinity 29378.25 41253.55 

tcas_v1 0.887 1 0.887 1 0.873 1 0.873 1 0.643 1 0.643 1 92.263 Infinity 92.263 Infinity 12086.51 Infinity 12086.51 Infinity 

tcas_v2 0.767 1 1 0.719 0.696 1 1 0.608 0.355 1 1 0.355 9.654 Infinity Infinity 9.654 646.802 Infinity Infinity 646.802 

tcas_v5 0.573 1 0.577 0.576 0.254 1 0.268 0.263 0.092 1 0.095 0.326 0.084 Infinity 0.091 1.19 0.845 Infinity 0.909 11.905 

tot_inf_v4 0.616 1 0.652 0.747 0.377 1 0.467 0.661 0.222 1 0.265 0.379 1.715 Infinity 2.486 5.528 56.594 Infinity 82.048 182.421 

tot_inf_v5 0.677 1 0.635 0.996 0.523 1 0.426 0.996 0.237 1 0.237 0.967 1.723 Infinity 1.73 420.5 49.977 Infinity 50.183 12194.5 

tot_inf_v8 0.967 1 0.979 0.987 0.966 1 0.979 0.987 0.934 1 0.958 0.973 1365.552 Infinity 2200.056 3600.091 271744.8 Infinity 437811.1 716418.1 

Avg 0.717 1 0.792 0.838 0.552 1 0.67 0.75 0.329 1 0.48 0.676 95.303 Infinity 165.86 686.943 21056.98 Infinity 35129.96 174816.3 

AvgIncrease - 0.283 0.095 0.145 - 0.448 0.176 0.264 - 0.671 0.314 0.513 - Infinity 0.425 0.861 - Infinity 0.401 0.88 

#Improved - 20 16 17 - 20 16 17 - 20 16 17 - 20 16 17 - 20 16 17 

#Unchanged - 0 4 3 - 0 4 3 - 0 4 3 - 0 4 3 - 0 4 3 

Table 2 – Suspiciousness scores for Tarantula, Ample, Ochiai, Dstar2, and Dstar3 

 
 

 
Naish1 Naish2 Wong1 Russel Binary 

 TCCw+s TCCØ TCCw TCCs TCCw+s TCCØ TCCw TCCs TCCw+s TCCØ TCCw TCCs TCCw+s TCCØ TCCw TCCs TCCw+s TCCØ TCCw TCCs 

pt_tok2_v4 2624 2624 2624 2624 331.705 332 332 331.705 332 332 332 332 0.082 0.112 0.112 0.082 1 1 1 1 

pt_tok2_v7 2635 2626 2635 2626 206.685 207 206.7 206.969 207 207 207 207 0.051 0.073 0.052 0.071 1 1 1 1 

pt_tok2_v8 684 552 684 552 255.18 256 255.18 256 256 256 256 256 0.063 0.317 0.063 0.317 1 1 1 1 

pt_tok_v2 2476 2476 2476 2476 47.616 48 47.69 47.851 48 48 48 48 0.012 0.019 0.013 0.016 1 1 1 1 

pt_tok_v7 3774 3685 3774 3685 27.934 28 27.934 28 28 28 28 28 0.007 0.008 0.007 0.008 1 1 1 1 

repl_v16 4347 3941 4347 3941 81.796 82 81.797 81.999 82 82 82 82 0.015 0.02 0.015 0.02 1 1 1 1 

repl_v7 3969 3941 3969 3941 82.727 83 82.728 82.998 83 83 83 83 0.015 0.021 0.015 0.021 1 1 1 1 

repl_v8 3969 3941 3969 3941 415.774 416 415.78 415.99 416 416 416 416 0.075 0.095 0.076 0.095 1 1 1 1 

sched2_v5 396 50 396 51 31.148 32 31.152 31.444 32 32 32 32 0.012 0.39 0.012 0.216 1 1 1 1 

sched2_v6 196 130 130 196 6.073 7 7 6.073 7 7 7 7 0.003 0.051 0.051 0.003 1 1 1 1 

sched2_v7 627 43 623 47 30.234 31 30.237 30.552 31 31 31 31 0.011 0.419 0.012 0.265 1 1 1 1 

sched_v2 1058 1058 1058 1058 209.434 210 210 209.434 210 210 210 210 0.079 0.166 0.166 0.079 1 1 1 1 

sched_v3 1292 1292 1292 1292 158.519 159 158.551 158.899 159 159 159 159 0.06 0.11 0.063 0.1 1 1 1 1 

sched_v4 875 875 875 875 293.372 294 293.503 293.587 294 294 294 294 0.111 0.251 0.145 0.165 1 1 1 1 

tcas_v1 1280 1121 1280 1121 130.873 131 130.873 131 131 131 131 131 0.082 0.105 0.082 0.105 1 1 1 1 

tcas_v2 1065 722 1065 722 66.696 67 67 66.609 67 67 67 67 0.042 0.085 0.059 0.053 1 1 1 1 

tcas_v5 403 30 403 30 9.254 10 9.269 9.27 10 10 10 10 0.006 0.25 0.007 0.081 1 1 1 1 

tot_inf_v4 384 384 384 384 32.377 33 32.468 32.662 33 33 33 33 0.031 0.079 0.039 0.054 1 1 1 1 

tot_inf_v5 535 284 361 458 28.523 29 28.427 28.996 29 29 29 29 0.028 0.093 0.033 0.059 1 1 1 1 

tot_inf_v8 824 824 824 824 198.966 199 198.979 198.987 199 199 199 199 0.189 0.195 0.191 0.192 1 1 1 1 

Avg 1670.65 1529.95 1658.45 1542.2 132.244 132.7 132.363 132.451 132.7 132.7 132.7 132.7 0.049 0.143 0.061 0.1 1 1 1 1 

AvgIncrease - -0.092 -0.007 -0.083 - 0.003 0.001 0.002 - 0 0 0 - 0.659 0.197 0.513 - 0 0 0 

#Improved - 0 0 0 - 20 16 16 - 0 0 0 - 20 14 17 - 0 0 0 

#Unchanged - 7 17 8 - 0 3 3 - 20 20 20 - 0 6 3 - 20 20 20 

Table 3 – Suspiciousness scores for Naish1, Naih2, Wong1, Russel, Binary. 

 
 

 

 

 

 

 

 

 

 



  

 Tarantula Ample Ochiai Dstar2 Dstar3 

 TCCw+s TCCØ TCCw TCCs TCCw+s TCCØ TCCw TCCs TCCw+s TCCØ TCCw TCCs TCCw+s TCCØ TCCw TCCs TCCw+s TCCØ TCCw TCCs 

pt_tok2_v4 0.161 0.044 0.044 0.161 0 0 0 0 0.051 0 0 0.051 0.051 0 0 0.051 0.036 0 0 0.036 

pt_tok2_v7 0.088 0.022 0.088 0.066 0.022 0.015 0.022 0.015 0.022 0.015 0.022 0.015 0.022 0.015 0.022 0.015 0.022 0.015 0.022 0.015 

pt_tok2_v8 0.526 0.109 0.526 0.109 0.489 0.015 0.489 0.015 0.336 0.015 0.336 0.015 0.285 0.015 0.285 0.015 0.248 0.015 0.248 0.015 

pt_tok_v2 0.067 0.095 0.106 0.05 0.028 0.034 0.028 0.05 0.028 0.034 0.039 0.006 0.028 0.034 0.028 0.006 0.028 0.034 0.028 0.006 

pt_tok_v7 0.039 0.073 0.039 0.073 0.006 0.073 0.006 0.073 0.006 0.073 0.006 0.073 0.006 0.073 0.006 0.073 0.006 0.073 0.006 0.073 

repl_v16 0.049 0.063 0.049 0.092 0.049 0.035 0.049 0.035 0.049 0.035 0.049 0.035 0.049 0.035 0.049 0.035 0.049 0.035 0.049 0.035 

repl_v7 0.049 0.063 0.049 0.021 0.049 0.021 0.049 0.021 0.049 0.021 0.049 0.021 0.049 0.021 0.049 0.021 0.049 0.021 0.049 0.021 

repl_v8 0.085 0.049 0.085 0.049 0.063 0.049 0.063 0.049 0.07 0.049 0.07 0.049 0.063 0.049 0.07 0.049 0.063 0.049 0.063 0.049 

sched2_v5 0.33 0.22 0.3 0.559 0.313 0.154 0.3 0.476 0.203 0.154 0.189 0.471 0.203 0.154 0.189 0.471 0.194 0.154 0.172 0.405 

sched2_v6 0.447 0.381 0.381 0.447 0.416 0.142 0.142 0.416 0.376 0.142 0.142 0.376 0.376 0.142 0.142 0.376 0.31 0.142 0.142 0.31 

sched2_v7 0.208 0.434 0.204 0.429 0.119 0.332 0.115 0.217 0.111 0.332 0.106 0.217 0.111 0.332 0.106 0.217 0.111 0.332 0.106 0.199 

sched_v2 0.297 0.11 0.11 0.297 0.198 0.064 0.064 0.198 0.18 0.064 0.064 0.18 0.18 0.064 0.064 0.18 0.169 0.064 0.064 0.169 

sched_v3 0.163 0.105 0.163 0.203 0.064 0.023 0.052 0.023 0.07 0.023 0.081 0.035 0.07 0.023 0.081 0.035 0.052 0.023 0.052 0.023 

sched_v4 0.297 0.116 0.297 0.25 0.238 0.012 0.174 0.017 0.203 0.012 0.18 0.017 0.203 0.012 0.169 0.017 0.081 0.012 0.081 0.012 

tcas_v1 0.059 0.074 0.059 0.074 0.059 0.074 0.059 0.074 0.059 0.074 0.059 0.074 0.059 0.074 0.059 0.074 0.059 0.074 0.059 0.074 

tcas_v2 0.059 0.176 0 0.25 0 0.103 0 0.162 0 0.103 0 0.162 0 0.103 0 0.162 0 0.103 0 0.162 

tcas_v5 0.426 0.338 0.426 0.559 0.25 0.191 0.25 0.5 0.221 0.191 0.221 0.397 0.221 0.191 0.221 0.382 0.162 0.191 0.162 0.353 

tot_inf_v4 0.297 0.043 0.267 0.172 0.155 0.043 0.103 0.052 0.155 0.043 0.116 0.095 0.155 0.043 0.116 0.095 0.125 0.043 0.095 0.052 

tot_inf_v5 0.216 0.156 0.299 0.009 0.069 0.043 0.108 0.009 0.078 0.043 0.152 0.009 0.078 0.043 0.108 0.009 0.069 0.043 0.087 0.009 

tot_inf_v8 0.052 0.043 0.091 0.03 0.03 0.022 0.03 0.03 0.03 0.022 0.03 0.03 0.03 0.022 0.03 0.03 0.03 0.022 0.03 0.03 

Avg 0.196 0.136 0.179 0.195 0.131 0.072 0.105 0.122 0.115 0.072 0.096 0.116 0.112 0.072 0.09 0.116 0.093 0.072 0.076 0.102 

AvgDecrease - 0.306 0.085 0.004 - 0.449 0.196 0.072 - 0.372 0.168 -0.013 - 0.355 0.198 -0.033 - 0.225 0.187 -0.098 

#Improved - 13 7 9 - 14 7 9 - 15 7 10 - 15 7 10 - 14 6 10 

#Unchanged - 0 10 3 - 1 12 4 - 0 10 4 - 0 10 4 - 0 13 4 

Table 4 – EXAM scores for Tarantula, Ample, Ochiai, Dstar2, and Dstar3 

 
 Naish1 Naish2 Wong1 Russel Binary 

 TCCw+s TCCØ TCCw TCCs TCCw+s TCCØ TCCw TCCs TCCw+s TCCØ TCCw TCCs TCCw+s TCCØ TCCw TCCs TCCw+s TCCØ TCCw TCCs 

pt_tok2_v4 0 0 0 0 0 0 0 0 0.299 0.299 0.299 0.299 0.299 0.299 0.299 0.299 0.299 0.299 0.299 0.299 

pt_tok2_v7 0.022 0.015 0.022 0.015 0.022 0.015 0.022 0.015 0.307 0.307 0.307 0.307 0.307 0.307 0.307 0.307 0.307 0.307 0.307 0.307 

pt_tok2_v8 0.029 0.015 0.029 0.015 0.029 0.015 0.029 0.015 0.307 0.307 0.307 0.307 0.307 0.307 0.307 0.307 0.307 0.307 0.307 0.307 

pt_tok_v2 0.067 0.034 0.067 0.05 0.067 0.034 0.067 0.05 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173 

pt_tok_v7 0.006 0.073 0.006 0.073 0.006 0.073 0.006 0.073 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0.292 

repl_v16 0.049 0.035 0.049 0.035 0.049 0.035 0.049 0.035 0.162 0.162 0.162 0.162 0.162 0.162 0.162 0.162 0.162 0.162 0.162 0.162 

repl_v7 0 0.021 0 0.021 0 0.021 0 0.021 0.141 0.141 0.141 0.141 0.141 0.141 0.141 0.141 0.141 0.141 0.141 0.141 

repl_v8 0.063 0.049 0.063 0.049 0.063 0.049 0.063 0.049 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 

sched2_v5 0.159 0.154 0.145 0.273 0.159 0.154 0.145 0.273 0.313 0.313 0.313 0.313 0.313 0.313 0.313 0.313 0.313 0.313 0.313 0.313 

sched2_v6 0.199 0.142 0.142 0.199 0.199 0.142 0.142 0.199 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0.292 

sched2_v7 0.08 0.332 0.075 0.173 0.08 0.332 0.075 0.173 0.358 0.358 0.358 0.358 0.358 0.358 0.358 0.358 0.358 0.358 0.358 0.358 

sched_v2 0.128 0.064 0.064 0.128 0.128 0.064 0.064 0.128 0.372 0.372 0.372 0.372 0.372 0.372 0.372 0.372 0.372 0.372 0.372 0.372 

sched_v3 0.047 0.023 0.047 0.023 0.047 0.023 0.047 0.023 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 

sched_v4 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 

tcas_v1 0.059 0.074 0.059 0.074 0.059 0.074 0.059 0.074 0.397 0.397 0.397 0.397 0.397 0.397 0.397 0.397 0.397 0.397 0.397 0.397 

tcas_v2 0 0.103 0 0.162 0 0.103 0 0.162 0.353 0.353 0.353 0.353 0.353 0.353 0.353 0.353 0.353 0.353 0.353 0.353 

tcas_v5 0.132 0.191 0.132 0.265 0.132 0.191 0.132 0.265 0.294 0.294 0.294 0.294 0.294 0.294 0.294 0.294 0.294 0.294 0.294 0.294 

tot_inf_v4 0.052 0.043 0.043 0.043 0.052 0.043 0.043 0.043 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 

tot_inf_v5 0.013 0.043 0.022 0.009 0.013 0.043 0.022 0.009 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 

tot_inf_v8 0.03 0.022 0.03 0.03 0.03 0.022 0.03 0.03 0.345 0.345 0.345 0.345 0.345 0.345 0.345 0.345 0.345 0.345 0.345 0.345 

Avg 0.057 0.072 0.05 0.082 0.057 0.072 0.05 0.082 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

AvgDecrease - -0.26 0.121 -0.44 - -0.26 0.121 -0.438 - 0 0 0 - 0 0 0 - 0 0 0 

#Improved - 11 5 8 - 11 5 8 - 0 0 0 - 0 0 0 - 0 0 0 

#Unchanged - 2 14 5 - 2 14 5 - 20 20 20 - 20 20 20 - 20 20 20 

Table 5 – EXAM scores for Naish1, Naih2, Wong1, Russel, Binary. 
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