
A Study on the Effect of Coincidental Correctness on

Fault Localization Metrics

Rawad Abou Assi, Wes Masri, and Chadi Trad

Electrical and Computer Engineering Dept.

American University of Beirut

{ria21, wm13, cht02}@aub.edu.lb

Abstract— According to the PIE model, three conditions must be
met for failure to be observed: 1) the defect is executed, 2) the
program is infected, and 3) the infection has propagated to the
output. Weak coincidental correctness (CC) occurs when the
program produces the correct output, while condition 1) is
satisfied but 2) and 3) are not satisfied. Strong coincidental
correctness occurs when a correct output is observed, while both
conditions 1) and 2) are satisfied but not 3).

In prior work, we analytically demonstrated that CC is a safety
reducing factor for coverage-based fault localization (CBFL).
However, we did not experimentally validate that fact, which we
do in this paper. Specifically, we comparatively evaluated the
performance of CBFL using ten different suspiciousness metrics
when: a) both weak and strong CC tests are present; b) no weak
nor strong CC tests are present; c) only weak CC tests are present;
d) only strong CC tests are present. Our experiments showed that
when the CC tests are discarded, in most cases the suspiciousness
score of the defective statement increased and its EXAM ranking
score also improved. The metrics that benefited most from
discarding CC tests are: Tarantula, Ample, Ochiai, Dstar2, and
Dstar3. Whereas, discarding CC tests had no effect on Russel,
Wong1, and Binary. However, the latter three metrics were the
worst performers in regard to the EXAM score.

Keywords— coverage-based fault localization, coincidental

correctness, suspiciousness metrics, failed error propagation, fault

masking

I. INTRODUCTION

Most coverage-based fault localization (CBFL) techniques
assume that the execution of a defective code location will lead
to a program failure [1][2][12][13][14][15][16][26]. However,
this may not always be the case.

According to the PIE model [27], three conditions must be
met for failure to be observed: 1) the defect is executed, 2) the
program is infected, and 3) the infection has propagated to the
output. Amman and Offutt supported this same notion in their
RIP (reachability-infection-propagation) model described in [3].
Coincidental correctness (CC) [8][10][28] occurs when the
program produces the correct output, while conditions 1) and 2)
are satisfied but not 3). We refer to this case as strong
coincidental correctness to differentiate it from weak
coincidental correctness which occurs when the program
produces the correct output, while condition 1) is satisfied but 2)
and 3) are not satisfied [17][18][19].

Several researchers have recognized the negative impact of
coincidental correctness on the effectiveness of defect detection

techniques [4][5][6][7][9][10][28]. In previous work, we
showed [17][18][19] that both weak and strong CC are
prevalent. We also analytically demonstrated that weak CC is a
safety reducing factor for CBFL; i.e., when weak CC tests are
present, the defect will be assigned a suspiciousness score
smaller than when they are not present. In this paper, we
experimentally assess the impact of coincidental correctness on
the effectiveness of CBFL using ten different suspiciousness
metrics. We do so by considering test suites that fall under the
following four categories:

1) TCCw+s: both weak and strong CC tests are present.

2) TCCØ: no weak nor strong CC tests are present.

3) TCCw: only weak CC tests are present.

4) TCCs: only strong CC tests are present.

Since our experiments involve ten different metrics and four
test suite categories, this paper sheds light on 40 different
potential environmental setups.

Section II describes the used CBFL approach and metrics.
Section III presents our experimental results. Section IV briefly
surveys related work, and Section V concludes.

II. COVERAGE-BASED FAULT LOCALIZATION

This section describes the CBFL techniques evaluated in our
experiments, namely, the profile elements, the suspiciousness
metrics, and the ranking approach.

A. Profiles

The execution profiles we used encompass def-use pair
(DUP) coverage information. Specifically, for every pair
consisting of a variable definition D(x) and a use U(x) such that
D(x) dynamically reaches U(x) in at least one test, a DUP profile
contains a flag indicating whether D(x) dynamically reaches
U(x) in the current test. The suspiciousness score of a given DUP
is assigned to its component statements, i.e., to both the def and
use statements. The choice of def-use pair coverage is
completely arbitrary, as we might have used any other type of
coverage, such as statement or branch.

B. Suspiciousness metrics

This work considers the following ten CBFL suspiciousness
metrics that were used and/or studied in the literature: 1)
Tarantula [12][13]; 2) AMPLE [7]; 3) Ochiai [2]; 4) Dstar2; 5)
Dstar3; 6) Naish1; 7) Naish2; 8) Wong1; 9) Russel; and 10)
Binary. The first three metrics are among the earliest and/or most

well-known CBFL measures. Dstar2 and Dstar3 were shown to
outperform 38 existing metrics [31]. The last 5 metrics were
theoretically proven to be maximal (i.e., most effective) [30].

The following entities need to be first computed in order to
compute the suspiciousness score of a profile element:

 𝑎𝑒𝑝: the number of passing test cases that execute the

profile element.

 𝑎𝑒𝑓: the number of failing test cases that execute the

profile element.

 𝑎𝑛𝑝: the number of passing test cases that do no execute

the profile element.

 𝑎𝑛𝑓: the number of failing test cases that do not execute

the profile element.

 𝑃: the total number of passing test cases.

 𝐹: the total number of failing test cases.

Table 1 shows the suspiciousness metrics we used in our
experiments. Note how some metrics use all four of the above
entities and others use part of them. For example, Tarantula use
all four, whereas Wong1 and Binary only use 𝑎𝑒𝑓.

C. Ranking approach

After computing the suspiciousness metrics for all the
collected def-use pairs, we assign to each Java line of code a
“collective” suspiciousness score which is equal to the
maximum score assigned to the def-use pairs traversing it. The
lines of code are then ranked in decreasing order of collective
suspiciousness values. We quantify the fault localization
effectiveness using the EXAM score [31] which measures the
percentage of lines that are ranked higher than the faulty one. As
such, lower EXAM scores indicate better performance. In case
the faulty line is tied with other lines in terms of collective
suspiciousness score, we rank it in the middle of them. Note that
even though our underlying analysis is conducted at the Java
bytecode level, the ranking is conducted at the Java line level;
the reason stems from the fact that it is easier to define a bug
location in terms of line number as opposed to byte code offset.

III. EXPERIMENTAL EVALUATION

A. Subject Programs

Our experiments involved 20 defective versions from the
Siemens benchmark (sir.unl.edu) that we previously converted
to Java [1]; specifically, two versions from print_tokens, and
three from each of the remaining six versions. Defects involving
missing code were omitted since our ranking approach would
not be applicable in such cases.

For a given test suite, the test cases were originally classified
as failing or passing. As part of previous work [19], the passing
tests were further categorized as true passing, weak CC, or
strong CC. This was done by manually inserting two code
checkers near the fault: 1) a checker that detects weak CC tests
by monitoring whether the fault was reached; and 2) a checker
that detects strong CC tests by monitoring whether the fault was
reached and the program has transitioned into an infectious state
(the condition that captures whether an infection occurred, is

mostly inferred by comparing the faulty code and its
corresponding fix).

B. Suspiciousness Scores Results

Table 2 and Table 3 present our results related to the
suspiciousness scores. For each of the four categories of test
suites, it shows the suspiciousness scores assigned to the faulty
lines of code. The results are summarized by showing: 1) the
average score across the 20 defects (Avg); 2) the average
increase for TCCØ, TCCw, and TCCs compared to TCCw+s
(AvgIncrease); 3) the number of defects for which the score
increased compared to TCCw+s (#Improved); and 4) the number
of defects for which the score was unchanged (#Unchanged).

For the case of Tarantula, Ample, Ochiai, Dstar2, Dstar3,
Naish2, and Russel, the suspiciousness scores increased on
average when the CC tests are discarded (see Avg and
AvgIncrease). The average increase was largest when both
weak and strong CCs were discarded (TCCØ), less when weak
CCs were discarded (TCCs), and least when strong CCs were
discarded (TCCw).

For the case of Tarantula, Ample, Ochiai, Dstar2, Dstar3, and
Russel, the suspiciousness scores of all defects increased or were
unchanged (see #Improved and #Unchanged).

Naish1 is the only case where discarding the CC tests resulted in
many defects to have their suspiciousness scores decrease.

Suspiciousness

Metrics

Expression

Tarantula [12][13]
𝑎𝑒𝑓

𝑎𝑒𝑓 + 𝑎𝑛𝑓
/(

𝑎𝑒𝑓

𝑎𝑒𝑓 + 𝑎𝑛𝑓
+

𝑎𝑒𝑝

𝑎𝑒𝑝 + 𝑎𝑛𝑝
)

Ample [7]
𝑎𝑒𝑓

𝑎𝑒𝑓 + 𝑎𝑛𝑓
 −

𝑎𝑒𝑝

𝑎𝑒𝑝 + 𝑎𝑛𝑝

Ochiai [2]

𝑎𝑒𝑓

√(𝑎𝑒𝑓 + 𝑎𝑛𝑓)(𝑎𝑒𝑓 + 𝑎𝑒𝑝)

𝐷𝑠𝑡𝑎𝑟2 [29]
(𝑎𝑒𝑓)

2

𝑎𝑛𝑓 + 𝑎𝑒𝑝

𝐷𝑠𝑡𝑎𝑟3 [29]
(𝑎𝑒𝑓)

3

𝑎𝑛𝑓 + 𝑎𝑒𝑝

Naish1 [29] {
−1 if 𝑎𝑒𝑓 < 𝐹

𝑃 − 𝑎𝑒𝑝 if 𝑎𝑒𝑓 = 𝐹

Naish2 [29] 𝑎𝑒𝑓 −
𝑎𝑒𝑝

𝑎𝑒𝑝 + 𝑎𝑛𝑝 + 1

Wong1 [29] 𝑎𝑒𝑓

Russel [29]
𝑎𝑒𝑓

𝑎𝑒𝑓 + 𝑎𝑛𝑓 + 𝑎𝑒𝑝 + 𝑎𝑛𝑝

Binary [29] {
0 if 𝑎𝑒𝑓 < 𝐹

1 if 𝑎𝑒𝑓 = 𝐹

Table 1 – Evaluated suspiciousness metrics

Discarding CC tests had no effect on Wong1 and Binary, which
is expected since neither use 𝑎𝑒𝑝 nor 𝑎𝑛𝑝. Therefore, Wong1 and

Binary are immune to CC (a positive characteristic), however,
the EXAM scores they exhibited were lower than those for the
other metrics (see Tables 4 and 5).

In summary, discarding the CC tests increased the
suspiciousness scores of the defects for seven metrics, decreased
them for one metric, and had no effect for two metrics (that do
not use 𝑎𝑒𝑝 nor 𝑎𝑛𝑝).

C. Ranking Scores Results

Since a lower EXAM score indicates better performance,
Tables 4 and 5 show the average decrease for TCCØ, TCCw, and
TCCs compared to TCCw+s (AvgDecrease) as opposed to the
average increase (AvgIncrease).

Discarding the CC tests had no effect on the EXAM scores of
Russel, Wong1, and Binary; which is expected for the latter two.

For the remaining seven metrics, most of the defects were
associated with a decrease in the EXAM score. The
AvgDecrease values were negative in some cases, however, the
overall #Improved values for these seven metrics were
considerable.

In summary, discarding the CC tests had: 1) no effect on the
EXAM scores of the defects in case of Russel, Wong1, and
Binary; 2) a strong positive effect in case of Tarantula, Ample,
Ochiai, Dstar2, and Dstar3; and 3) a mild positive effect in case
of Naish1 and Naish2.

D. Threats to Validity

In addition to the fact that our study is very small, there are two
internal threats to the validity of our experiments:

1) The EXAM score is computed at the Java line number

level as opposed to the bytecode level. This, coupled

with the fact that the Siemens programs are small, might

lessen the confidence of our findings in regard to the

effect of CC on the EXAM scores (i.e., Tables 4 and 5).

However, this concern does not apply to our findings in

regard to the suspiciousness scores, since for that, the

analysis is conducted at the bytecode level.

2) The EXAM score ranking is just one approach of many

presented in the litterature. Other approaches should

have also been used to evaluate the effect of CC on

CBFL metrics.

IV. RELATED WORK

Closely related work conducted by the authors include: 1)
showing that both strong and weak CC is prevalent; 2)
demonstrating that weak CC is a safety reducing factor for
CBFL ; 3) and cleansing test suites from CC [17][18][19][20].

Also, in [21][22] the authors conducted an empirical study
in which it was found that most dynamic dependences do not
convey any measurable information, which means that it is

likely that many infectious states might not propagate to the
output, thus, leading to coincidental correctness.

Wang et al presented a coverage refinement approach [28]
to reduce the influence of coincidental correctness on fault
localization. The work introduces a concept called context-
pattern, which is unique for each fault type and describes the
program behavior before and after the faulty code. Coverage
results for all statements are refined with the context-pattern
following a context-pattern matching.

Bandyopadhyay and Ghosh considered any passing test that
is similar to failing tests as CC. They proposed an iterative
approach that leverages user feedback to improve the detection
of CC tests and consequently CBFL [5].

Forgacs and Bertolino [9] introduced the notion of untested
statements, i.e., statements that failed to exhibit any influence on
the output via dynamic dependence. They attributed this
phenomenon to coincidental correctness.

Hierons [10] recognized the negative effect of CC when
augmenting Partition Analysis with Boundary Value Analysis.
He also showed how Boundary Value Analysis can be enhanced
in order to reduce the likelihood of CC even in an environment
that involves non-determinism and floating point numbers.

V. CONCLUSIONS

We presented the results of our experiments that aimed at
assessing the impact of coincidental correctness on the
effectiveness of ten CBFL metrics. We observed that when the
CC tests are discarded, in most cases the suspiciousness score of
the defective statement increased and its EXAM ranking score
also improved.

The metrics that benefited most from discarding CC tests
are: Tarantula, Ample, Ochiai, Dstar2, and Dstar3. Whereas,
discarding CC tests had no effect on Russel, Wong1, and Binary.
However, the latter three metrics were the worst performers in
regard to the EXAM score.

In the future, we will conduct larger experiments involving
more subject programs from different domains, more metrics,
and more ranking techniques.

 Tarantula Ample Ochiai Dstar2 Dstar3

 TCCw+s TCCØ TCCw TCCs TCCw+s TCCØ TCCw TCCs TCCw+s TCCØ TCCw TCCs TCCw+s TCCØ TCCw TCCs TCCw+s TCCØ TCCw TCCs

pt_tok2_v4 0.772 1 1 0.772 0.705 1 1 0.705 0.482 1 1 0.482 100.295 Infinity Infinity 100.295 33297.88 Infinity Infinity 33297.88

pt_tok2_v7 0.76 1 0.769 0.97 0.685 1 0.7 0.969 0.382 1 0.394 0.842 35.325 Infinity 37.987 504.106 7312.237 Infinity 7863.247 104349.9

pt_tok2_v8 0.549 1 0.549 1 0.18 1 0.18 1 0.276 1 0.276 1 21.039 Infinity 21.039 Infinity 5385.944 Infinity 5385.944 Infinity

pt_tok_v2 0.847 1 0.943 0.912 0.768 1 0.821 0.851 0.241 1 0.302 0.37 2.956 Infinity 4.799 7.613 133.029 Infinity 215.936 342.575

pt_tok_v7 0.938 1 0.938 1 0.934 1 0.934 1 0.308 1 0.308 1 2.925 Infinity 2.925 Infinity 81.91 Infinity 81.91 Infinity

repl_v16 0.831 1 0.831 0.999 0.796 1 0.797 0.999 0.262 1 0.263 0.971 6.041 Infinity 6.069 1344.8 495.389 Infinity 497.625 110273.6

repl_v7 0.786 1 0.786 0.998 0.727 1 0.728 0.998 0.23 1 0.23 0.955 4.623 Infinity 4.648 861.125 383.75 Infinity 385.821 71473.38

repl_v8 0.816 1 0.82 0.99 0.774 1 0.78 0.99 0.514 1 0.521 0.956 149.573 Infinity 154.791 4437.333 62222.38 Infinity 64392.93 1845931

sched2_v5 0.54 1 0.541 0.641 0.148 1 0.152 0.44 0.118 1 0.119 0.574 0.449 Infinity 0.462 15.754 14.359 Infinity 14.787 504.123

sched2_v6 0.519 1 1 0.519 0.073 1 1 0.073 0.053 1 1 0.053 0.02 Infinity Infinity 0.02 0.137 Infinity Infinity 0.137

sched2_v7 0.566 1 0.567 0.688 0.234 1 0.236 0.547 0.122 1 0.123 0.665 0.468 Infinity 0.477 24.641 14.518 Infinity 14.799 763.872

sched_v2 0.638 1 1 0.638 0.434 1 1 0.434 0.363 1 1 0.363 31.91 Infinity Infinity 31.91 6701.158 Infinity Infinity 6701.158

sched_v3 0.675 1 0.69 0.908 0.519 1 0.551 0.898 0.342 1 0.362 0.722 21.085 Infinity 24.009 173.158 3352.526 Infinity 3817.359 27532.05

sched_v4 0.614 1 0.668 0.708 0.371 1 0.503 0.587 0.407 1 0.504 0.568 58.363 Infinity 99.926 140.318 17158.8 Infinity 29378.25 41253.55

tcas_v1 0.887 1 0.887 1 0.873 1 0.873 1 0.643 1 0.643 1 92.263 Infinity 92.263 Infinity 12086.51 Infinity 12086.51 Infinity

tcas_v2 0.767 1 1 0.719 0.696 1 1 0.608 0.355 1 1 0.355 9.654 Infinity Infinity 9.654 646.802 Infinity Infinity 646.802

tcas_v5 0.573 1 0.577 0.576 0.254 1 0.268 0.263 0.092 1 0.095 0.326 0.084 Infinity 0.091 1.19 0.845 Infinity 0.909 11.905

tot_inf_v4 0.616 1 0.652 0.747 0.377 1 0.467 0.661 0.222 1 0.265 0.379 1.715 Infinity 2.486 5.528 56.594 Infinity 82.048 182.421

tot_inf_v5 0.677 1 0.635 0.996 0.523 1 0.426 0.996 0.237 1 0.237 0.967 1.723 Infinity 1.73 420.5 49.977 Infinity 50.183 12194.5

tot_inf_v8 0.967 1 0.979 0.987 0.966 1 0.979 0.987 0.934 1 0.958 0.973 1365.552 Infinity 2200.056 3600.091 271744.8 Infinity 437811.1 716418.1

Avg 0.717 1 0.792 0.838 0.552 1 0.67 0.75 0.329 1 0.48 0.676 95.303 Infinity 165.86 686.943 21056.98 Infinity 35129.96 174816.3

AvgIncrease - 0.283 0.095 0.145 - 0.448 0.176 0.264 - 0.671 0.314 0.513 - Infinity 0.425 0.861 - Infinity 0.401 0.88

#Improved - 20 16 17 - 20 16 17 - 20 16 17 - 20 16 17 - 20 16 17

#Unchanged - 0 4 3 - 0 4 3 - 0 4 3 - 0 4 3 - 0 4 3

Table 2 – Suspiciousness scores for Tarantula, Ample, Ochiai, Dstar2, and Dstar3

Naish1 Naish2 Wong1 Russel Binary

 TCCw+s TCCØ TCCw TCCs TCCw+s TCCØ TCCw TCCs TCCw+s TCCØ TCCw TCCs TCCw+s TCCØ TCCw TCCs TCCw+s TCCØ TCCw TCCs

pt_tok2_v4 2624 2624 2624 2624 331.705 332 332 331.705 332 332 332 332 0.082 0.112 0.112 0.082 1 1 1 1

pt_tok2_v7 2635 2626 2635 2626 206.685 207 206.7 206.969 207 207 207 207 0.051 0.073 0.052 0.071 1 1 1 1

pt_tok2_v8 684 552 684 552 255.18 256 255.18 256 256 256 256 256 0.063 0.317 0.063 0.317 1 1 1 1

pt_tok_v2 2476 2476 2476 2476 47.616 48 47.69 47.851 48 48 48 48 0.012 0.019 0.013 0.016 1 1 1 1

pt_tok_v7 3774 3685 3774 3685 27.934 28 27.934 28 28 28 28 28 0.007 0.008 0.007 0.008 1 1 1 1

repl_v16 4347 3941 4347 3941 81.796 82 81.797 81.999 82 82 82 82 0.015 0.02 0.015 0.02 1 1 1 1

repl_v7 3969 3941 3969 3941 82.727 83 82.728 82.998 83 83 83 83 0.015 0.021 0.015 0.021 1 1 1 1

repl_v8 3969 3941 3969 3941 415.774 416 415.78 415.99 416 416 416 416 0.075 0.095 0.076 0.095 1 1 1 1

sched2_v5 396 50 396 51 31.148 32 31.152 31.444 32 32 32 32 0.012 0.39 0.012 0.216 1 1 1 1

sched2_v6 196 130 130 196 6.073 7 7 6.073 7 7 7 7 0.003 0.051 0.051 0.003 1 1 1 1

sched2_v7 627 43 623 47 30.234 31 30.237 30.552 31 31 31 31 0.011 0.419 0.012 0.265 1 1 1 1

sched_v2 1058 1058 1058 1058 209.434 210 210 209.434 210 210 210 210 0.079 0.166 0.166 0.079 1 1 1 1

sched_v3 1292 1292 1292 1292 158.519 159 158.551 158.899 159 159 159 159 0.06 0.11 0.063 0.1 1 1 1 1

sched_v4 875 875 875 875 293.372 294 293.503 293.587 294 294 294 294 0.111 0.251 0.145 0.165 1 1 1 1

tcas_v1 1280 1121 1280 1121 130.873 131 130.873 131 131 131 131 131 0.082 0.105 0.082 0.105 1 1 1 1

tcas_v2 1065 722 1065 722 66.696 67 67 66.609 67 67 67 67 0.042 0.085 0.059 0.053 1 1 1 1

tcas_v5 403 30 403 30 9.254 10 9.269 9.27 10 10 10 10 0.006 0.25 0.007 0.081 1 1 1 1

tot_inf_v4 384 384 384 384 32.377 33 32.468 32.662 33 33 33 33 0.031 0.079 0.039 0.054 1 1 1 1

tot_inf_v5 535 284 361 458 28.523 29 28.427 28.996 29 29 29 29 0.028 0.093 0.033 0.059 1 1 1 1

tot_inf_v8 824 824 824 824 198.966 199 198.979 198.987 199 199 199 199 0.189 0.195 0.191 0.192 1 1 1 1

Avg 1670.65 1529.95 1658.45 1542.2 132.244 132.7 132.363 132.451 132.7 132.7 132.7 132.7 0.049 0.143 0.061 0.1 1 1 1 1

AvgIncrease - -0.092 -0.007 -0.083 - 0.003 0.001 0.002 - 0 0 0 - 0.659 0.197 0.513 - 0 0 0

#Improved - 0 0 0 - 20 16 16 - 0 0 0 - 20 14 17 - 0 0 0

#Unchanged - 7 17 8 - 0 3 3 - 20 20 20 - 0 6 3 - 20 20 20

Table 3 – Suspiciousness scores for Naish1, Naih2, Wong1, Russel, Binary.

 Tarantula Ample Ochiai Dstar2 Dstar3

 TCCw+s TCCØ TCCw TCCs TCCw+s TCCØ TCCw TCCs TCCw+s TCCØ TCCw TCCs TCCw+s TCCØ TCCw TCCs TCCw+s TCCØ TCCw TCCs

pt_tok2_v4 0.161 0.044 0.044 0.161 0 0 0 0 0.051 0 0 0.051 0.051 0 0 0.051 0.036 0 0 0.036

pt_tok2_v7 0.088 0.022 0.088 0.066 0.022 0.015 0.022 0.015 0.022 0.015 0.022 0.015 0.022 0.015 0.022 0.015 0.022 0.015 0.022 0.015

pt_tok2_v8 0.526 0.109 0.526 0.109 0.489 0.015 0.489 0.015 0.336 0.015 0.336 0.015 0.285 0.015 0.285 0.015 0.248 0.015 0.248 0.015

pt_tok_v2 0.067 0.095 0.106 0.05 0.028 0.034 0.028 0.05 0.028 0.034 0.039 0.006 0.028 0.034 0.028 0.006 0.028 0.034 0.028 0.006

pt_tok_v7 0.039 0.073 0.039 0.073 0.006 0.073 0.006 0.073 0.006 0.073 0.006 0.073 0.006 0.073 0.006 0.073 0.006 0.073 0.006 0.073

repl_v16 0.049 0.063 0.049 0.092 0.049 0.035 0.049 0.035 0.049 0.035 0.049 0.035 0.049 0.035 0.049 0.035 0.049 0.035 0.049 0.035

repl_v7 0.049 0.063 0.049 0.021 0.049 0.021 0.049 0.021 0.049 0.021 0.049 0.021 0.049 0.021 0.049 0.021 0.049 0.021 0.049 0.021

repl_v8 0.085 0.049 0.085 0.049 0.063 0.049 0.063 0.049 0.07 0.049 0.07 0.049 0.063 0.049 0.07 0.049 0.063 0.049 0.063 0.049

sched2_v5 0.33 0.22 0.3 0.559 0.313 0.154 0.3 0.476 0.203 0.154 0.189 0.471 0.203 0.154 0.189 0.471 0.194 0.154 0.172 0.405

sched2_v6 0.447 0.381 0.381 0.447 0.416 0.142 0.142 0.416 0.376 0.142 0.142 0.376 0.376 0.142 0.142 0.376 0.31 0.142 0.142 0.31

sched2_v7 0.208 0.434 0.204 0.429 0.119 0.332 0.115 0.217 0.111 0.332 0.106 0.217 0.111 0.332 0.106 0.217 0.111 0.332 0.106 0.199

sched_v2 0.297 0.11 0.11 0.297 0.198 0.064 0.064 0.198 0.18 0.064 0.064 0.18 0.18 0.064 0.064 0.18 0.169 0.064 0.064 0.169

sched_v3 0.163 0.105 0.163 0.203 0.064 0.023 0.052 0.023 0.07 0.023 0.081 0.035 0.07 0.023 0.081 0.035 0.052 0.023 0.052 0.023

sched_v4 0.297 0.116 0.297 0.25 0.238 0.012 0.174 0.017 0.203 0.012 0.18 0.017 0.203 0.012 0.169 0.017 0.081 0.012 0.081 0.012

tcas_v1 0.059 0.074 0.059 0.074 0.059 0.074 0.059 0.074 0.059 0.074 0.059 0.074 0.059 0.074 0.059 0.074 0.059 0.074 0.059 0.074

tcas_v2 0.059 0.176 0 0.25 0 0.103 0 0.162 0 0.103 0 0.162 0 0.103 0 0.162 0 0.103 0 0.162

tcas_v5 0.426 0.338 0.426 0.559 0.25 0.191 0.25 0.5 0.221 0.191 0.221 0.397 0.221 0.191 0.221 0.382 0.162 0.191 0.162 0.353

tot_inf_v4 0.297 0.043 0.267 0.172 0.155 0.043 0.103 0.052 0.155 0.043 0.116 0.095 0.155 0.043 0.116 0.095 0.125 0.043 0.095 0.052

tot_inf_v5 0.216 0.156 0.299 0.009 0.069 0.043 0.108 0.009 0.078 0.043 0.152 0.009 0.078 0.043 0.108 0.009 0.069 0.043 0.087 0.009

tot_inf_v8 0.052 0.043 0.091 0.03 0.03 0.022 0.03 0.03 0.03 0.022 0.03 0.03 0.03 0.022 0.03 0.03 0.03 0.022 0.03 0.03

Avg 0.196 0.136 0.179 0.195 0.131 0.072 0.105 0.122 0.115 0.072 0.096 0.116 0.112 0.072 0.09 0.116 0.093 0.072 0.076 0.102

AvgDecrease - 0.306 0.085 0.004 - 0.449 0.196 0.072 - 0.372 0.168 -0.013 - 0.355 0.198 -0.033 - 0.225 0.187 -0.098

#Improved - 13 7 9 - 14 7 9 - 15 7 10 - 15 7 10 - 14 6 10

#Unchanged - 0 10 3 - 1 12 4 - 0 10 4 - 0 10 4 - 0 13 4

Table 4 – EXAM scores for Tarantula, Ample, Ochiai, Dstar2, and Dstar3

 Naish1 Naish2 Wong1 Russel Binary

 TCCw+s TCCØ TCCw TCCs TCCw+s TCCØ TCCw TCCs TCCw+s TCCØ TCCw TCCs TCCw+s TCCØ TCCw TCCs TCCw+s TCCØ TCCw TCCs

pt_tok2_v4 0 0 0 0 0 0 0 0 0.299 0.299 0.299 0.299 0.299 0.299 0.299 0.299 0.299 0.299 0.299 0.299

pt_tok2_v7 0.022 0.015 0.022 0.015 0.022 0.015 0.022 0.015 0.307 0.307 0.307 0.307 0.307 0.307 0.307 0.307 0.307 0.307 0.307 0.307

pt_tok2_v8 0.029 0.015 0.029 0.015 0.029 0.015 0.029 0.015 0.307 0.307 0.307 0.307 0.307 0.307 0.307 0.307 0.307 0.307 0.307 0.307

pt_tok_v2 0.067 0.034 0.067 0.05 0.067 0.034 0.067 0.05 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173

pt_tok_v7 0.006 0.073 0.006 0.073 0.006 0.073 0.006 0.073 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0.292

repl_v16 0.049 0.035 0.049 0.035 0.049 0.035 0.049 0.035 0.162 0.162 0.162 0.162 0.162 0.162 0.162 0.162 0.162 0.162 0.162 0.162

repl_v7 0 0.021 0 0.021 0 0.021 0 0.021 0.141 0.141 0.141 0.141 0.141 0.141 0.141 0.141 0.141 0.141 0.141 0.141

repl_v8 0.063 0.049 0.063 0.049 0.063 0.049 0.063 0.049 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19

sched2_v5 0.159 0.154 0.145 0.273 0.159 0.154 0.145 0.273 0.313 0.313 0.313 0.313 0.313 0.313 0.313 0.313 0.313 0.313 0.313 0.313

sched2_v6 0.199 0.142 0.142 0.199 0.199 0.142 0.142 0.199 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0.292

sched2_v7 0.08 0.332 0.075 0.173 0.08 0.332 0.075 0.173 0.358 0.358 0.358 0.358 0.358 0.358 0.358 0.358 0.358 0.358 0.358 0.358

sched_v2 0.128 0.064 0.064 0.128 0.128 0.064 0.064 0.128 0.372 0.372 0.372 0.372 0.372 0.372 0.372 0.372 0.372 0.372 0.372 0.372

sched_v3 0.047 0.023 0.047 0.023 0.047 0.023 0.047 0.023 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355

sched_v4 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355

tcas_v1 0.059 0.074 0.059 0.074 0.059 0.074 0.059 0.074 0.397 0.397 0.397 0.397 0.397 0.397 0.397 0.397 0.397 0.397 0.397 0.397

tcas_v2 0 0.103 0 0.162 0 0.103 0 0.162 0.353 0.353 0.353 0.353 0.353 0.353 0.353 0.353 0.353 0.353 0.353 0.353

tcas_v5 0.132 0.191 0.132 0.265 0.132 0.191 0.132 0.265 0.294 0.294 0.294 0.294 0.294 0.294 0.294 0.294 0.294 0.294 0.294 0.294

tot_inf_v4 0.052 0.043 0.043 0.043 0.052 0.043 0.043 0.043 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375

tot_inf_v5 0.013 0.043 0.022 0.009 0.013 0.043 0.022 0.009 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325

tot_inf_v8 0.03 0.022 0.03 0.03 0.03 0.022 0.03 0.03 0.345 0.345 0.345 0.345 0.345 0.345 0.345 0.345 0.345 0.345 0.345 0.345

Avg 0.057 0.072 0.05 0.082 0.057 0.072 0.05 0.082 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

AvgDecrease - -0.26 0.121 -0.44 - -0.26 0.121 -0.438 - 0 0 0 - 0 0 0 - 0 0 0

#Improved - 11 5 8 - 11 5 8 - 0 0 0 - 0 0 0 - 0 0 0

#Unchanged - 2 14 5 - 2 14 5 - 20 20 20 - 20 20 20 - 20 20 20

Table 5 – EXAM scores for Naish1, Naih2, Wong1, Russel, Binary.

REFERENCES

[1] Rawad Abou Assi, Wes Masri. Identifying Failure-Correlated
Dependence Chains. ICST Workshops 2011: 607-616.

[2] Abreu R., Zoeteweij P. and Van Gemund A. J. C. On the Accuracy of
Spectrum-based Fault Localization. TAIC-PART, pp. 89-98, 2007.

[3] Ammann P. and Offutt J. Introduction to Software Testing. Cambridge
University Press, 2008.

[4] Thomas Ball, Mayur Naik, Sriram K. Rajamani. From symptom to cause:
localizing errors in counterexample traces. POPL 2003: 97-105.

[5] Aritra Bandyopadhyay, Sudipto Ghosh. Tester Feedback Driven Fault
Localization. ICST 2012: 41-50.

[6] B. Baudry, F. Fleurey, and Y. Le Traon, Improving test suites for efficient
fault localization, In Proc.of ICSE’06, pages 82- 91, May, 2006.

[7] Dallmeier V., Lindig C., and Zeller A. 2005.b. Lightweight defect
localization for Java. In A. P. Black, editor, ECOOP 2005: 19th European
Conference, Glasgow, UK, July 25–29, 2005. Proceedings, volume 3568
of LNCS, pages 528–550. Springer-Verlag.

[8] DeMillo, R. A., Lipton, R. J., and Sayward, F. G. 1978. Hints on Test Data
Selection: Help for the Practicing Programmer. Computer 11, 4 (Apr.
1978), 34-41.

[9] István Forgács, Antonia Bertolino. Preventing untestedness in data-flow
based testing. Softw. Test., Verif. Reliab. 12(1): 29-58 (2002).

[10] R. M. Hierons. Avoiding coincidental correctness in boundary value
analysis. ACM Transactions on Software Engineering and Methodology.
Volume 15, Issue 3 (July 2006). Pages: 227 - 241.

[11] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. Supporting
Controlled Experimentation with Testing Techniques: An Infrastructure
and its Potential Impact. Empirical Software Engineering: An
International Journal, Volume 10, No. 4, pages 405-435, 2005.

[12] Jones J. and Harrold M. J. “Empirical Evaluation of the Tarantula
Automatic Fault-Localization Technique,” Proc. 20th IEEE/ACM Int’l
Conf. Automated Software Eng. (ASE ’05), pp. 273-282, 2005.

[13] Jones J., Harrold M. J., and Stasko J.. Visualization of Test Information
to Assist Fault Localization. In Proceedings of the 24th International
Conference on Software Engineering, pp. 467-477, May 2001.

[14] Liblit B., Aiken A., Zheng A., and Jordan M. Bug Isolation via Remote
Program Sampling. Proc. ACM SIGPLAN 2003 Int’l Conf. Programming
Language Design and Implementation (PLDI ’03), pp. 141-154, 2003.

[15] Liblit B., Naik M., Zheng A., Aiken A., and Jordan M. Scalable Statistical
Bug Isolation. Proc. ACM SIGPLAN 2005 Int’l Conf. Programming
Language Design and Implementation (PLDI ’05), pp. 15-26, 2005.

[16] Wes Masri. Fault localization based on information flow coverage. Softw.
Test., Verif. Reliab. 20(2): 121-147 (2010).

[17] Wes Masri, Rawad Abou Assi. Cleansing Test Suites from Coincidental
Correctness to Enhance Fault-Localization. ICST 2010: 165-174.

[18] Wes Masri, Rawad Abou Assi. Prevalence of coincidental correctness and
mitigation of its impact on fault localization. ACM Trans. Softw. Eng.
Methodol. 23(1): 8:1-8:28 (2014).

[19] Masri W., Abou-Assi R., El-Ghali M., and Fatairi N. An Empirical Study
of the Factors that Reduce the Effectiveness of Coverage-based Fault
Localization. International Workshop on Defects in Large Software
Systems, DEFECTS, Chicago, IL, 2009.

[20] Wes Masri, Rawad Abou Assi, Fadi A. Zaraket, Nour Fatairi. Enhancing
Fault Localization via Multivariate Visualization. ICST 2012: 737-741.

[21] Masri W., Podgurski A. 2006. An Empirical Study of the Strength of
Information Flows in Programs. Fourth International Workshop on
Dynamic Analysis (WODA 2006), Shanghai, China, May 2006.

[22] Masri, W. and Podgurski, A. Measuring the Strength of Information
Flows in Programs. ACM Transactions on Software Engineering and
Methodology (TOSEM). To appear 2009.

[23] W. Masri, A. Podgurski and D. Leon. “An Empirical Study of Test Case
Filtering Techniques Based On Exercising Information Flows”. IEEE
Transactions on Software Engineering, July, 2007, vol. 33, number 7,
page 454.

[24] Masri, W. and Podgurski, A. Algorithms and Tool Support for Dynamic
Information Flow Analysis. Information and Software Technology
(Elsevier), Vol. 51, Fe. 2009, pp. 395-404.

[25] W. Masri, A. Podgurski and D. Leon. “An Empirical Study of Test Case
Filtering Techniques Based On Exercising Information Flows”. IEEE
Transactions on Software Engineering, July, 2007, vol. 33, number 7,
page 454.

[26] Renieris M. and Reiss S. Fault localization with nearest-neighbor queries.
In Proceedings of the 18th IEEE Conference on Automated Software
Engineering, pp. 30-39, 2003.

[27] Jeffrey M. Voas: PIE: A Dynamic Failure-Based Technique. IEEE Trans.
Software Eng. 18(8): 717-727 (1992).

[28] Wang X., Cheung S.C., Chan W.K., Zhang Z. Taming coincidental
correctness: Coverage refinement with context patterns to improve fault
localization. IEEE 31st International Conference on Software
Engineering, pp. 45-55, 2009

[29] Naish L., Lee H.J., and Ramamohanarao K. A model for spectra-based
software diagnosis. ACM Transactions on Software Engineering and
Methodology. 20, 3, Article 11 (August 2011).

[30] X. Xie, T. Y. Chen, F.-C. Kuo, and B. Xu. A theoretical analysis of the
risk evaluation formulas for spectrum-based fault localization. ACM
Transactions on Software Engineering and Methodology (TOSEM),
22(4):31, 2013.

[31] W. E. Wong, V. Debroy, R. Gao, and Y. Li, “The DStar Method for
Effective Software Fault Localization,” IEEE Transactions on Reliability,
vol. 63, no. 1, pp. 290–308, 2014.

