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Abstract— According to the PIE model, three conditions must be
met for failure to be observed: 1) the defect is executed, 2) the
program is infected, and 3) the infection has propagated to the
output. Weak coincidental correctness (CC) occurs when the
program produces the correct output, while condition 1) is
satisfied but 2) and 3) are not satisfied. Strong coincidental
correctness occurs when a correct output is observed, while both
conditions 1) and 2) are satisfied but not 3).

In prior work, we analytically demonstrated that CC is a safety
reducing factor for coverage-based fault localization (CBFL).
However, we did not experimentally validate that fact, which we
do in this paper. Specifically, we comparatively evaluated the
performance of CBFL using ten different suspiciousness metrics
when: a) both weak and strong CC tests are present; b) no weak
nor strong CC tests are present; c) only weak CC tests are present;
d) only strong CC tests are present. Our experiments showed that
when the CC tests are discarded, in most cases the suspiciousness
score of the defective statement increased and its EXAM ranking
score also improved. The metrics that benefited most from
discarding CC tests are: Tarantula, Ample, Ochiai, Dstar?, and
Dstar®. Whereas, discarding CC tests had no effect on Russel,
Wongl, and Binary. However, the latter three metrics were the
worst performers in regard to the EXAM score.

Keywords— coverage-based fault localization, coincidental
correctness, suspiciousness metrics, failed error propagation, fault
masking

l. INTRODUCTION

Most coverage-based fault localization (CBFL) techniques
assume that the execution of a defective code location will lead
to a program failure [1][2][12][13][14][15][16][26]. However,
this may not always be the case.

According to the PIE model [27], three conditions must be
met for failure to be observed: 1) the defect is executed, 2) the
program is infected, and 3) the infection has propagated to the
output. Amman and Offutt supported this same notion in their
RIP (reachability-infection-propagation) model described in [3].
Coincidental correctness (CC) [8][10][28] occurs when the
program produces the correct output, while conditions 1) and 2)
are satisfied but not 3). We refer to this case as strong
coincidental correctness to differentiate it from weak
coincidental correctness which occurs when the program
produces the correct output, while condition 1) is satisfied but 2)
and 3) are not satisfied [17][18][19].

Several researchers have recognized the negative impact of
coincidental correctness on the effectiveness of defect detection

techniques [4][5][6][71[9][10][28]. In previous work, we
showed [17][18][19] that both weak and strong CC are
prevalent. We also analytically demonstrated that weak CC is a
safety reducing factor for CBFL; i.e., when weak CC tests are
present, the defect will be assigned a suspiciousness score
smaller than when they are not present. In this paper, we
experimentally assess the impact of coincidental correctness on
the effectiveness of CBFL using ten different suspiciousness
metrics. We do so by considering test suites that fall under the
following four categories:

1) Tccws+s: both weak and strong CC tests are present.
2) Tcce: N0 weak nor strong CC tests are present.

3) Tcew: only weak CC tests are present.

4) Tccs: only strong CC tests are present.

Since our experiments involve ten different metrics and four
test suite categories, this paper sheds light on 40 different
potential environmental setups.

Section Il describes the used CBFL approach and metrics.
Section 111 presents our experimental results. Section 1V briefly
surveys related work, and Section V concludes.

Il.  COVERAGE-BASED FAULT LOCALIZATION

This section describes the CBFL techniques evaluated in our
experiments, namely, the profile elements, the suspiciousness
metrics, and the ranking approach.

A. Profiles

The execution profiles we used encompass def-use pair
(DUP) coverage information. Specifically, for every pair
consisting of a variable definition D(x) and a use U(x) such that
D(x) dynamically reaches U(x) in at least one test, a DUP profile
contains a flag indicating whether D(x) dynamically reaches
U(x) in the current test. The suspiciousness score of a given DUP
is assigned to its component statements, i.e., to both the def and
use statements. The choice of def-use pair coverage is
completely arbitrary, as we might have used any other type of
coverage, such as statement or branch.

B. Suspiciousness metrics

This work considers the following ten CBFL suspiciousness
metrics that were used and/or studied in the literature: 1)
Tarantula [12][13]; 2) AMPLE [7]; 3) Ochiai [2]; 4) Dstar?; 5)
Dstar®; 6) Naishl; 7) Naish2; 8) Wongl; 9) Russel; and 10)
Binary. The first three metrics are among the earliest and/or most



well-known CBFL measures. Dstar? and Dstar® were shown to
outperform 38 existing metrics [31]. The last 5 metrics were
theoretically proven to be maximal (i.e., most effective) [30].

The following entities need to be first computed in order to
compute the suspiciousness score of a profile element:

* a,, the number of passing test cases that execute the
profile element.

* a.s: the number of failing test cases that execute the
profile element.

* a,, the number of passing test cases that do no execute
the profile element.

* a, s the number of failing test cases that do not execute
the profile element.

= P: the total number of passing test cases.
= F: the total number of failing test cases.

Table 1 shows the suspiciousness metrics we used in our
experiments. Note how some metrics use all four of the above
entities and others use part of them. For example, Tarantula use
all four, whereas Wong1 and Binary only use a,.

C. Ranking approach

After computing the suspiciousness metrics for all the
collected def-use pairs, we assign to each Java line of code a
“collective” suspiciousness score which is equal to the
maximum score assigned to the def-use pairs traversing it. The
lines of code are then ranked in decreasing order of collective
suspiciousness values. We quantify the fault localization
effectiveness using the EXAM score [31] which measures the
percentage of lines that are ranked higher than the faulty one. As
such, lower EXAM scores indicate better performance. In case
the faulty line is tied with other lines in terms of collective
suspiciousness score, we rank it in the middle of them. Note that
even though our underlying analysis is conducted at the Java
bytecode level, the ranking is conducted at the Java line level;
the reason stems from the fact that it is easier to define a bug
location in terms of line number as opposed to byte code offset.

I1l.  EXPERIMENTAL EVALUATION

A. Subject Programs

Our experiments involved 20 defective versions from the
Siemens benchmark (sir.unl.edu) that we previously converted
to Java [1]; specifically, two versions from print_tokens, and
three from each of the remaining six versions. Defects involving
missing code were omitted since our ranking approach would
not be applicable in such cases.

For a given test suite, the test cases were originally classified
as failing or passing. As part of previous work [19], the passing
tests were further categorized as true passing, weak CC, or
strong CC. This was done by manually inserting two code
checkers near the fault: 1) a checker that detects weak CC tests
by monitoring whether the fault was reached; and 2) a checker
that detects strong CC tests by monitoring whether the fault was
reached and the program has transitioned into an infectious state
(the condition that captures whether an infection occurred, is
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Table 1 — Evaluated suspiciousness metrics

mostly inferred by comparing the faulty code and its
corresponding fix).

B. Suspiciousness Scores Results

Table 2 and Table 3 present our results related to the
suspiciousness scores. For each of the four categories of test
suites, it shows the suspiciousness scores assigned to the faulty
lines of code. The results are summarized by showing: 1) the
average score across the 20 defects (Avg); 2) the average
increase for Tccs, Tccw, and Tccs compared to Tcow+s
(Avglincrease); 3) the number of defects for which the score
increased compared to Tcew+s (#lmproved); and 4) the number
of defects for which the score was unchanged (#Unchanged).

For the case of Tarantula, Ample, Ochiai, Dstar?, Dstar?,
Naish2, and Russel, the suspiciousness scores increased on
average when the CC tests are discarded (see Avg and
Avglncrease). The average increase was largest when both
weak and strong CCs were discarded (Tcco), less when weak
CCs were discarded (Tccs), and least when strong CCs were
discarded (Tccw).

For the case of Tarantula, Ample, Ochiai, Dstar?, Dstar®, and
Russel, the suspiciousness scores of all defects increased or were
unchanged (see #Improved and #Unchanged).

Naish1l is the only case where discarding the CC tests resulted in
many defects to have their suspiciousness scores decrease.



Discarding CC tests had no effect on Wong1 and Binary, which
is expected since neither use a,,, nor a,,,. Therefore, Wong1 and
Binary are immune to CC (a positive characteristic), however,
the EXAM scores they exhibited were lower than those for the
other metrics (see Tables 4 and 5).

In summary, discarding the CC tests increased the
suspiciousness scores of the defects for seven metrics, decreased
them for one metric, and had no effect for two metrics (that do
not use a,, Nor a,,).

C. Ranking Scores Results

Since a lower EXAM score indicates better performance,
Tables 4 and 5 show the average decrease for Tcce, Tccw, and
Tces compared to Tcewss (AvgDecrease) as opposed to the
average increase (Avglncrease).

Discarding the CC tests had no effect on the EXAM scores of
Russel, Wong1, and Binary; which is expected for the latter two.

For the remaining seven metrics, most of the defects were
associated with a decrease in the EXAM score. The
AvgDecrease values were negative in some cases, however, the
overall #Ilmproved values for these seven metrics were
considerable.

In summary, discarding the CC tests had: 1) no effect on the
EXAM scores of the defects in case of Russel, Wongl, and
Binary; 2) a strong positive effect in case of Tarantula, Ample,
Ochiai, Dstar?, and Dstar®; and 3) a mild positive effect in case
of Naish1 and Naish2.

D. Threats to Validity

In addition to the fact that our study is very small, there are two
internal threats to the validity of our experiments:

1) The EXAM score is computed at the Java line number
level as opposed to the bytecode level. This, coupled
with the fact that the Siemens programs are small, might
lessen the confidence of our findings in regard to the
effect of CC on the EXAM scores (i.e., Tables 4 and 5).
However, this concern does not apply to our findings in
regard to the suspiciousness scores, since for that, the
analysis is conducted at the bytecode level.

2) The EXAM score ranking is just one approach of many
presented in the litterature. Other approaches should
have also been used to evaluate the effect of CC on
CBFL metrics.

IV. RELATED WORK

Closely related work conducted by the authors include: 1)
showing that both strong and weak CC is prevalent; 2)
demonstrating that weak CC is a safety reducing factor for
CBFL ; 3) and cleansing test suites from CC [17][18][19][20].

Also, in [21][22] the authors conducted an empirical study
in which it was found that most dynamic dependences do not
convey any measurable information, which means that it is

likely that many infectious states might not propagate to the
output, thus, leading to coincidental correctness.

Wang et al presented a coverage refinement approach [28]
to reduce the influence of coincidental correctness on fault
localization. The work introduces a concept called context-
pattern, which is unique for each fault type and describes the
program behavior before and after the faulty code. Coverage
results for all statements are refined with the context-pattern
following a context-pattern matching.

Bandyopadhyay and Ghosh considered any passing test that
is similar to failing tests as CC. They proposed an iterative
approach that leverages user feedback to improve the detection
of CC tests and consequently CBFL [5].

Forgacs and Bertolino [9] introduced the notion of untested
statements, i.e., statements that failed to exhibit any influence on
the output via dynamic dependence. They attributed this
phenomenon to coincidental correctness.

Hierons [10] recognized the negative effect of CC when
augmenting Partition Analysis with Boundary Value Analysis.
He also showed how Boundary Value Analysis can be enhanced
in order to reduce the likelihood of CC even in an environment
that involves non-determinism and floating point numbers.

V. CONCLUSIONS

We presented the results of our experiments that aimed at
assessing the impact of coincidental correctness on the
effectiveness of ten CBFL metrics. We observed that when the
CC tests are discarded, in most cases the suspiciousness score of
the defective statement increased and its EXAM ranking score
also improved.

The metrics that benefited most from discarding CC tests
are: Tarantula, Ample, Ochiai, Dstar?, and Dstar®. Whereas,
discarding CC tests had no effect on Russel, Wong1, and Binary.
However, the latter three metrics were the worst performers in
regard to the EXAM score.

In the future, we will conduct larger experiments involving
more subject programs from different domains, more metrics,
and more ranking techniques.



Tarantula Ample Ochiai Dstar2 Dstar3

Tccwss| Teea| Toow| Tocs | Teowss| Toog| Teew| Tees | Tocwss| Teea| Toow| Tees| Teowss | Teea | Teow | Tees | Tecwss | Teeo | Teew | Tecs
pt_tok2_v4 0772 1 1 (0.772{0.705| 1 1 ]0.705/0.482| 1 1 ]0.482[100.295 |Infinity | Infinity | 100.295 |33297.88| Infinity | Infinity [33297.88
pt_tok2_v7 0.76 | 1 [0.769{0.97(0.685| 1 | 0.7 [0.969/0.382| 1 |0.394(0.842| 35.325 |Infinity| 37.987 |504.106 [7312.237| Infinity |7863.247|104349.9
pt_tok2_v8 0549 1 (0549 1 |(0.18 | 1 |0.18| 1 |0.276| 1 |0.276/ 1 | 21.039 |Infinity| 21.039 | Infinity |5385.944Infinity |5385.944| Infinity
pt_tok_v2 0.847| 1 |0.943|0.912(0.768 | 1 |0.821|0.851|0.241| 1 |0.302|0.37| 2.956 |Infinity| 4.799 7.613 | 133.029 |Infinity | 215.936 | 342.575
pt_tok_v7 0938 1 (0938 1 |(0.934| 1 |0.934 1 |0.308| 1 |0.308| 1 2.925 |Infinity| 2.925 | Infinity | 81.91 |Infinity| 81.91 | Infinity
repl_v16 0.831| 1 |0.831|0.999(0.796 | 1 |0.797|0.999|0.262| 1 |0.263|0.971| 6.041 |Infinity| 6.069 | 1344.8 | 495.389 |Infinity | 497.625 |110273.6
repl_v7 0.786| 1 |0.786/0.998(0.727 | 1 |0.728|0.998| 0.23 | 1 |0.23]0.955| 4.623 |Infinity| 4.648 |[861.125| 383.75 |Infinity| 385.821 |71473.38
repl_v8 0.816| 1 |0.82|099(0.774| 1 |0.78|0.99|0.514| 1 |0.521]|0.956|149.573 | Infinity | 154.791 [4437.333|62222.38 Infinity |64392.93| 1845931
sched2_v5 054 | 1 |0.541{0.641{0.148 | 1 (0.152/0.44(0.118 | 1 |0.119(0.574| 0.449 |Infinity| 0.462 | 15.754 | 14.359 |Infinity| 14.787 |504.123
sched2_v6 0519 1 1 (0.519{0.073| 1 1 ]0.073]0.053| 1 1 ]0.053| 0.02 [Infinity| Infinity | 0.02 0.137 |Infinity| Infinity | 0.137
sched2_v7 0.566| 1 |0.567(0.688/0.234 | 1 |0.236/0.547|0.122| 1 |0.123|0.665| 0.468 |Infinity| 0.477 | 24.641 | 14.518 [Infinity| 14.799 | 763.872
Isched_v2 0638 1 1 (0.638{0.434| 1 1 ]0.434/0.363| 1 1 10.363| 31.91 |[Infinity| Infinity | 31.91 |6701.158|Infinity| Infinity [6701.158
sched_v3 0.675| 1 |0.69|0.908/0.519 | 1 |0.551|0.898|0.342| 1 |0.362|0.722| 21.085 |Infinity| 24.009 |173.158 |3352.526/ Infinity [3817.359|27532.05
sched_v4 0.614| 1 |0.668/0.708/0.371| 1 |0.503|0.587|0.407 | 1 |0.504|0.568| 58.363 |Infinity| 99.926 |140.318 | 17158.8 |Infinity|[29378.25|41253.55
tcas_v1 0.887| 1 |0.887| 1 |0.873| 1 |0.873] 1 |0.643| 1 |0.643] 1 | 92.263 |Infinity| 92.263 | Infinity [12086.51 Infinity |12086.51| Infinity
tcas_v2 0.767| 1 1 (0.719{0.696 | 1 1 ]0.608/0.355| 1 1 |0.355| 9.654 |[Infinity| Infinity | 9.654 | 646.802 |Infinity| Infinity | 646.802
tcas_v5 0.573| 1 |0.577|0.576/0.254 | 1 |0.268|0.263|0.092| 1 |0.095/0.326| 0.084 |Infinity| 0.091 1.19 0.845 |Infinity[ 0.909 | 11.905
tot_inf_v4 0.616 | 1 |0.652|0.747(0.377 | 1 |0.467|0.661|0.222 | 1 [0.265|0.379| 1.715 |Infinity| 2.486 5.528 | 56.594 |Infinity| 82.048 | 182.421
tot_inf_v5 0.677| 1 |0.635/0.996(0.523 | 1 |0.426]|0.996(0.237 | 1 [0.237|0.967| 1.723 |Infinity| 1.73 420.5 | 49.977 |Infinity| 50.183 | 12194.5
tot_inf_v8 0.967 | 1 |0.979|0.987[0.966 | 1 |0.979|0.987/0.934| 1 [0.958]|0.973|1365.552] Infinity |2200.056|3600.091|271744.8| Infinity [437811.1|716418.1
IAvg 0.717| 1 [0.7920.838/0.552| 1 |0.67|0.75[0.329| 1 |0.480.676 95.303 |Infinity| 165.86 |686.94321056.98Infinity[35129.96174816.3
Avglincrease] - [0.2830.0950.145 - [0.4480.176(0.264] - [0.6710.3140.513 - |Infinity] 0.425 | 0.861 - |Infinity] 0.401 | 0.88
#Improved - |20(16 17| - |20|16|17| - |20 |16 |17 - 20 16 17 - 20 16 17
#Unchanged - 0|43 - 0] 4] 3 - 0| 4|3 - 0 4 3 - 0 4 3

Table 2 — Suspiciousness scores for Tarantula, Ample, Ochiai, Dstar?, and Dstar?
Naishl Naish2 Wongl Russel Binary

Teewss| Teeo | Teew | Tees | Teewss | Tecg| Teew | Tees |Tecwss| Teea| Teew| Tees| Tecwss | Teeg | Teew | Tees | Tecwss | Tee| Teow | Tees
pt_tok2_v4 2624 | 2624 | 2624 | 2624 (331.705| 332 | 332 (331.705| 332 | 332 | 332|332 | 0.082 |0.112| 0.112 | 0.082 1 1 1 1
pt_tok2_v7 2635 | 2626 | 2635 | 2626 (206.685| 207 | 206.7 (206.969| 207 | 207 | 207 | 207 | 0.051 |0.073| 0.052 | 0.071 1 1 1 1
pt_tok2_v8 684 552 684 552 |255.18 | 256 | 255.18 | 256 256 | 256 | 256 | 256 | 0.063 [0.317 | 0.063 | 0.317 1 1 1 1
pt_tok_v2 2476 | 2476 | 2476 | 2476 [47.616| 48 | 47.69 [47.851| 48 48 | 48 | 48 | 0.012 {0.019 0.013 | 0.016 1 1 1 1
pt_tok_v7 3774 | 3685 | 3774 | 3685 |27.934| 28 [27.934| 28 28 | 28 | 28 | 28 | 0.007 |0.008| 0.007 | 0.008 1 1 1 1
repl_v16 4347 | 3941 | 4347 | 3941 |81.796 | 82 [81.797|81.999| 82 | 82 | 82 | 82 | 0.015 | 0.02 | 0.015 | 0.02 1 1 1 1
repl_v7 3969 | 3941 | 3969 | 3941 (82.727| 83 |82.728 (82.998 | 83 83 | 83 | 83 | 0.015 |0.021| 0.015 | 0.021 1 1 1 1
repl_v8 3969 | 3941 | 3969 | 3941 (415.774| 416 | 415.78 | 415.99 | 416 | 416 | 416 | 416 | 0.075 |0.095| 0.076 | 0.095 1 1 1 1
sched2_v5 396 50 396 51 |31.148 | 32 |31.152|31.444| 32 32 | 32 | 32 | 0.012 | 0.39 | 0.012 | 0.216 1 1 1 1
sched2_v6 196 130 130 196 | 6.073 | 7 7 6.073 7 7 7 7 | 0.003 |0.051 0.051 | 0.003 1 1 1 1
sched2_v7 627 43 623 47 (30.234| 31 [30.237|30.552| 31 31 | 31 | 31 | 0.011 |0.419]| 0.012 | 0.265 1 1 1 1
sched_v2 1058 | 1058 | 1058 | 1058 |209.434| 210 | 210 |209.434| 210 | 210 | 210 | 210 | 0.079 [0.166 | 0.166 | 0.079 1 1 1 1
sched_v3 1292 | 1292 | 1292 | 1292 |158.519| 159 (158.551|158.899| 159 | 159 | 159 | 159 | 0.06 | 0.11 | 0.063 | 0.1 1 1 1 1
sched_v4 875 875 875 875 |293.372| 294 |293.503|293.587| 294 | 294 | 294 | 294 | 0.111 |0.251| 0.145 | 0.165 1 1 1 1
tcas_vl 1280 | 1121 | 1280 | 1121 |130.873| 131 (130.873| 131 131 | 131 | 131 | 131 | 0.082 |0.105| 0.082 | 0.105 1 1 1 1
tcas_v2 1065 722 1065 | 722 |66.696 | 67 67 66.609 | 67 67 | 67 | 67 | 0.042 |0.085| 0.059 | 0.053 1 1 1 1
ltcas_v5 403 30 403 30 | 9.254 | 10 | 9.269 | 9.27 10 | 10 | 10 | 10 | 0.006 | 0.25 | 0.007 | 0.081 1 1 1 1
tot_inf_v4 384 384 384 384 |32.377 | 33 |32.468|32.662| 33 | 33 | 33 | 33 | 0.031 |0.079| 0.039 | 0.054 1 1 1 1
tot_inf_v5 535 284 361 458 |28.523 | 29 |28.427|28.996| 29 | 29 | 29 | 29 | 0.028 |0.093| 0.033 | 0.059 1 1 1 1
tot_inf_v8 824 824 824 824 |198.966| 199 |198.979(198.987| 199 | 199 | 199 | 199 | 0.189 |0.195| 0.191 | 0.192 1 1 1 1
IAvg 1670.65[1529.95/1658.45/1542.2|132.2441132.7|132.363(132.451| 132.7 (132.7(132.7/132.7| 0.049 |0.143|0.061| 0.1 1 1 1 1
Avglincrease] - |-0.092|-0.007 |-0.083| - |0.003 0.001 | 0.002 | - 0[0] O - |0.659|0.197 {0513 | - 0 0 0
#Improved - 0 0 0 - 20| 16 16 - 0|0]|O0 - 20 | 14 17 - 0 0 0
#Unchanged - 7 17 8 - 0 3 3 - |120]20 | 20 - 0 6 3 - 20 | 20 | 20

Table 3 — Suspiciousness scores for Naish1, Naih2, Wong1, Russel, Binary.




Tarantula Ample Ochiai Dstar2 Dstar3

Tcewss| Teea| Teew| Tees | Tecwss| Teca| Teew| Tees | Tecwss| Teoa| Teew| Tees | Teowss| Teco | Teew | Tees | Tocwss | Teeo | Teew | Tecs
pt_tok2_v4 0.161 |0.044(0.044(0.161| O 0 0 0 |0.051| O 0 |0.051 | 0.051 0 0 0.051 0.036 0 0 0.036
pt_tok2_v7 0.088 |0.022|0.088|0.066( 0.022 0.015(0.022|0.015| 0.022 (0.015|0.022( 0.015 | 0.022 | 0.015 | 0.022 | 0.015 0.022 | 0.015| 0.022 | 0.015
pt_tok2_v8 0.526 |0.109|0.526|0.109| 0.489 |0.015(0.489/0.015| 0.336 (0.015|0.336( 0.015 | 0.285 | 0.015 | 0.285 | 0.015 0.248 | 0.015| 0.248 | 0.015
pt_tok_v2 0.067 |0.095|0.106| 0.05 | 0.028 |0.034(0.028| 0.05 | 0.028 (0.034|0.039( 0.006 | 0.028 | 0.034 | 0.028 | 0.006 0.028 | 0.034 | 0.028 | 0.006
pt_tok_v7 0.039 |0.073|0.039/0.073| 0.006 {0.073(0.006|0.073| 0.006 (0.073|0.006{ 0.073 | 0.006 | 0.073 | 0.006 | 0.073 0.006 | 0.073 | 0.006 | 0.073
repl_v16 0.049 |0.063|0.049|0.092( 0.049 |0.035(0.049/0.035| 0.049 (0.035|0.049( 0.035 | 0.049 | 0.035 | 0.049 | 0.035 0.049 | 0.035| 0.049 | 0.035
repl_v7 0.049 |0.063|0.049|0.021| 0.049 |0.021(0.049|0.021| 0.049 (0.021|0.049( 0.021 | 0.049 | 0.021 | 0.049 | 0.021 0.049 | 0.021 | 0.049 | 0.021
repl_v8 0.085 ]0.049(0.085(0.049| 0.063 |0.049(0.063|0.049( 0.07 [0.049| 0.07 | 0.049 | 0.063 | 0.049 | 0.07 0.049 0.063 | 0.049 | 0.063 0.049
sched2_v5 0.33 |0.22| 0.3 |0.559| 0.313 |0.154| 0.3 |0.476| 0.203 |0.154(0.189| 0.471 | 0.203 | 0.154 | 0.189 0.471 0.194 | 0.154| 0.172 0.405
sched2_v6 0.447 10.381(0.381(0.447| 0.416 [0.142|0.142|0.416| 0.376 (0.142|0.142| 0.376 | 0.376 | 0.142 | 0.142 0.376 0.31 |0.142 | 0.142 0.31
sched2_v7 0.208 |0.434(0.204(0.429| 0.119 |0.332|0.115|0.217| 0.111 (0.332|0.106| 0.217 | 0.111 | 0.332 | 0.106 0.217 0.111 | 0.332 | 0.106 0.199
sched_v2 0.297 | 0.11 | 0.11 (0.297| 0.198 |0.064/0.064|0.198| 0.18 (0.064|0.064| 0.18 | 0.18 | 0.064 | 0.064 0.18 0.169 | 0.064 | 0.064 0.169
sched_v3 0.163 |0.105(0.163(0.203| 0.064 [0.023|0.052|0.023| 0.07 (0.023|0.081| 0.035 | 0.07 | 0.023 | 0.081 0.035 0.052 | 0.023 | 0.052 0.023
sched_v4 0.297 |0.116|0.297| 0.25 | 0.238 |0.012(0.174/0.017| 0.203 (0.012| 0.18 | 0.017 | 0.203 | 0.012 | 0.169 | 0.017 0.081 |[0.012 | 0.081 | 0.012
ltcas_v1 0.059 |0.074|0.059/0.074| 0.059 |0.074(0.059|0.074| 0.059 (0.074|0.059( 0.074 | 0.059 | 0.074 | 0.059 | 0.074 | 0.059 |0.074 | 0.059 | 0.074
ltcas_v2 0.059 |0.176| 0 |0.25| 0O |0.103| O |0.162| O (0.103| O |O0.162 0 0.103 0 0.162 0 0.103 0 0.162
ltcas_v5 0.426 |0.338|0.426|0.559( 0.25 |0.191{0.25| 0.5 | 0.221 (0.191|0.221| 0.397 | 0.221 | 0.191 | 0.221 | 0.382 0.162 | 0.191| 0.162 | 0.353
tot_inf_v4 0.297 |0.043|0.267|0.172 0.155 |0.043(0.103|0.052| 0.155 (0.043|0.116{ 0.095 | 0.155 | 0.043 | 0.116 | 0.095 0.125 | 0.043 | 0.095 | 0.052
tot_inf_v5 0.216 |0.156|0.299|0.009| 0.069 |0.043(0.108|0.009| 0.078 (0.043|0.152( 0.009 | 0.078 | 0.043 | 0.108 | 0.009 0.069 | 0.043 | 0.087 | 0.009
tot_inf_v8 0.052 |0.043|0.091| 0.03 | 0.03 |0.022(0.03 | 0.03 | 0.03 (0.022|0.03 | 0.03 | 0.03 | 0.022 | 0.03 0.03 0.03 |0.022 | 0.03 0.03
IAvg 0.1960.136/0.179/0.195| 0.131 0.072/0.105|0.122{ 0.115 0.072/0.096| 0.116 | 0.112 [ 0.072 | 0.09 | 0.116 | 0.093 |0.072 | 0.076 | 0.102
IAvgDecrease| - |0.306(0.085/0.004 - [0.4490.196/0.072| - [0.3720.168/-0.013| - |0.355| 0.198 | -0.033 - 0.225| 0.187 | -0.098
#Improved - 131719 - 141719 - 15| 7 10 - 15 7 10 - 14 6 10
#Unchanged| - 0]10( 3 - 112 | 4 - 0|10 4 - 0 10 4 - 0 13 4

Table 4 — EXAM scores for Tarantula, Ample, Ochiai, Dstar?, and Dstar?
Naishl Naish2 Wong1l Russel Binary

Tccwss| Teea| Teow| Tees | Teowss| Teea| Teew | Tecs | Teowss| Teca| Teew| Tees| Teowss | Teeo | Teew | Tees | Teowss | Teca | Teew | Tecs
pt_tok2_v4 0 0 0 0 0 0 0 0 0.299 0.2990.299|0.299| 0.299 | 0.299 | 0.299 | 0.299 | 0.299 |0.299 | 0.299 | 0.299
pt_tok2_v7 0.022 |0.015|0.022|0.015| 0.022 (0.015| 0.022 | 0.015 | 0.307 |0.307|0.307|0.307| 0.307 | 0.307 | 0.307 | 0.307 | 0.307 |0.307 | 0.307 | 0.307
pt_tok2_v8 0.029 |0.015|0.029|0.015| 0.029 (0.015| 0.029 | 0.015 | 0.307 |0.307|0.307|0.307| 0.307 | 0.307 | 0.307 | 0.307 | 0.307 |0.307 | 0.307 | 0.307
pt_tok_v2 0.067 |0.034/0.067| 0.05 | 0.067 (0.034| 0.067 | 0.05 |0.173|0.173|0.173|0.173| 0.173 |0.173| 0.173 | 0.173 | 0.173 |0.173 | 0.173 | 0.173
pt_tok_v7 0.006 |0.073]0.006|0.073| 0.006 (0.073| 0.006 | 0.073 | 0.292 |0.292|0.292|0.292| 0.292 | 0.292 | 0.292 | 0.292 | 0.292 |0.292 | 0.292 | 0.292
repl_v16 0.049 |0.035|0.049|0.035| 0.049 (0.035| 0.049 | 0.035 | 0.162 |0.162/|0.162|0.162| 0.162 |0.162 | 0.162 | 0.162 | 0.162 |0.162 | 0.162 | 0.162
repl_v7 0 ]0.021] 0 |0.021f O [0.021] O 0.021 | 0.141 (0.141{0.141|0.141| 0.141 | 0.141| 0.141 | 0.141 | 0.141 |0.141| 0.141 | 0.141
repl_v8 0.063 |0.049|0.063|0.049| 0.063 [0.049| 0.063 | 0.049 | 0.19 |0.19|0.19|0.19| 0.19 0.19 | 0.19 0.19 019 | 019 | 0.19 0.19
sched2_v5 0.159 |0.154|0.145|0.273| 0.159 (0.154| 0.145 | 0.273 | 0.313 |0.313|0.313|0.313| 0.313 | 0.313| 0.313 | 0.313 | 0.313 |0.313 | 0.313 | 0.313
sched2_v6 0.199 |0.142|0.142|0.199| 0.199 (0.142| 0.142 | 0.199 | 0.292 |0.292|0.292|0.292 0.292 | 0.292 | 0.292 | 0.292 | 0.292 |0.292 | 0.292 | 0.292
sched2_v7 0.08 (0.332(0.075(0.173| 0.08 |0.332| 0.075 | 0.173 | 0.358 [0.358|0.358(0.358| 0.358 | 0.358 | 0.358 | 0.358 | 0.358 |0.358 | 0.358 | 0.358
sched_v2 0.128 |0.064|0.064|0.128| 0.128 (0.064| 0.064 | 0.128 | 0.372 |0.372|0.372|0.372| 0.372 |0.372| 0.372 | 0.372 | 0.372 |0.372 | 0.372 | 0.372
sched_v3 0.047 0.023|0.047|0.023| 0.047 (0.023| 0.047 | 0.023 | 0.355 |0.355|0.355|0.355| 0.355 | 0.355| 0.355 | 0.355 | 0.355 |0.355| 0.355 | 0.355
sched_v4 0.012 |0.012|0.012|0.012| 0.012 (0.012| 0.012 | 0.012 | 0.355 |0.355|0.355|0.355| 0.355 | 0.355| 0.355 | 0.355 | 0.355 |0.355| 0.355 | 0.355
ltcas_vl 0.059 |0.074|0.059|0.074| 0.059 (0.074| 0.059 | 0.074 | 0.397 |0.397|0.397|0.397| 0.397 |0.397 | 0.397 | 0.397 | 0.397 |0.397 | 0.397 | 0.397
ltcas_v2 0 ]0.103] 0 |0.162] O |[0.103] O 0.162 | 0.353 |0.353|0.353|0.353| 0.353 | 0.353 | 0.353 | 0.353 | 0.353 |0.353 | 0.353 | 0.353
tcas_v5 0.132]0.191{0.132|0.265| 0.132 (0.191| 0.132 | 0.265 | 0.294 |0.294/0.294|0.294| 0.294 | 0.294 | 0.294 | 0.294 | 0.294 |0.294 | 0.294 | 0.294
tot_inf_v4 0.052 |0.043|0.043|0.043| 0.052 (0.043| 0.043 | 0.043 | 0.375 |0.375|0.375|0.375| 0.375 | 0.375| 0.375 | 0.375 | 0.375 |0.375| 0.375 | 0.375
tot_inf_v5 0.013 |0.043|0.022|0.009| 0.013 (0.043| 0.022 | 0.009 | 0.325 |0.325|0.325|0.325| 0.325 | 0.325| 0.325 | 0.325 | 0.325 |0.325| 0.325 | 0.325
tot_inf_v8 0.03 (0.022(0.03 {0.03 | 0.03 |0.022| 0.03 | 0.03 | 0.345 [0.345|0.345(0.345| 0.345 | 0.345| 0.345 | 0.345 | 0.345 [0.345| 0.345 | 0.345
IAvg 0.057 0.072/0.05 [0.082| 0.057 0.072| 0.05 |0.082| 0.3 [0.3 |03 |03| 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
IAvgDecrease| - |[-0.26/0.121-0.44| - |-0.26|0.121 (-0.438| - 0[O0 O - 0 0 0 - 0 0 0
#Improved - 11|15 | 8 - 11| 5 8 - 0o(0]|O - 0 0 0 - 0 0 0
#Unchanged| - 2 [14] 5 - 2 14 5 - 20|20 | 20 - 20 20 20 - 20 20 20

Table 5 — EXAM scores for Naishl, Naih2, Wong1, Russel, Binary.
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