
Consensus Modeling of 
Chemical Exposure

ISES-ISEE Joint Annual Meeting
Ottawa, Canada
August 29, 2018

Systematic Empirical Evaluation of 
Models to Inform Risk Prioritization 

John F. Wambaugh1, Kristin K. Isaacs2, 
Katherine A. Phillips2, Caroline L. Ring1, Jon A. Arnot3,4,5,

Deborah H. Bennett6, Peter P. Egeghy2, Peter Fantke7, 
Lei Huang8, Olivier Jolliet8, Hyeong-Moo Shin9, 

John N. Westgate3, R. Woodrow Setzer1

The views expressed in this presentation are 
those of the author and do not necessarily 
reflect the views or policies of the U.S. EPA

https://orcid.org/0000-0002-4024-534X

1National Center for Computational Toxicology and 2National Exposure Research 
Laboratory, Office of Research and Development, United States Environmental 
Protection Agency, Research Triangle Park, North Carolina 27711
3ARC Arnot Research and Consulting, 36 Sproat Ave. Toronto, ON, Canada, M4M 1W4
4Department of Physical & Environmental Sciences, University of Toronto Scarborough
1265 Military Trail, Toronto, ON, Canada, M1C 1A4
5Department of Pharmacology and Toxicology, University of Toronto, 1 King's College 
Cir, Toronto, ON, Canada, M5S 1A8

6Center for Health and the Environment, University of California, Davis, 95616
7Quantitative Sustainability Assessment Division, Department of Management 
Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
8Department of Environmental Health Sciences, University of Michigan, Ann Arbor, 
Michigan, 48109
9Department of Earth and Environmental Sciences, University of Texas, Arlington, 
Texas, 76019 



Office of Research and Development2 of 15

Chemical Regulation in the United States

• Park et al. (2012): At least 3221 chemical signatures in 
pooled human blood samples, many appear to be 
exogenous

• A tapestry of laws covers the chemicals people are 
exposed to in the United States (Breyer, 2009)

• Different testing requirements exist for food 
additives, pharmaceuticals, and pesticide active 
ingredients (NRC, 2007)

November 29, 2014
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Chemical Regulation in the United States

• Most other chemicals, ranging from industrial waste to 
dyes to packing materials, are covered by the Toxic 
Substances Control Act (TSCA)

• Thousands of chemicals on the market were either 
“grandfathered” in or were allowed without 
experimental assessment of hazard, toxicokinetics, 
or exposure

• Thousands of new chemical use submissions are 
made to the EPA every year

• TSCA was updated in June, 2016 to allow evaluation of 
these and other chemicals

• Methods are being developed to inform the 
prioritization of these existing and new chemicals 
for testing November 29, 2014
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• National Research Council (1983) identified 
chemical risk as a function of both inherent 
hazard and exposure

• To address thousands of chemicals, new 
approach methodologies (NAMs) to inform 
prioritization of chemicals for additional study

• High throughput risk prioritization needs:
1. high throughput hazard characterization 

(from HTT project)
2. high throughput exposure forecasts
3. high throughput toxicokinetics (i.e., 

dosimetry) linking hazard and exposure
• All of these methods are uncertain, but if that 

uncertainty can be quantified, we can make 
informed decisions
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Chemical Risk = 
Hazard x Exposure
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New Exposure Data and Models

Toxicokinetics Exposure

Hazard

High-Throughput
Risk 

Prioritization

High throughput 
screening + in vitro-
in vivo extrapolation 
(IVIVE) can predict a 
dose (mg/kg bw/day) 
that might be 
adverse

High throughput 
models exist to make 

predictions of 
exposure via specific, 
important pathways 

such as residential 
product use and diet

Need methods to forecast 
exposure for thousands of 

chemicals (Wetmore et al., 2015)
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Can we use models to generate the exposure information we need?

Limited Available Data for 
Exposure Estimation

Most chemicals lack public exposure-related data beyond production volume (Egeghy et al., 2012)
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Consensus Exposure Predictions 
with the SEEM Framework

• Different exposure models incorporate knowledge, assumptions, and data (MacLeod et al., 2010)

• We incorporate multiple models (including SHEDS-HT, ExpoDat) into consensus predictions for 1000s 
of chemicals within the Systematic Empirical Evaluation of Models (SEEM) (Wambaugh et al., 2013, 
2014)

• Evaluation is similar to a sensitivity analysis: What models are working? What data are most needed? 

Hurricane Path Prediction is an 
Example of Integrating Multiple Models
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Collaboration on High Throughput 
Exposure Predictions

Jon Arnot, Deborah H. Bennett, Peter P. Egeghy, Peter Fantke, Lei Huang, Kristin K. Isaacs, Olivier Jolliet, Hyeong-
Moo Shin, Katherine A. Phillips, Caroline Ring, R. Woodrow Setzer, John F. Wambaugh, Johnny Westgate

Predictor Reference(s)
Chemicals 
Predicted Pathways

EPA Inventory Update Reporting and Chemical 
Data Reporting (CDR) (2015)

US EPA (2018) 7856 All

Stockholm Convention of Banned Persistent 
Organic Pollutants (2017)

Lallas (2001) 248 Far-Field Industrial and Pesticide

EPA Pesticide Reregistration Eligibility Documents 
(REDs) Exposure Assessments (Through 2015)

Wetmore et al. (2012, 2015) 239 Far-Field Pesticide

United Nations Environment Program and Society 
for Environmental Toxicology and Chemistry 
toxicity model (USEtox) Industrial Scenario (2.0)

Rosenbaum et al. (2008) 8167 Far-Field Industrial

USEtox Pesticide Scenario (2.0) Fantke et al. (2011, 2012, 2016) 940 Far-Field Pesticide

Risk Assessment IDentification And Ranking 
(RAIDAR) Far-Field (2.02)

Arnot et al. (2008) 8167 Far-Field Pesticide

EPA Stochastic Human Exposure Dose Simulator 
High Throughput (SHEDS-HT) Near-Field Direct 
(2017)

Isaacs (2017) 7511 Far-Field Industrial and Pesticide

SHEDS-HT Near-field Indirect (2017) Isaacs (2017) 1119 Residential

Fugacity-based INdoor Exposure (FINE) (2017) Bennett et al. (2004), Shin et al. 
(2012)

645 Residential

RAIDAR-ICE Near-Field (0.803) Arnot et al., (2014), Zhang et al. 
(2014) 

1221 Residential

USEtox Residential Scenario (2.0) Jolliet et al. (2015), Huang et al. 
(2016,2017)

615 Residential

USEtox Dietary Scenario (2.0) Jolliet et al. (2015), Huang et al. 
(2016), Ernstoff et al. (2017)

8167 Dietary

Ring et al., submitted
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“In particular, the 
assumption that 
100% of [quantity 
emitted, applied, or 
ingested] is being 
applied to each 
individual use 
scenario is a very 
conservative 
assumption for many 
compound / use 
scenario pairs.”

Knowledge of Exposure Pathways Limits 
High Throughput Exposure Models
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Predicting Pathways
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Sources of Positives Sources of Negatives
Dietary 24 2523 8865 27 32 73 FDA CEDI, ExpoCast, CPDat 

(Food, Food Additive, Food 
Contact), NHANES Curation

Pharmapendium, CPDat (non-
food), NHANES Curation

Near-Field 49 1622 567 26 24 74 CPDat (consumer_use, 
building_material), ExpoCast, 
NHANES Curation

CPDat (Agricultural, Industrial), 
FDA CEDI, NHANES Curation

Far-Field 
Pesticide

94 1480 6522 21 36 80 REDs, Swiss Pesticides, 
Stockholm Convention, CPDat 
(Pesticide), NHANES Curation

Pharmapendium, Industrial 
Positives, NHANES Curation

Far Field 
Industrial

42 5089 2913 19 16 81 CDR HPV, USGS Water 
Occurrence, NORMAN PFAS, 
Stockholm Convention, CPDat 
(Industrial, Industrial_Fluid), 
NHANES Curation

Pharmapendium, Pesticide 
Positives, NHANES Curation

We use the method of Random Forests to relate chemical structure and properties to exposure pathway

Ring et al., submitted
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Pathway-Based Consensus Modeling

Intake Rate (mg/kg BW/day) Inferred from 
NHANES Serum and Urine
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Ring et al., submitted
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Consensus Modeling of Median 
Chemical Intake 

Ring et al., submitted
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Risk Assessment in the 21st Century

January 5, 2017

“Translation of high-throughput data into risk-
based rankings is an important application of 
exposure data for chemical priority-setting. 
Recent advances in high-throughput toxicity 
assessment, notably the ToxCast and Tox21 
programs (see Chapter 1), and in high-
throughput computational exposure 
assessment (Wambaugh et al. 2013, 2014) 
have enabled first-tier risk-based rankings of 
chemicals on the basis of margins of 
exposure…”

“…The committee sees the potential for the 
application of computational exposure 
science to be highly valuable and credible for 
comparison and priority-setting among 
chemicals in a risk-based context.”
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Chemicals Monitored by CDC NHANES

ToxCast + HTTK can estimate doses 
needed to cause bioactivity

Selecting Candidates for Prioritization
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Ring et al. (2017)

Exposure intake rates  
can be Inferred from 
biomarkers
(Wambaugh et al., 2014)
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National Health and Nutrition Examination Survey (NHANES) is 
an ongoing survey that covers ~10,000 people every two years
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• We would like to know more about the 
risk posed by thousands of chemicals in 
the environment – which ones should 
we start with?

• New machine learning tools provide 
improved high throughput exposure 
estimates by matching chemicals to 
exposure pathways and associated 
calibrated exposure models. A 
collaboration of exposure researchers 
has developed databases and 
mathematical models allowing for high-
throughput exposure (HTE) forecasting 

Conclusions

• Exposure predictors (data and models) have been grouped into four pathways (residential, 
dietary, pesticidal, and industrial) and calibrated via Bayesian multivariate regression using human 
intake rates inferred for 114 chemicals from a large bio-monitoring survey.

• Machine learning models based on chemical structure and physico-chemical properties predict 
whether or not each pathway is relevant to a library of over 680,000 chemicals, allowing an 
exposure estimate for each chemical based on the calibrated predictors. 

The views expressed in this presentation are those of the author and 
do not necessarily reflect the views or policies of the U.S. EPA
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