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EPA Office of Research and Development

• The Office of Research and Development (ORD) is 
the scientific research arm of EPA

• 558 peer-reviewed journal articles in 2016

• Research is conducted by ORD’s three national 
laboratories, four national centers, and two offices

• Includes National Center for Computational 
Toxicology and National Exposure Research 
Laboratory 

• 14 facilities across the country

• Six research programs
• Includes Chemical Safety for Sustainability

• Research conducted by a combination of Federal 
scientists; contract researchers; and postdoctoral, 
graduate student, and post-baccalaureate trainees

ORD Facility in
Research Triangle Park, NC
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Chemical Regulation in the United States

• Park et al. (2012): At least 3221 chemicals in pooled 
human blood samples, many appear to be exogenous

• A tapestry of laws covers the chemicals people are 
exposed to in the United States (Breyer, 2009)

• Different testing requirements exist for food 
additives, pharmaceuticals, and pesticide active 
ingredients (NRC, 2007)

November 29, 2014
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Chemical Regulation in the United States

• Most other chemicals, ranging from industrial waste 
to dyes to packing materials, are covered by the 
Toxic Substances Control Act (TSCA)

• Thousands of chemicals on the market were 
either “grandfathered” in or were allowed 
without experimental assessment of hazard, 
toxicokinetics, or exposure

• Thousands of new chemical use submissions are 
made to the EPA every year

• TSCA was updated in June, 2016 to allow evaluation 
of these and other chemicals

• Methods are being developed to prioritize these 
existing and new chemicals for testing November 29, 2014
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• National Research Council (1983) identified 
chemical risk as a function of both inherent 
hazard and exposure

• To address thousands of chemicals, we need to 
use “high throughput methods” to prioritize 
those chemicals most worthy of additional 
study

• High throughput risk prioritization needs:
1. high throughput hazard characterization 

(from HTT project)
2. high throughput exposure forecasts
3. high throughput toxicokinetics (i.e., 

dosimetry) linking hazard and exposure

Potential 
Exposure 

Rate

mg/kg BW/day

Potential 
Hazard from 
in vitro with 

Reverse 
Toxicokinetics

Lower
Risk

Medium 
Risk

Higher
Risk

Chemical Risk = 
Hazard + Exposure



Office of Research and Development6 of 51

Concentration

R
es

po
ns

e

In vitro Assay AC50

Concentration (µM)

Assay AC50
with Uncertainty

High-Throughput Screening

 We might estimate points of departure (concentrations 
causing relevant bioactivity) in vitro using high throughput 
screening (HTS)

 Tox21:  Examining >8,000 chemicals using ~50 assays 
intended to identify interactions with biological pathways 
(Schmidt, 2009)

 ToxCast: For a subset (>2000) of Tox21 chemicals ran >1100 
additional assays (Kavlock et al., 2012)

 Most assays conducted in dose-response format (identify 50% 
activity concentration – AC50 – and efficacy if data described 
by a Hill function, Filer et al., 2016)

 All data is public: http://comptox.epa.gov/dashboard/
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Risk Assessment in the 21st Century

January 5, 2017

“Translation of high-throughput data into risk-
based rankings is an important application of 
exposure data for chemical priority-setting. 
Recent advances in high-throughput toxicity 
assessment, notably the ToxCast and Tox21 
programs (see Chapter 1), and in high-
throughput computational exposure 
assessment (Wambaugh et al. 2013, 2014) 
have enabled first-tier risk-based rankings of 
chemicals on the basis of margins of 
exposure…”

“…The committee sees the potential for the 
application of computational exposure 
science to be highly valuable and credible for 
comparison and priority-setting among 
chemicals in a risk-based context.”
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Three Components for Chemical Risk

Toxicokinetics Exposure

Hazard

High-Throughput
Risk 

Prioritization



Office of Research and Development9 of 51

High-Throughput Risk Prioritization

Toxicokinetics Exposure

Hazard

High-Throughput
Risk 

Prioritization

High throughput 
screening (HTS) for in 
vitro bioactivity 
potentially allows 
characterization of 
thousands of 
chemicals for which 
no other testing has 
occurred
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High Throughput Toxicokinetics (HTTK)

Toxicokinetics Exposure

Hazard

High-Throughput
Risk 

Prioritization

Toxicokinetics (TK) 
describes the Absorption, 
Distribution, Metabolism, 
and Excretion (ADME) of 
a chemical by the body

TK relates external 
exposures to internal 
tissue concentrations of 
chemical
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Figure from Barbara Wetmore

Rotroff et al. (2010) 35 chemicals
Wetmore et al. (2012) +204 chemicals 
Wetmore et al. (2015) +163 chemicals

High-Throughput Toxicokinetics (HTTK)
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Measurements require chemical-
specific methods for concentration

• Most chemicals do not have TK data – we use in vitro HTTK methods adapted from pharma to fill gaps 
• In drug development, HTTK methods estimate therapeutic doses for clinical studies – predicted 

concentrations are typically on the order of values measured in clinical trials (Wang, 2010)
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Open Source Tools and Data for 
HTTK

 “httk” R Package for in vitro-in vivo extrapolation 
and PBTK

 553 chemicals to date
 100’s of additional chemicals being studied
 Pearce et al. (2017) provides documentation and 

examples
 Built-in vignettes provide further examples of how 

to use many functions

https://CRAN.R-project.org/package=httk
Can access this from the R GUI: 

“Packages” then “Install Packages”

https://cran.r-project.org/package=httk
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Building Confidence in HTTK
We collected new data for 26 chemicals more commonly 
associated with non-therapeutic and/or unintentional exposure

Minimal design – six animals per study (3 dosed per oral / 3 iv)

Wambaugh et al. (Tox. Sci., just accepted)
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Evaluating HTTK

14

100% Bioavailability Assumed
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Evaluating HTTK

15
Greg Honda (NCCT) will give a SOT2018 presentation on using Caco2 
in vitro data to predict absorption for ~300 ToxCast chemicals

In Vivo Measured Bioavailability Used100% Bioavailability Assumed
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New Exposure Data and Models

Toxicokinetics Exposure

Hazard

High-Throughput
Risk 

Prioritization

High throughput 
screening + in vitro-
in vivo extrapolation 
(IVIVE) can predict a 
dose (mg/kg bw/day) 
that might be 
adverse

High throughput 
models exist to make 

predictions of 
exposure via specific, 
important pathways 

such as residential 
product use, diet, and 

environmental fate 
and transport

Need methods to forecast 
exposure for thousands of 

chemicals (Wetmore et al., 2015)
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Chemicals Monitored by CDC NHANES

ToxCast + HTTK can estimate doses 
needed to cause bioactivity

High Throughput Risk Prioritization
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Ring et al. (2017)

Exposure intake rates  
can be Inferred from 
biomarkers
(Wambaugh et al., 2014)
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National Health and Nutrition Examination Survey (NHANES) is 
an ongoing survey that covers ~10,000 people every two years
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Life-stage and Demographic Specific 
Predictions

• Can calculate 
margin between 
bioactivity and 
exposure for 
specific 
populations

Change in Activity:Exposure Ratio

Ring et al. (2017)

Change in Risk Relative to 
Total Population
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information we need?

Limited Available Data for 
Exposure Estimation

Most chemicals lack public exposure-related data beyond production volume (Egeghy et al., 2012)
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The liver is composed of hepatic lobules

Computational Approaches:
Modeling

University of South Dakota

zones central vein
triad
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• Actual lobules are much 
messier (variable) (Crawford, 
et al., 1988)

• Further, pathology calls involve 
subjectivity

• You need to understand both 
the system being modeled and 
the data generation process

When Models Meet Real 
Biological Variability

Rockett et al. (2006)
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• The underlying rules of system
• Each hepatocyte needs to get oxygen, state depends on 

degree of hypoxia, endogenous chemical signaling, and 
history of exposure to exogenous chemicals

Pattern Recognition

Opera House

Teatra Sociale, Como, Italy

Rockett et al. (2006)
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Consensus Exposure Predictions 
with the SEEM Framework

• Different exposure models incorporate knowledge, assumptions, and data (Macleod, et al., 2010)

• We incorporate multiple models (including SHEDS-HT, ExpoDat) into consensus predictions for 
1000s of chemicals within the Systematic Empirical Evaluation of Models (SEEM) framework

• Evaluation is similar to a sensitivity analysis: What models are working? What data are most 
needed? 

Integrating Multiple Models
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Collaboration on High Throughput 
Exposure Predictions
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EPA Stochastic Human Exposure Dose Simulator High 
Throughput (SHEDS-HT) Near-Field Direct 2017 Isaacs, et al. (2014) 1119

SHEDS-HT Near-field Indirect 2017 Isaacs, et al. (2014) 645

Shin-Bennett 2017 Shin et al. , in preparation 1221

Food Contact Substance Migration Model 2017 Biryol et al. (2017) 940

EPA Pesticide Reregistration Eligibility Documents (REDs) 
Exposure Assessments 2015

Wetmore et al. (2012, 
2015) 239

Risk Assessment IDentification And Ranking (RAIDAR) Far-
Field 2.941 Arnot et al. (2006) 7511 7511

RAIDAR-ICE Near-Field 0.803 Arnot et al., in preparation 615

United Nations Environment Program and Society for 
Environmental Toxicology and Chemistry toxicity model 
(USETox) Pesticide Scenario 1.01 Rosenbaum (2008) 790

USEtox Industrial Scenario 1.01 Rosenbaum (2008) 7184

EPA Inventory Update Reporting and Chemical Data 
Reporting 2015 US EPA (2018) 7856 7856 7856 7856

FDA Cumulative Estimated Daily Intake (CDI) 2017 US FDA (2017) 748

Stockholm Convention of Banned Persistent Organic 
Pollutants 2017 2017 22 225

Jon Arnot, Deborah H. Bennett, Peter P. Egeghy, Peter Fantke, Lei Huang, Kristin K. Isaacs, Olivier Jolliet, Hyeong-
Moo Shin, Katherine A. Phillips, Caroline Ring, R. Woodrow Setzer, John F. Wambaugh, Johnny Westgate
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Collaboration on High Throughput 
Exposure Predictions
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EPA Inventory Update Reporting and Chemical Data 
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Indoor Air, Dust, Surfaces

Consumer
Products and 

Durable Goods

Food

Near-Field
Direct

Near-Field 
Indirect

Human
Ecological

Flora and Fauna

Dietary Far-Field

Direct Use
(e.g., surface cleaner)

Residential Use
(e.g. ,flooring)

RECEPTOR

MEDIA

EXPOSURE 
(MEDIA + RECEPTOR)

Ecological

Chemical Manufacturing and Processing

Environmental 
Release

USE and RELEASE
Other Industry

Occupational

Occupational 
Use

Waste

Drinking 
Water

Outdoor Air, Soil, Surface 
and Ground Water

Forecasting Exposure is a 
Systems Problem

Figure from Kristin Isaacs

• Exposure event unobservable: Can try to predict exposure by characterizing pathway
• Some pathways have much higher average exposures: In home “Near field” sources 

significant (Wallace, et al., 1987)
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“In particular, the 
assumption that 
100% of [quantity 
emitted, applied, or 
ingested] is being 
applied to each 
individual use 
scenario is a very 
conservative 
assumption for many 
compound / use 
scenario pairs.”

Knowledge of Exposure Pathways Limits 
High Throughput Exposure Models
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Wambaugh et al. (2014)

• Five descriptors explain 
roughly 50% of the 
chemical-to-chemical 
variability in median 
NHANES exposure rates

• Same five predictors work 
for all NHANES 
demographic groups 
analyzed – stratified by 
age, sex, and body-mass 
index

• Chemical use identifies 
relevant pathways

• Some pathways have much 
higher average exposures 
(Wallace et al., 1987)

Heuristics of Exposure
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Chemical Use: Chemicals and Products Database

Broad “index” 
of chemical 
uses

MSDS 
Data

Measured 
Data

Ingredient 
Lists 

CPCat

Occurrence data

Occurrence and quantitative 
chemical composition

Targeted and non-targeted 
measurement of chemicals 
in consumer products

CPDat Functional 
Use Data

Also available as R Package Slide from Kristin Isaacs
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The Chemistry Dashboard       
http://comptox.epa.gov/
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Chemicals and Products 
Database

CPDat
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CPCPdb: Material Safety Data Sheets

XXXXXX
XXXXXXXXXX
XXXXXXXXXX

XXX

XXXXXXXXXX
XXXXXXXXXX

X
X
X

Goldsmith et al. (2014):
• ~20,000 

product-
specific 
Material 
Safety Data 
Sheets (MSDS) 
curated

• ~2,400 
chemicals

Product-specific 
uses determined 
using web spider 
to click through 
categories (e.g., 
home goods, bath 
soaps, baby) to 
find each product
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Predicting Chemical 
Constituents

Isaacs et al. (2016)
Office of Research and Development

 Unfortunately, CPCPdb 
does not cover every 
chemical-product 
combination (~2000 
chemicals, but already 
>8000 in Tox21)

 We are now using 
machine learning 
(Random Forest, Breiman, 
2001) to fill in the rest

 We can predict functional 
use and weight fraction 
for thousands of 
chemicals
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Chemical Structure and Property Descriptors

humectant lubricating 
agent

perfumer pH 
stabilizeroxidizer

heat 
stabilizer
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agenthair dye
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flavorantflame 
retardant

film 
forming 

agent

foam 
boosting 

agent
foamer

reducer rheology 
modifier

skin 
protectant

skin condi-
tioner

soluble 
dye

catalyst chelator colorant crosslinker emollient emulsifier

fragrance

plasticizer

monomer

solvent

antistatic 
agent

anti-
oxidant

anti-
microbial

adhesion 
promoter

additive 
for rubber

additive 
for liquid 
system

whitenerwetting 
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viscosity 
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vinylUV 
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ubiquitoussurfactant
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servative

oral care

hair condi-
tioner

emulsion 
stabilizer

buffer

additive

Predicting Function Based on Structure
Random Forest Based Classification Models (Breiman, 2001)

Prediction of
Of Potential 

Alternatives from 
Chemical Libraries

Phillips et al. (2017)

Use Database (FUSE)

• Each functional model evaluated on the basis of balanced 
accuracy, 5-fold CV, and Y-randomization classification errors

• For example, viscosity controllers can be used to thicken or thin 
out mixtures of chemicals.
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Screening for Alternatives By 
Function and Bioactivity

Probability 
of Chemical 
Performing 

Same 
Function

Phillips et al. (2017)
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Lower 
Bioactivity 

Metric?

Phillips et al. (2017)

Screening for Alternatives By 
Function and Bioactivity
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“I’m searching for my keys.”

 Not everything is required to have MSDS sheets

 Models present one way forward, but data is 
always preferable

 New analytic techniques may also allow insight 
in to the chemical composition of diverse 
environmental media including household 
products

 100 household products from a major U.S. 
retailer were analyzed, tentatively identifying 
1,632 chemicals, 1,445 which were not in EPA’s 
database of consumer product chemicals 
(Phillips et al., ES&T just accepted)

Obtaining New Data with Non-Targeted 
and Suspect-Screening Analysis
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Measuring Chemicals in Household Items

Log10(µg/g)

The chemicals 
found in a 
cotton shirt

Phillips et al. (ES&T just accepted)
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Measuring Chemicals in Household Items

Chemicals that are present

Chemicals that are absent (but found in other products)

Phillips et al. (ES&T just accepted)

Log10(µg/g)
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Measuring Chemicals in Household Items

The chemicals 
found in a 
cotton shirt

Phillips et al. (ES&T just accepted)

Log10(µg/g)
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Measuring Chemicals in Household Items

Log10(µg/g)

Phillips et al. (ES&T just accepted)
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Product Scan Summary
Of 1,632 chemicals confirmed or tentatively identified, 1,445 were 
not present in CPCPdb (Goldsmith, et al., 2015)

Phillips et al. (ES&T just accepted)
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“As chemists we are obliged to accept the assignment of barium to the observed 
activity, but as nuclear chemists working very closely to the field of physics we 
cannot yet bring ourselves to take such a drastic step, which goes against all 
previous experience in nuclear physics. It could be, however, that a series of strange 
coincidences has misled us.”

Hahn and Strassmann (1938)

Appropriate Skepticism for Non-Targeted 
Analysis and Suspect Screening
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“As chemists we are obliged to accept the assignment of barium to the observed 
activity, but as nuclear chemists working very closely to the field of physics we 
cannot yet bring ourselves to take such a drastic step, which goes against all 
previous experience in nuclear physics. It could be, however, that a series of strange 
coincidences has misled us.”

Hahn and Strassmann (1938)

1944 Nobel Prize in Chemistry for “discovery of the fission of heavy nuclei"

Appropriate Skepticism for Non-Targeted 
Analysis and Suspect Screening
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Predicting Chemical Function

Using the methods of Phillips et al., (2017):

Phillips et al. (ES&T just accepted)
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Caveats to Non-Targeted 
Screening

• Chemical presence in an object does not mean that exposure occurs
• Only some chemical identities are confirmed, most are tentative

• Can use formulation predictor models as additional evidence
• Chemical presence in an object does not necessarily mean that it is bioavailable

• Can build emission models
• Small range for quantitation leads to underestimation of concentration
• Product de-formulation caveats:

• Samples are being homogenized (e.g., grinding) and are extracted with a 
solvent (dichloro methane, DCM)

• Only using one solvent (DCM, polar) and one method GCxGC-TOF-MS
• Varying exposure intimacy, from carpet padding to shampoo to cereal

• Exposure alone is not risk, need hazard data
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Exposure-Based Priority Setting

Toxicokinetics Exposure

Hazard

High-Throughput
Risk 

Prioritization
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The Structure of Chemical Exposure
• For n chemicals 2n combinations are possible

• However, not all are observed

• Diamond (1975): Not all finch species present 
on all islands of Caribbean

• Tornero-Velez et al. (2012): Not all chemical 
combinations present at all sites

Tornero-Velez et al. (2012)

finch species

chemical species
Distribution of mixtures
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Identifying Prevalent Mixtures

• Kapraun et al. (2017) 
used frequent itemset
mining (FIM, Borgelt, 
2012) to identify 
combinations of items 
(chemicals) that co-occur 
together within CDC 
NHANES samples from 
same individual

• Used total population 
median concentration as 
threshold for “presence”

• Identified a few dozen 
mixtures present in >30% 
of U.S. population

Kapraun et al. (2017)
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A Testable Number of 
Combinations

While high throughput screening (HTS) allows thousands of tests, there are millions 
of hypothetical combinations

“Exposure based priority setting” (NAS, 2017) allows 
identification of most important mixtures to test

Kapraun et al. (2017)
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Conclusions

• We would like to know more about the risk posed by thousands of chemicals in the 
environment – which ones should we start with?

• High throughput screening (HTS) provides one path forward for identifying 
potential hazard, but the real world is complicated by toxicokinetics, mixtures, 
variability (and more)

• Using in vitro methods developed for pharmaceuticals, we can make useful 
predictions of TK for large numbers of chemicals

• Exposure data key to risk-based prioritization
• Consensus modeling provides one path forward, but only as good as available 

data (at best)
• New analytical chemistry tools (i.e., non-targeted analysis or NTA) may provide 

the data needed to understand what and how we are exposed to

• Exposure-based priority setting allows identification of the most relevant mixtures
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