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Charley Harper, “Tree of Life”
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But what is a species?

Biological
Interbreeding

Isolation
Recognition

Ecological
Same niche or adaptive
zone

Evolutionary
Unit of evolution

Cohesion
Phenotypic cohesion

Phylogenetic
Hennigian

Segment btw nodes

Monophyletic
Monophyly

Genealogical
Exclusive coalescence of
alleles

Diagnosable
Smallest appropriate
unit

Phenetic
Phenetic cluster

Genotypic clus-
ter
Deficits of genetic inter-
mediates

“there is no unique relation which is privileged in
that the species taxa it generates will answer to the
needs of all biologists and will be applicable to all
groups of organisms.”
Kitcher (1984)

de Quieroz (2007)
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Counting species

Fennessy et al. (2016)
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Counting species (continued)

Sukumaran and Knowles (2017)
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Counting species (continued)
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I Gre/ay zone of speciation

I Continuum of speciation
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de Quieroz (2007)

Roux et al. (2016)
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Other consequences of species definitions
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Procyonminor

Extinct Threatened Lower Risk

Protected

Procyon lotor

Extinct Threatened
Least

Concern

Invasive!

Helgen et al. (2008)
http://www.radiolab.org/story/stanger-paradise/
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Reproductive isolation in the Biological Species Concept

Some limits

I Asexuals
I Horizontal gene transfer in Prokaryotes
I Hybrids

×Cystocarpium roskamianum

(c
)H
ar
ry
C.
Ro
sk
am

Rothfels et al. (2015)
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From populations to species
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Cluster formation

Models with competition/selection
“the mathematical structure of the ecological coexistence problem itself
dictates the discreteness of the species.”

Gyllenberg and Meszéna (2005)
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Neutral models of speciation

Evolution of reproductive isolation

x xx x

x x

Gavrilets et al. (2000),
Yamaguchi and Iwasa (2013, 2015)
Miró Pina and Schertzer (unpubl.)

Macroevolutionary models
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e
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)

Rosindell et al. (2010)
Etienne and Rosindell (2010)
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Model: “Split-Dri�”

I n individual populations (constant), represented by a graph G:

I Vertex: population
I Edge: interfecundity relationship.

I Two types of events:

I Vertex duplication (at rate 1)→ allo/peri/para-patry
I Edge removal (at rate r)→ reproductive isolation

†

→Markov chain (Gn(t))t∈R+ on all graphs of size n.
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Questions and Aims

Question
I Is this simple, neutral model able to generate clusters of
populations?

I Can it inform our definition of a species?
I Are the data that it generates compatible with what we
observe in nature?

Aims

I Describe the expected characteristics of the graph
via its stationary state Gn,r

I Degree distribution
I Number of complete subgraphs (species?)
I Number of connected components (species?)
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Simulation outcomes

n = 1000, r = 0.1, #CC = 1n = 1000, r = 5, #CC = 8n = 1000, r = 7.5, #CC = 7n = 1000, r = 38, #CC = 40n = 1000, r = 62, #CC = 66n = 1000, r = 107, #CC = 141n = 1000, r = 347, #CC = 342n = 1000, r = 1000, #CC = 342
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Analysis: Backward-forward approach
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Degree

TMRCA
∼ E(1)

Focus on two populations (2 nodes of Gn,r):

I The time to their MRCA is exp(1)
(because Kingman),

I The edge formed when the population
split is removed at rate r.

Probability of interbreeding=: p(n, r)

p =
1

1+ r

Degree of a fixed node=: D(n, r)

E[D] =
n− 1
1+ r

, Var[D] =
r (n− 1) (n+ 2r + 1)
(1+ r)2 (3+ 2r)
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Cliques

k-clique: complete subgraph of order k
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Cliques (continued)

I Consider k populations;

there are
( j
2

)
= k(k−1)

2 potential
interfecundity links.

I Probability that they all belong to a clique
is

k∏
j=2

( j
2

)( j
2

)
+ r
( j
2

) =

(
1

1+ r

)k−1
.

I # Complete subgraphs of order k=: Xk(n, r)

E(Xk) =
(
n
k

)(
1

1+ r

)k−1
.

I Clique number =: ω(n, r)

P[ω ≥ k] = P[Xk ≥ 1] ≤ E[Xk].
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Connected components

Subgraph in which any two nodes
are connected to each other by
paths, and which is connected to
no additional nodes in the
supergraph.
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Connected components (continued)

Assume 1� rn � n.

Let tk := time when the coalescent tree has k lineages

Lower bound
Choosem such that the graph at time tm is
empty with high probability

Result:m ∼ rn
2

Upper bound
ChooseM such that the descending
subtrees of each of theM nodes of time tM
are connected with high probability

Result: M ∼ 2rn log(n)

Assume that as n→∞, rn →∞ and rn/n→ 0. Then

lim
n→∞

P
[ rn
2
≤ #CC(Gn,rn) ≤ 2rn log(n)

]
= 1.
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Connected components (continued)
Number of species?

lim
n→∞

P
[ rn
2

≤ #CC(Gn,rn) ≤ 2rn log(n)
]
= 1.
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Connected components (continued)
Number of species?

lim
n→∞

P
[ rn
2

≤ #CC(Gn,rn) ≤ 2rn log(n)
]
= 1.
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Connected components (continued)
Number of species?

lim
n→∞

P
[ rn
2

≤ #CC(Gn,rn) ≤ 2rn log(n)
]
= 1.
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Connected components (continued)
Number of species?

lim
n→∞

P
[ rn
2

≤ #CC(Gn,rn) ≤ 2rn log(n)
]
= 1.
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Connected components (continued)
Number of species?

lim
n→∞

P
[ rn
2

≤ #CC(Gn,rn) ≤ 2rn log(n)
]
= 1.
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Connected components (continued)
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Species Abundance Distributions (SAD)
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Species Abundance Distributions (SAD)
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Summary of the mathematical results

r = 5 r = 41 r = 347

n = 1000
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isolation

I Includes a gray zone of speciation
I Two parameters: number of populations n, rate of loss of

interfecundity r
I Open Mathematical Questions

I Convergence in distribution of#CC/rn?
I Convergence in the graphon sense? (dense regime)
I Distribution of abundances of connected components?

Perspectives

I Evaluation using real Species-Abundance distributions
I Link to macroevolutionary models

I Species tree?
I Speciation/Extinction rates?
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Appendix
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Degree Distribution

P[D(n, r) = k] =
2r(2r + 1)

(n+ 2r)(n− 1+ 2r)
(k + 1)

k∏
i=1

n− i
n− i + 2r − 1

.

I As rn → r,
D(n, rn)

n
converges to a Beta(2, 2r) random variable

I If 1� rn � n,
D(n, rn)
n/rn

converges to a size-biased Exp(2).

I If rn ∼ ρ n/2, D(n, rn) converges to a size-biased geometric
random variable with parameter 1/(1+ ρ).
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