A Null Model of Speciation by Reproductive Isolation Mechanisms of Reproductive Isolation Session

Flo(rence) Débarre

20 February 2017

Acknowledgements

Work done in collaboration with

François Bienvenu

Amaury Lambert

Acknowledgements

Work done in collaboration with

Amaury Lambert

Funding

ANR-14-ACHN-0003-01

Charley Harper, "Tree of Life"

But what is a species?

de Quieroz (2007)

But what is a species?

Biological Interbreeding Isolation Recognition

Cohesion Phenotypic cohesion Ecological

Same niche or adaptive zone

Phylogenetic

Hennigian

Segment btw nodes

Monophyletic

Monophyly

Genealogical

Exclusive coalescence of alleles

Diagnosable

Smallest appropriate unit

Evolutionary

Unit of evolution

Phenetic cluster

Genotypic cluster Deficits of genetic intermediates

de Quieroz (2007)

But what is a species?

"there is no unique relation which is privileged in that the species taxa it generates will answer to the needs of all biologists and will be applicable to all groups of organisms."

Kitcher (1984)

de Quieroz (2007)

Counting species

Multi-locus Analyses Reveal Four Giraffe Species Instead of One

Julian Fennessy,¹ Tobias Bidon,² Friederike Reuss,² Vikas Kumar,² Paul Elkan,³ Maria A. Nilsson,² Melita Vamberger,⁴ Uwe Fritz,⁴ and Axel Janke^{2,5,6,*}

Fennessy et al. (2016)

Counting species (continued)

Sukumaran and Knowles (2017)

Counting species (continued)

Gre/ay zone of speciation

de Quieroz (2007)

Counting species (continued)

Gre/ay zone of speciationContinuum of speciation

de Quieroz (2007) Roux et al. (2016)

Other consequences of species definitions

Helgen et al. (2008) http://www.radiolab.org/story/stanger-paradise/

GRC Speciation, Feb 2017

Other consequences of species definitions

Procyon minor

Protected

Helgen et al. (2008) http://www.radiolab.org/story/stanger-paradise/

Other consequences of species definitions

Procyon minorProcyon lotorExtinctThreatenedLower RiskEX EW CR (a) (v) (c) (n) (b) \rightarrow ExtinctProtectedInvasive!

Helgen et al. (2008) http://www.radiolab.org/story/stanger-paradise/

GRC Speciation, Feb 2017

Some limits

Some limits

Some limits

- Asexuals
- ▶ Horizontal gene transfer in Prokaryotes

Some limits

- Asexuals
- Horizontal gene transfer in Prokaryotes
- Hybrids

×Cystocarpium roskamianum

From populations to species

Cluster formation

Models with competition/selection

"the mathematical structure of the ecological coexistence problem itself dictates the discreteness of the species."

Gyllenberg and Meszéna (2005)

Evolution of reproductive isolation

Gavrilets et al. (2000), Yamaguchi and Iwasa (2013, 2015) Miró Pina and Schertzer (unpubl.)

> Rosindell et al. (2010) Etienne and Rosindell (2010)

Macroevolutionary models

a)

Evolution of reproductive isolation

Gavrilets et al. (2000), Yamaguchi and Iwasa (2013, 2015) Miró Pina and Schertzer (unpubl.)

Macroevolutionary models

Rosindell et al. (2010) Etienne and Rosindell (2010)

▶ *n* individual populations (constant), represented by a graph *G*:

▶ *n* individual populations (constant), represented by a graph *G*:

Vertex: population

▶ *n* individual populations (constant), represented by a graph *G*:

- Vertex: population
- ► Edge: interfecundity relationship.

- ▶ *n* individual populations (constant), represented by a graph *G*:
 - Vertex: population
 - Edge: interfecundity relationship.
- Two types of events:

- *n* individual populations (constant), represented by a graph G:
 - Vertex: population
 - Edge: interfecundity relationship.
- ► Two types of events:
 - ▶ Vertex duplication (at rate 1) → allo/peri/para-patry

- ▶ *n* individual populations (constant), represented by a graph *G*:
 - Vertex: population
 - Edge: interfecundity relationship.
- ► Two types of events:
 - ▶ Vertex duplication (at rate 1) → allo/peri/para-patry

- ▶ *n* individual populations (constant), represented by a graph *G*:
 - Vertex: population
 - Edge: interfecundity relationship.
- ► Two types of events:
 - ▶ Vertex duplication (at rate 1) → allo/peri/para-patry

- ▶ *n* individual populations (constant), represented by a graph *G*:
 - Vertex: population
 - Edge: interfecundity relationship.
- ► Two types of events:
 - ▶ Vertex duplication (at rate 1) → allo/peri/para-patry

- *n* individual populations (constant), represented by a graph G:
 - Vertex: population
 - Edge: interfecundity relationship.
- ► Two types of events:
 - ▶ Vertex duplication (at rate 1) → allo/peri/para-patry

- *n* individual populations (constant), represented by a graph G:
 - Vertex: population
 - Edge: interfecundity relationship.
- ► Two types of events:
 - Vertex duplication (at rate 1) \rightarrow allo/peri/para-patry
 - Edge removal (at rate r) \rightarrow reproductive isolation

Model: "Split-Drift"

- *n* individual populations (constant), represented by a graph G:
 - Vertex: population
 - Edge: interfecundity relationship.
- ► Two types of events:
 - ▶ Vertex duplication (at rate 1) → allo/peri/para-patry
 - Edge removal (at rate r) \rightarrow reproductive isolation

Model: "Split-Drift"

- *n* individual populations (constant), represented by a graph G:
 - Vertex: population
 - Edge: interfecundity relationship.
- ► Two types of events:
 - Vertex duplication (at rate 1) \rightarrow allo/peri/para-patry
 - Edge removal (at rate r) \rightarrow reproductive isolation

Model: "Split-Drift"

- *n* individual populations (constant), represented by a graph G:
 - Vertex: population
 - Edge: interfecundity relationship.
- ► Two types of events:
 - ▶ Vertex duplication (at rate 1) → allo/peri/para-patry
 - Edge removal (at rate r) \rightarrow reproductive isolation

\rightarrow Markov chain $(G_n(t))_{t \in \mathbb{R}_+}$ on all graphs of size n.

F. Débarre

Question

Is this simple, neutral model able to generate clusters of populations?

Question

- Is this simple, neutral model able to generate clusters of populations?
- ► Can it inform our definition of a species?

Question

- Is this simple, neutral model able to generate clusters of populations?
- ▶ Can it inform our definition of a species?
- Are the data that it generates compatible with what we observe in nature?

Question

- Is this simple, neutral model able to generate clusters of populations?
- ▶ Can it inform our definition of a species?
- Are the data that it generates compatible with what we observe in nature?

Question

- Is this simple, neutral model able to generate clusters of populations?
- ▶ Can it inform our definition of a species?
- Are the data that it generates compatible with what we observe in nature?

Aims

Describe the expected characteristics of the graph via its stationary state G_{n,r}

Question

- Is this simple, neutral model able to generate clusters of populations?
- ▶ Can it inform our definition of a species?
- Are the data that it generates compatible with what we observe in nature?

- Describe the expected characteristics of the graph via its stationary state G_{n,r}
 - Degree distribution

Question

- Is this simple, neutral model able to generate clusters of populations?
- ▶ Can it inform our definition of a species?
- Are the data that it generates compatible with what we observe in nature?

- Describe the expected characteristics of the graph via its stationary state G_{n,r}
 - Degree distribution
 - Number of complete subgraphs (species?)

Question

- Is this simple, neutral model able to generate clusters of populations?
- Can it inform our definition of a species?
- Are the data that it generates compatible with what we observe in nature?

- Describe the expected characteristics of the graph via its stationary state G_{n,r}
 - Degree distribution
 - Number of complete subgraphs (species?)
 - Number of connected components (species?)

$$n = 1000, r = 0.1, \#CC = 1$$

$$n = 1000, r = 5, \#CC = 8$$

$$n = 1000, r = 7.5, \#CC = 7$$

$$n = 1000, r = 38, \#CC = 40$$

n = 1000, r = 62, #CC = 66

$$n = 1000, r = 107, \#CC = 141$$

$$n = 1000, r = 347, \#CC = 342$$

GRC Speciation, Feb 2017

n = 1000, r = 1000, #CC = 342

Vertex splitting

Vertex splitting

Vertex splitting

Vertex splitting

Vertex splitting

Focus on two populations (2 nodes of $G_{n,r}$):

Focus on two populations (2 nodes of $G_{n,r}$):

 The time to their MRCA is exp(1) (because Kingman),

Focus on two populations (2 nodes of $G_{n,r}$):

- The time to their MRCA is exp(1) (because Kingman),
- ► The edge formed when the population split is removed at rate *r*.

Degree $T_{MRCA} \sim \mathcal{E}(1)$

Focus on two populations (2 nodes of $G_{n,r}$):

- The time to their MRCA is exp(1) (because Kingman),
- ► The edge formed when the population split is removed at rate *r*.

Probability of interbreeding =: p(n, r)

$$p=\frac{1}{1+r}$$

Degree $T_{MRCA} \sim \mathcal{E}(1)$

Focus on two populations (2 nodes of $G_{n,r}$):

- The time to their MRCA is exp(1) (because Kingman),
- ► The edge formed when the population split is removed at rate *r*.

Probability of interbreeding =: p(n, r)

$$p=\frac{1}{1+r}$$

Degree $T_{MRCA} \sim \mathcal{E}(1)$

Focus on two populations (2 nodes of $G_{n,r}$):

- The time to their MRCA is exp(1) (because Kingman),
- ► The edge formed when the population split is removed at rate *r*.

Probability of interbreeding =: p(n, r)

$$p = \frac{1}{1+r}$$

Degree of a fixed node =: D(n, r)

$$\mathbb{E}[D] = \frac{n-1}{1+r}, \quad Var[D] = \frac{r(n-1)(n+2r+1)}{(1+r)^2(3+2r)}$$

k-clique: complete subgraph of order *k*

k-clique: complete subgraph of order *k*

k-clique: complete subgraph of order *k*

k-clique: complete subgraph of order *k*

GRC Speciation, Feb 2017

k-clique: complete subgraph of order *k*

GRC Speciation, Feb 2017

► Consider *k* populations;

► Consider k populations; there are (^j₂) = ^{k(k-1)}/₂ potential interfecundity links.

- ► Consider k populations; there are (ⁱ₂) = ^{k(k-1)}/₂ potential interfecundity links.
- Probability that they all belong to a clique is

- ► Consider k populations; there are (ⁱ₂) = ^{k(k-1)}/₂ potential interfecundity links.
- Probability that they all belong to a clique is

- ► Consider k populations; there are (ⁱ₂) = ^{k(k-1)}/₂ potential interfecundity links.
- Probability that they all belong to a clique is

- ► Consider k populations; there are (^j₂) = ^{k(k-1)}/₂ potential interfecundity links.
- Probability that they all belong to a clique is

► Consider k populations; there are (^j₂) = ^{k(k-1)}/₂ potential interfecundity links.

Probability that they all belong to a clique is

$$\prod_{j=2}^{k} \frac{\binom{j}{2}}{\binom{j}{2} + r\binom{j}{2}} = \left(\frac{1}{1+r}\right)^{k-1}$$

► Consider k populations; there are (ⁱ₂) = ^{k(k-1)}/₂ potential interfecundity links.

$$\prod_{j=2}^{k} \frac{\binom{j}{2}}{\binom{j}{2} + r\binom{j}{2}} = \left(\frac{1}{1+r}\right)^{k-1}$$

• # Complete subgraphs of order $k =: X_k(n, r)$

$$\mathbb{E}(X_k) = \binom{n}{k} \left(\frac{1}{1+r}\right)^{k-1}$$

► Consider k populations; there are (ⁱ₂) = ^{k(k-1)}/₂ potential interfecundity links.

Probability that they all belong to a clique is
k (i) k-1

$$\prod_{j=2}^{k} \frac{\binom{j}{2}}{\binom{j}{2} + r\binom{j}{2}} = \left(\frac{1}{1+r}\right)^{k-1}$$

• # Complete subgraphs of order $k =: X_k(n, r)$

$$\mathbb{E}(X_k) = \binom{n}{k} \left(\frac{1}{1+r}\right)^{k-1}$$

• Clique number $=: \omega(n, r)$

$$\mathbb{P}[\omega \geq k] = \mathbb{P}[X_k \geq 1] \leq \mathbb{E}[X_k].$$

GRC Speciation, Feb 2017

Connected components

Subgraph in which any two nodes are connected to each other by paths, and which is connected to no additional nodes in the supergraph.

Connected components

Subgraph in which any two nodes are connected to each other by paths, and which is connected to no additional nodes in the supergraph.

Assume $1 \ll r_n \ll n$.

Assume $1 \ll r_n \ll n$.

Let $t_k :=$ time when the coalescent tree has k lineages

Assume $1 \ll r_n \ll n$.

Let $t_k :=$ time when the coalescent tree has k lineages

Lower bound

Choose m such that the graph at time t_m is empty with high probability

Assume $1 \ll r_n \ll n$.

Let $t_k :=$ time when the coalescent tree has k lineages

Lower bound

Choose *m* such that the graph at time t_m is empty with high probability Result: $m \sim \frac{r_n}{2}$

Assume $1 \ll r_n \ll n$.

Let $t_k :=$ time when the coalescent tree has k lineages

Lower bound

Choose *m* such that the graph at time t_m is empty with high probability Result: $m \sim \frac{r_n}{2}$

Upper bound

Choose *M* such that the descending subtrees of each of the *M* nodes of time t_M are connected with high probability

Assume $1 \ll r_n \ll n$.

Let $t_k :=$ time when the coalescent tree has k lineages

Lower bound

Choose *m* such that the graph at time t_m is empty with high probability Result: $m \sim \frac{r_n}{2}$

Upper bound

Choose *M* such that the descending subtrees of each of the *M* nodes of time t_M are connected with high probability Result: $M \sim 2r_n \log(n)$

Assume $1 \ll r_n \ll n$.

Let $t_k :=$ time when the coalescent tree has k lineages

Lower bound

Choose *m* such that the graph at time t_m is empty with high probability Result: $m \sim \frac{r_n}{2}$

Upper bound

Choose *M* such that the descending subtrees of each of the *M* nodes of time t_M are connected with high probability Result: $M \sim 2r_n \log(n)$

Assume that as $n \to \infty$, $r_n \to \infty$ and $r_n/n \to 0$. Then

$$\lim_{n\to\infty}\mathbb{P}\left[\frac{r_n}{2}\leq \#CC(G_{n,r_n})\leq 2r_n\log(n)\right]=1.$$

GRC Speciation, Feb 2017

n

F. Débarre

n

n

n = 1000

F. Débarre

GRC Speciation, Feb 2017

Summary of the mathematical results

n = 1000

Take-home messages

The Split-and-Drift Random Graph

 A tractable neutral model for the evolution of reproductive isolation

Take-home messages

The Split-and-Drift Random Graph

- A tractable neutral model for the evolution of reproductive isolation
 - ▶ Includes a gray zone of speciation

Take-home messages

The Split-and-Drift Random Graph

- A tractable neutral model for the evolution of reproductive isolation
 - Includes a gray zone of speciation
 - ► Two parameters: number of populations *n*, rate of loss of interfecundity *r*
The Split-and-Drift Random Graph

- A tractable neutral model for the evolution of reproductive isolation
 - ▶ Includes a gray zone of speciation
 - ► Two parameters: number of populations *n*, rate of loss of interfecundity *r*
- Open Mathematical Questions
 - Convergence in distribution of $\#CC/r_n$?
 - Convergence in the graphon sense? (dense regime)
 - Distribution of abundances of connected components?

The Split-and-Drift Random Graph

- A tractable neutral model for the evolution of reproductive isolation
 - ▶ Includes a gray zone of speciation
 - ► Two parameters: number of populations *n*, rate of loss of interfecundity *r*
- Open Mathematical Questions
 - Convergence in distribution of $\#CC/r_n$?
 - Convergence in the graphon sense? (dense regime)
 - Distribution of abundances of connected components?

The Split-and-Drift Random Graph

- A tractable neutral model for the evolution of reproductive isolation
 - ▶ Includes a gray zone of speciation
 - ► Two parameters: number of populations *n*, rate of loss of interfecundity *r*
- Open Mathematical Questions
 - Convergence in distribution of $\#CC/r_n$?
 - Convergence in the graphon sense? (dense regime)
 - Distribution of abundances of connected components?

Perspectives

Evaluation using real Species-Abundance distributions

The Split-and-Drift Random Graph

- A tractable neutral model for the evolution of reproductive isolation
 - ▶ Includes a gray zone of speciation
 - ► Two parameters: number of populations *n*, rate of loss of interfecundity *r*
- Open Mathematical Questions
 - Convergence in distribution of $\#CC/r_n$?
 - Convergence in the graphon sense? (dense regime)
 - Distribution of abundances of connected components?

- Evaluation using real Species-Abundance distributions
- Link to macroevolutionary models

The Split-and-Drift Random Graph

- A tractable neutral model for the evolution of reproductive isolation
 - Includes a gray zone of speciation
 - ► Two parameters: number of populations *n*, rate of loss of interfecundity *r*
- Open Mathematical Questions
 - Convergence in distribution of $\#CC/r_n$?
 - Convergence in the graphon sense? (dense regime)
 - Distribution of abundances of connected components?

- Evaluation using real Species-Abundance distributions
- Link to macroevolutionary models
 - Species tree?

The Split-and-Drift Random Graph

- A tractable neutral model for the evolution of reproductive isolation
 - Includes a gray zone of speciation
 - ► Two parameters: number of populations *n*, rate of loss of interfecundity *r*
- Open Mathematical Questions
 - Convergence in distribution of $\#CC/r_n$?
 - Convergence in the graphon sense? (dense regime)
 - Distribution of abundances of connected components?

- Evaluation using real Species-Abundance distributions
- Link to macroevolutionary models
 - Species tree?
 - Speciation/Extinction rates?

The Split-and-Drift Random Graph

- A tractable neutral model for the evolution of reproductive isolation
 - ▶ Includes a gray zone of speciation
 - ► Two parameters: number of populations *n*, rate of loss of interfecundity *r*
- Open Mathematical Questions
 - Convergence in distribution of $\#CC/r_n$?
 - Convergence in the graphon sense? (dense regime)
 - Distribution of abundances of connected components?

Perspectives

- Evaluation using real Species-Abundance distributions
- Link to macroevolutionary models
 - Species tree?
 - Speciation/Extinction rates?

Thanks for your attention!

GRC Speciation, Feb 2017

Appendix

Degree Distribution

$$\mathbb{P}[D(n,r)=k]=\frac{2r(2r+1)}{(n+2r)(n-1+2r)}(k+1)\prod_{i=1}^{k}\frac{n-i}{n-i+2r-1}.$$

random variable with parameter $1/(1 + \rho)$.