
Presented at Gateways 2018, University of Texas, Austin, TX, September 25–27, 2018.
https://gateways2018.figshare.com/
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Accessing Distributed Jupyter / Spark in OnDemand
Jeremy W. Nicklas

Ohio Supercomputer Center
Columbus, Ohio
jnicklas@osc.edu

Eric Franz
Ohio Supercomputer Center

Columbus, Ohio
efranz@osc.edu

Alan Chalker
Ohio Supercomputer Center

Columbus, Ohio
alanc@osc.edu

Doug Johnson
Ohio Supercomputer Center

Columbus, Ohio
djohnson@osc.edu

Morgan E. Rodgers
Ohio Supercomputer Center

Columbus, Ohio
mrodgers@osc.edu

David E. Hudak
Ohio Supercomputer Center

Columbus, Ohio
dhudak@osc.edu

Abstract—There are a variety of gateway software platforms

available, each of which provide their own unique advantages.
OnDemand’s unique architecture empowers developers and
users to easily create and run system-level access applications as
well as interactive HPC applications. In this demonstration we
show the ease of use through OnDemand to standup a Jupyter /
Spark stack and run a distributed workload on an HPC cluster
all within a browser.

Keywords—Open OnDemand, High Performance Computing,
Interactive web platform, Jupyter, Spark, Ohio Supercomputer
Center

I. INTRODUCTION
Open OnDemand, an open source software project that started
in June 2015, provides HPC access through a web portal
called OnDemand as an alternative to the command line for
accessing and utilizing HPC resources [1, 2]. It was based
around the Ohio Supercomputer Center’s (OSC) original
portal [3] that had been in production since January 2013 and
was deployed into production at OSC in September 2016. Like
science gateways Open OnDemand is about easing access to
HPC resources by utilizing the web browser. OnDemand can
be used to create science gateways via its application building
framework, at its core OnDemand is about general system
access: managing files, using shells and managing batch jobs.

A key feature of the OnDemand architecture over a
traditional web service is the per-user web server model that
ensures all processes are run as the authenticated Linux user.
This feature directly leverages the Linux kernel for security
and accountability making OnDemand an attractive solution
for developers and users to easily create and run system-level
access applications that handle file management, job
management, as well as a multitude of other services. This
enables OnDemand to easily support interactive HPC
applications [4], custom plugin applications that build on
system-level applications leveraging the cluster’s resource
manager to schedule and deploy web stacks directly on the
cluster as well as allowing the user access to connect back to
these running web stacks from their local browser. OSC
currently provides Jupyter [5] (optionally with Apache Spark
[6]), RStudio Server [7], and COMSOL Server [8] as custom
interactive applications to its users running on its HPC clusters.

A complete discussion of Open OnDemand’s architecture can
be found in Hudak et al 2016 [1].

Since OnDemand's public release in August 2017 it has
been installed at sixteen different commercial and academic
sites, with several dozen other centers showing significant
interest. At OSC alone we have seen rapid user adoption with
the number of OnDemand users doubling in less than a year
since its initial launch as seen in Fig. 1. As of July 2017, OSC
has more users accessing supercomputing resources through
OnDemand than through traditional SSH alone.

The rapid growth in OnDemand usage at OSC is in large part
due to the lower barrier of entry for new users when they are
first introduced to the complex HPC working environment.
This has led to a reduction in “time to science” for new users

Fig. 1. OSC OnDemand platform usage for Jan 2017 – Aug 2018.

Fig. 2. Median times for first login of new users created in 2017 at OSC.

https://gateways2018.figshare.com/
mailto:jnicklas@osc.edu
mailto:efranz@osc.edu
mailto:alanc@osc.edu
mailto:djohnson@osc.edu
mailto:mrodgers@osc.edu
mailto:dhudak@osc.edu

using OnDemand. Fig. 2 displays the time it typically takes for
a new user to first login and access the OSC clusters whether it
was through OnDemand or traditional SSH. Users who first
access OSC resources through OnDemand as opposed to
traditional SSH login three days sooner. This could be
attributed to only needing a browser and URL when
connecting to OnDemand as opposed to the need for third-
party software when connecting through traditional SSH. Fig. 3
displays the time it takes from first login until the user submits
their first job to a cluster. OnDemand users are observed to
begin working on their domain science nearly an entire day
sooner when compared with traditional SSH users.

 Admins will appreciate the RPM-based installation, and a
focus of future development will be on simplifying installation
of interactive applications.

For this demonstration we will present how easy it is for a
new user with little to no Linux experience orchestrate the
deployment of a properly configured and secure Jupyter server
as well as a standalone Spark cluster across a set of HPC
cluster nodes in just a few clicks all from within their browser.
After connecting to this Jupyter instance we will demonstrate
how simple it is to perform a distributed workload across the
running Spark cluster from within a new Jupyter notebook.

II. ONDEMAND OVERVIEW
When a user first logs into OnDemand they are presented

with the Dashboard as seen in Fig. 4. The Dashboard serves as
the landing page for the OnDemand portal as well as enabling

discoverability of the various OnDemand features. These
include the system-level access applications as well as the
interactive applications.

OnDemand provides the following core system-level access
applications that a user can launch from the Dashboard: File
Explorer and File Editor for file management, Active Jobs and
Job Composer for job management and monitoring, as well as
a Shell App for command line access. The Dashboard can be
further extended to include custom interactive applications that
a user can access as seen in Fig. 5.

III. JUPYTER STACK
OSC currently provides their users access to Jupyter

(optionally with Spark), RStudio Server, and COMSOL Server
served through custom interactive applications hosted on their
OnDemand portal as well as a host of X11/VNC applications:
Xfce Desktop, ANSYS Workbench, Abaqus/CAE, COMSOL
Multiphysics, MATLAB, ParaView, and VMD. For this
demonstration we will focus our attention on the Jupyter
interactive application.

Fig. 3. Median times for first job of new users created in 2017 at OSC.

Fig. 4. OSC’s OnDemand Dashboard page.

Fig. 6. Web form for launching Jupyter on OSC OnDemand.

From the Dashboard the user clicks the link for the Jupyter
interactive application. The user is then presented with the web
form seen in Fig. 6 which asks for the account the job will be
charged against, the wall time limit for the job, the type of node
and number of cores to run the job on, and whether or not to
email the user when the job starts.

After the user fills out the form and clicks “Launch” a batch
job is subsequently generated and submitted to the cluster’s
resource manager. The user is then presented with a button to
connect to Jupyter after the job leaves the queue and begins
running as seen in Fig. 7.

The user clicks “Connect to Jupyter” and is connected to
their Jupyter server instance running on the allocated node in a
new browser tab. The user can now open a new notebook or
manage their current notebooks all from within their browser.
It should be made clear that the user’s browser is now
connected to the allocated cluster node without the need for an
SSH tunnel.

We now open a new notebook and populate it with the
Python function to compute the mathematical constant Pi using
Monte Carlo integration as seen in Fig. 8. We benchmark this
calculation to later compare against the distributed calculation
performed with the Spark cluster. By default, Python runs the
calculation on a single thread, but could be made multi-
threaded by leveraging third-party libraries.

For the case demonstrated in Fig. 8 it took a wall time of
roughly 8 minutes to compute Pi on a single thread using a
sample size of 1,000,000,000 points running on an OSC Owens
compute node. Even if this calculation was made multi-
threaded it would still be limited by the number of cores

available on the OSC Owens compute node (28 cores).

IV. JUPYTER / SPARK STACK
In order to scale this solution further we will need to

distribute the calculation over multiple nodes. This can be
accomplished with the Apache Spark cluster-computing
framework. Apache Spark provides the Python API PySpark
used to communicate with a running Spark cluster. PySpark
utilizes the cloudpickle Python package to serialize Python
constructs not supported by the default pickle module and
distribute them across the Spark workers to be executed. This

Fig. 5. Dashboard view of available and running interactive apps.

Fig. 7. User can connect to Jupyter stack when job is running.

Fig. 8. Single-threaded Pi calculation in Jupyter notebook.

Fig. 9. Web form for launching Jupyter + Spark on OSC OnDemand.

allows us to take arbitrary Python functions and distribute their
execution across more than one node.

The user now goes back to the OSC OnDemand Dashboard
and clicks the link for the Jupyter + Spark interactive
application. The user is then presented with the web form seen
in Fig. 9 which now asks for number of nodes instead of cores
to run the job on as well as configuration options for launching
the standalone Spark cluster across the nodes. It also provides
an option to copy over helpful tutorials into the user’s home
directory if requested.

As before, after the user fills out the form and clicks
“Launch” a batch job is subsequently generated and submitted
to the cluster’s scheduler. The user is then presented with a
button to connect to Jupyter + Spark after the job leaves the
queue and begins running similar to Fig. 7. Behind the scenes
the job dynamically configured and launched a standalone
Spark cluster across all the allocated nodes before starting the
Jupyter server. It also generated a custom Jupyter kernel for
connecting to the running Spark cluster when the user launches
a Jupyter notebook.

The user now clicks “Connect to Jupyter” and is connected
to their Jupyter server instance running on the first node
allocated by the cluster’s scheduler. The Jupyter interface is the
same as before but now all notebooks will be opened using the
custom kernel that initiates a Spark Context (given by the sc
variable in the interpreter) that connects to the Spark cluster.
The user can make use of the Spark Context to immediately
begin distributed work without any manual initialization.

We now open a new notebook and immediately use this
available Spark Context object to display the number of cores
allocated in the Spark cluster. We then use the same Monte
Carlo integration routine from before but leverage the Spark
cluster to distribute the function call across all allocated cores
as seen in Fig. 10. We benchmark this calculation to compare
against the single-threaded case previously.

For the case demonstrated in Fig. 10 it took a wall time of
4.55 seconds to compute Pi on 112 cores using a sample size of
1,000,000,000 points running on four OSC Owens compute
nodes. This distributed example exhibits a speed up of 105 and

parallel efficiency of 93.8% relative to the previous single-
threaded calculation as expected for the embarrassingly parallel
Monte Carlo integration.

Computation and resource usage may be ended at any point
by shutting down the Jupyter notebook. Alternatively,
OnDemand provides an interface to a user’s active and pending
interactive sessions. Clicking the Delete button on an active
session calls the resource manager’s job removal method:
qdel in the case of Torque. Any other required changes to a
pending or running job are handled outside of OnDemand
using the hosting site’s HPC resource management tools.

V. RELATED WORK

 Other integrations between Jupyter and HPC systems exist;
including Yin et al's CyberGIS and Milligan's customizations
to JupyterHub. CyberGIS is an application framework itself
built on Jupyter, which intends to leverage hybridized HPC
stacks including “traditional HPC, scalable databases, cloud
environments as well as big data computation frameworks like
Hadoop and Spark” [9]. CyberGIS is deployed as a
containerized application ready for cloud providers. One of
Milligan's key contributions to the Jupyter community has
been the creation of the BatchSpawner, which starts per-user
instances of Jupyter on HPC batch resources. Milligan further
extended MSI’s Jupyter platform allowing it to act as a portal
to graphical applications [10] using a JavaScript VNC client
similar to OnDemand [3].

 Development of OnDemand has focused on supporting
HPC resource managers such as Torque [11], and Slurm [12]
as they are the most common mechanism employed for
distributed resource management at HPC centers. Open
OnDemand does not support alternative distributed resource
management frameworks such as Kubernetes [13] at this time,
as it would require centers to dedicate hardware distinct from
the HPC clusters to meet resource demands. Future work for
OnDemand includes investigations into alternative non-HPC
resource management schemes such as Kubernetes.

VI. CONCLUSION
OnDemand’s architecture lends itself to making web

applications that directly interact with the HPC cluster easy to
develop and run. This opens up the possibility for running
interactive applications that are distributed across a cluster for
“science at scale” while also making it easy enough that a user
with little to no Linux experience can get started right away.

ACKNOWLEDGMENT
To learn more about the Open OnDemand project please

visit the project’s website [12]. The website provides access to
the documentation for installing OnDemand as well as tutorials
on getting started with interactive application development. It
also provides a link to sign up for the mailing list to ask
questions, receive updates, and participate in relevant
discussions.

Fig. 10. Distributed Pi calculation in Jupyter notebook using Spark cluster.

This work is supported by the National Science Foundation
of the United States under the award NSF SI2-SSE-1534949.

REFERENCES
[1] D. E. Hudak, D. Johnson, J. Nicklas, E. Franz, B. McMichael, and B.

Gohar, “Open OnDemand: transforming computational science through
omnidisciplinary software cyberinfrastructure,” in Proceedings of the
XSEDE16 Conference on Diversity, Big Data, and Science at Scale,
XSEDE16, Miami, FL, USA, July 17-21, 2016, ACM, New York, NY,
USA, no. 43, 2016, pp. 1-7. [Online]. doi:
https://doi.org/10.1145/2949550.2949644

[2] D. Hudak, D. Johnson, A. Chalker, J. Nicklas, E. Franz, T. Dockendorf,
and B. L. McMichael, “Open OnDemand: a web-based client portal for
HPC centers”, The Journal of Open Source Software, vol. 3, no. 25, pp.
622-623, 2018. [Online]. doi: https://doi.org/10.21105/joss.00622

[3] D. E. Hudak, T. Bitterman, P. Carey, D. Johnson, E. Franz, S. Brady,
and P. Diwan, “OSC OnDemand: a web platform integrating access to
HPC systems, web and VNC applications,” in Proceedings of the
Conference on Extreme Science and Engineering Discovery
Environment: Gateway to Discovery, XSEDE ‘13, San Diego, CA, USA,
July 22-25, 2013, ACM, New York, NY, USA, no. 49, 2013, pp. 1-6.
[Online]. doi: https://doi.org/10.1145/2484762.2484780

[4] J. W. Nicklas, D. Johnson, S. Oottikkal, E. Franz, B. McMichael, A.
Chalker, and D. E. Hudak, “Supporting parallel, interactive Jupyter and
RStudio in a scheduled HPC environment with Spark using Open
OnDemand”, in PEARC ’18: Practice and Experience in Advanced
Research Computing, Pittsburgh, PA, USA, July 22-26, 2018, ACM,
New York, NY, USA, in press.

[5] T. Kluyver, B. Ragan-Kelley, F Pérez, B. Granger, M. Bussonnier, J.
Frederic, K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila,
S. Abdallan and C. Willing, “Jupyter Notebooks – a publishing format
for reproducible computational workflows”, in Positioning and Power in
Academic Publishing: Players, Agents and Agendas, F. Loizides and B.
Schmidt, Eds. IOS Press, 2016, pp. 87-90. [Online]. doi:
https://doi.org/10.3233/978-1-61499-649-1-87

[6] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X.
Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi, J.
Gonzalez, S. Shenker, and I. Stoica, “Apache Spark: a unified engine for
big data processing”, Commun. ACM, vol. 59, no. 11, pp. 56-65, Oct.
2016. [Online]. doi: https://doi.org/10.1145/2934664

[7] RStudio Team, “RStudio: integrated development environment for R”,
RStudio, Inc., Boston, MA, USA, 2015. [Online]. Available:
https://www.rstudio.com

[8] COMSOL, “COMSOL Multiphysics Modeling Software”, 2018.
[Online]. Available: https://www.comsol.com [Accessed: 15- May-
2018].

[9] D. Yin, Y. Liu, A. Padmanabhan, J. Terstriep, J. Rush, S. Wang, "A
CyberGIS-Jupyter Framework for Geospatial Analytics at Scale", in
Proceedings of the Practice and Experience in Advanced Research
Computing 2017 on Sustainability, Success and Impact (p. 18). ACM.
[Online[. doi: https://doi.org/10.1145/3093338.3093378

[10] M. Milligan, "Jupyter as Common Technology Platform for Interactive
HPC Services", in PEARC '18 Proceedings of the Practice and
Experience on Advanced Research Computing (article 17). ACM.
[Online] Available: https://doi.org/10.1145/3219104.3219162

[11] Torque by Adaptive Computing, “Torque Resource Manager”, 2018.
[Online]. Available:
https://www.adaptivecomputing.com/products/torque/. [Accessed: 4-
Sept-2018].

[12] Slurm by SchedMD, “Slurm Workload Manager”, 2018. [Online].
Available: https://slurm.schedmd.com. [Accessed 4-Sept-2018].

[13] Kubernetes, “Production-Grade Container Orchestration – Kubernetes”,
2018. [Online]. Available: https://kubernetes.io. [Accessed: 4-Sept-
2018].

[14] Open OnDemand by OSC, “Open-source project based on the Ohio
Supercomputer Center’s OnDemand platform”, 2018. [Online].
Available: http://openondemand.org. [Accessed: 15- May- 2018].

https://doi.org/10.1145/2949550.2949644
https://doi.org/10.21105/joss.00622
https://doi.org/10.1145/2484762.2484780
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1145/2934664
https://www.rstudio.com/
https://www.comsol.com/
https://doi.org/10.1145/3093338.3093378
https://www.adaptivecomputing.com/products/torque/
https://slurm.schedmd.com/
https://kubernetes.io/
http://openondemand.org/

	I. Introduction
	II. OnDemand Overview
	III. Jupyter Stack
	IV. Jupyter / Spark Stack
	V. Related Work
	Other integrations between Jupyter and HPC systems exist; including Yin et al's CyberGIS and Milligan's customizations to JupyterHub. CyberGIS is an application framework itself built on Jupyter, which intends to leverage hybridized HPC stacks includ...
	Development of OnDemand has focused on supporting HPC resource managers such as Torque [11], and Slurm [12] as they are the most common mechanism employed for distributed resource management at HPC centers. Open OnDemand does not support alternative ...
	VI. Conclusion
	Acknowledgment
	References

