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Genome-wide Association 

Studies



Paucity of non-European data in the field of 
genomics

Popejoy and Fullerton. 
Nature 538:161, Oct 2016

0.57%                                                  3%  
African Ancestry 

(Majority African-American)



Shaping population genetic diversity

Mutation
Recombination
Genetic drift
Natural selection

Migration
Admixture

Genetic  variation contributes to susceptibility for complex traits and to 
the ability of a populations to adapt to a changing environment
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Relative Contributions

Genes

Environment
Infectious disease (e.g. HIV and TB)

Obesity
Type 2 diabetes

Monogenic diseases (e.g. cystic fibrosis, 
familial hypercholesterolaemia)



Searching for genetic associations with complex 
traits

• Conditions that require both a genetic risk 
and specific environmental triggers before 
they manifest

• Complex traits are also referred to as multi-
factorial traits, non-communicable diseases 
(NCD), chronic diseases
– Examples: diabetes, stroke, asthma, kidney 

disease
– Difficult to estimate heritability (genetic 

contribution to trait)  
• Determining genetic risk for a complex trait



GWAS PRINCIPLES



Genome wide association studies (GWASs)

Purpose: To identify genetic associations to complex 
traits by using genetic markers throughout the genome
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Understanding patterns of human 
genome sequence variation

HapMap 

1000 Genomes

High throughput 
genotyping technologies

Illumina
Affymetrix 



Association between genetic variants and disease

10%

Allelic association – single SNV 
Genotype association – Model for mode of inheritance in terms of the 
genotype effect (recessive, dominant, codominant, multiplicative)

Variant allele frequency 25% Variant allele frequency 15%



GWAS by Linkage Disequilibrium

Stage of analysis European pops African pops

Detecting 
association

High LD increases 
chance of detecting 
associations

Low LD reduces 
likelihood

Replicating 
association

Good chance of 
replicating even if 
causal variant not 
typed

Reduced likelihood 
unless causal 
variant directly 
typed

Localising causal 
variant

Can be difficult 
because of high LD

May be easier 
because of low LD



•Case-control (e.g. diabetes)
•Quantitative Trait (e.g. LDL-C)Study design

•Number of SNPs
•Choice of arraySNP genotyping Array

•Sample size & allele frequency
•Effect size Power calculations

•Logistic regression (OR, 95%CI)
•Linear regression (beta values, 95%CI)GWAS

•Lowest p values, functional annotation
•Genes of biological interest and pathway analysis

Follow-up interesting 
associations

•Independent study
•Sample size; effect size; similar populationReplication Studies

GWAS workflow



GWAS Catalogue
The NHGRI-EBI Catalogue of published genome-wide association studies

As of 2018-05-29, the GWAS Catalogue contains 3395 publications and 62156 unique SNP-trait associations.
GWAS Catalogue data is currently mapped to Genome Assembly GRCh38.p12 and dbSNP Build 150.



STUDY DESIGN



• Usually non-hypothesis based (exploratory research)
• Examine genetic associations (genetic markers e.g. SNPs 

throughout the genome) with a phenotype
• Look for highly significant associations (multiple testing 

problem)
• Associations seldom causal factors (in linkage 

disequilibrium – they segregate together) (direct vs 
indirect association)

• Sample size: 
– Small: Will miss important genetic determinants that have a 

minor effect on the phenotype
– Large: Will be powered to detect small effects 

GWAS



Study designs
• Quantitative traits: Association across a continuous 

phenotype spectrum (e.g. Height, lipid levels, blood 
pressure)
– Effect measured as a beta value

• Case-Control studies: Groups of individuals 
dichotomised. Cases vs Controls (e.g. Diabetes, 
hypertension). Need discrete cut off points for cases.
– Effect measured as an Odds Ratio (OR) e.g. for allelic association
– OR=1      no effect
– OR=1.1   small effect
– OR=2      larger effect
– OR<1      variant lowers risk



Genetic architecture of complex traits

• Percentage of phenotype variation explained by genetic 
susceptibility 

• Variant frequency
– Common variants
– Rare variants

• Linkage disequilibrium
– Direct of indirect association

• Contribution to the trait
– Small effects (many contributing variants)
– Large (fewer contributing variants each explaining more of the 

phenotype
– Combination of a few core high effect variants and many small 

effect variants



Calculating the power of a GWAS

• Power: The statistical likelihood (probability) of 
detecting genuine associations

• Several factors influence power
– Sample size
– Effect size (Odds ratio for case-control studies)
– Allele frequency

• You would like your study to be at least 80% powered 
to detect an association



Slide from Ele Zeggini – June 2018

Power: Case – Control Study



Slide from Ele Zeggini – June 2018



Study Power - Quantitative Traits
Important factors:
1. Sample size 2. Allele frequency and 3. Effect size 



Visualisation of GWAS outcomes

• Manhattan Plots

• Locus zoom plots



Ensure that associated variant has 
good genotype clustering (Illumina)



What expectations could we have?

• With modest sample size we can examine 
previous associations and test for similar effects

• With modest sample size we can detect novel 
large effect associations

• With large sample sizes we can discover novel 
modest to small effect associations

• Need to explore insights into the biology and 
impact that African studies can bring to science 



AFRICAN GENOME STRUCTURE



How do we take into consideration ethnic 
differences in genetic association studies and why 

does it matter?
• Population stratification
• Same SNPs can have different effect sizes in different 

populations (or associate in one, but not another population)
• Most GWAS arrays have more common SNPs for European 

populations (H3Africa array more African appropriate)
• High false discovery rate if you do not correct for population 

structure
• Different chromosomal backgrounds in a study population can 

influence ability to detect associations
• Imputation is a handy tool to extend data
• Advantages to studying African populations



Population stratification

CEU

LWK
MKK

GIH  

YRI

Cases and controls 
for association study



Advantage of studying African populations

Teo et al. (2010) Nature Reviews, Genetics

European

Fine mapping

GWAS

African

African 
populations 
have lower 
linkage 
disequilibrium 
(LD) and higher 
haplotype
diversity 



REPLICATION



Replication

• Additional independent sample (dataset)
• Sufficient size
• Identical phenotype
• Look for similar effect
– Same genomic region not necessarily same SNP 

(examine LD Block)
– Same direction



Teri Manolio (Nature 2017)
“…as with many things in science, the more we know, the more we have to learn.”

GWAS
1. Explain only a small 

fraction of the 
heritability of a trait

2. Most associations in 
regions of the 
genome with no 
known function

Nature 546, 360–361
(15 June 2017)
doi:10.1038/546360a



EXAMPLES

• Modest study – association with large effect variant – obesity among 
Samoans

• Very large study – UK Biobank and blood pressure
• Integrating the science – review on biology of obesity



Example of modest genomic study of obesity with 
a high effect variant and biological insights

Nature Genetics (Sept 2016) 48(9): 1049-1054

Founder effect in Samoa for high levels of obesity
GWAS: 3,072 participants in discovery study

2,102 in replication study
Highly associated GREBRF missense variant p.Arg457Gln (p=1.4x 10 -20) in meta-analysis
Frequency of associated variant 0.295 in Samoa (very rare elsewhere)
Effect size: 1.36 to 1.45 kg/m2 (BMI) per copy of the risk allele
Biological insight: Adipose cell model shows that when the variant is overexpressed, 
it selectively decreases energy use and increases fat storage
Conclusion: Supports selection of the allele through the “thrifty” variant hypothesis  



GWAS

Nature Genetics. (Sept 2016) 48(9): 1049-1054

Manhattan Plot

Following Imputation

GREBRF missense variant p.Arg457Gln 
(p=1.4x 10 -20) 



Effect on obesity

Nature Genetics. (Sept 2016) 48(9): 1049-1054

Sex-specific effects 
are important

How predictive are 
the alleles?

Novel insights into 
obesity  

Data from discovery cohort: 1233 men and 1833 women



Pages 403-415 and then online methods

Example of a large genomic study of a complex 
trait and the nature of the results 



Study design

• GWAS with quantitative trait – blood pressure 
(BP) – three measures
– Systolic blood pressure (SBP)
– Diastolic blood pressure (DBP)
– Pulse pressure (PP)

• Not with hypertension (>140/90 mmHG) 
• BP strong, heritable and modifiable driver of risk 

for stroke and coronary artery disease
• To date many associated loci (120) – common 

variants and small effects 



Discovery cohort: ~140 000 people 
from UK Biobank with at least 2 sitting 
BP measurements. 

Analysis: Single variant linear 
regression under an additive model

Number of SNVs after imputation: 
~9.8 million SNVs with MAF >0.1

P value cut off: p<10-6

Replication: 240 loci 
Cohorts: 2 large BP consortia
Criteria: p<5 x 10-8 for genome-wide 
significant of combined replication 
and discovery set (meta-analysis)
Cut off for replication only of previous 
associations and same direction 
p<0.01

Results
107 loci validated at p < 5 x 10-8

32/107 were novel associations
75/107 in other study on BP using UK Biobank
53/75 were validated for the first time

Associations with 107 loci
24 primarily with SBP
41 primarily with DBP
42 primarily with PP

All together: Validated loci 
increased percentage of trait 
variance explained by about 
1% (e.g. increased to 3.56% 
for SBP) 



Genetic Risk Score (GRS)

Divided individuals into Quintiles 
(Q1, Q2, Q3, Q4, Q5) (only >50 year olds)

Odds ratio (OR) for association with 
hypertension (sex adjusted) 

For individuals >50 years, adjusted for sex, the 
highest quintile had a SBP 9.3 mmHg higher 
than those in the lowest quintile.

OR was 2.32 for hypertension (HT) compared 
to the lowest quintile  (HT > 140/90)



Genetic Risk Score for CVD, 
CAD and Stroke

Modest ORs for difference 
between lowest and highest 
quintiles

Stroke OR = 1.34
CAD OR = 1.35



Review that unpacks the biology of obesity –
taking several steps further than genetic 

association

Nature Reviews Genetics (Dec 2017) 18:713 - 748



Nature Reviews Genetics (Dec 2017) 18:713 - 748



Conclusions
• Genetic associations for complex multi-factorial traits is complex
• NCDs are caused by genetic risk variants and environmental 

effects
• If heritability is high it should be possible to find genetic risk 

variants that explain a lot of the phenotype variability 
• Genome-wide association studies are used to find genetic risk 

variants but often highly associated loci have small effects on the 
phenotype (they are therefore individually not good predictors on 
the phenotype)

• There are two main study designs:
– Case : Control studies (e.g. diabetes vs healthy controls)
– Quantitative traits (e.g. lipid levels – spectrum of low to high)

• Outcome of a GWAS
– Genetic association (not disease causality)
– Most often the associated variants are not the actual variants that 

contribute to the trait (they are proxies through LD)
– Functional analysis and biological insights


