GWASs

Genome-wide Association
Studies
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Shaping population genetic diversity

GENOME

” 7 Genome
History Evolution

AFRICAN POPULATIONS
High genetic diversity

High population structure
Low linkage disequilibrium

Demographic

Migration
Admixture

Mutation
Recombination

Genetic drift
Natural selection

Genetic variation contributes to susceptibility for complex traits and to

the ability of a populations to adapt to a changing environment




Outline

Complex traits

GWAS principles

Study designs

— Calculating power

— Considering population substructure

African genome structure
Replication
Examples




Relative Contributions

Infectious disease (e.g. HIV and TB)

Obesity
Type 2 diabetes

Monogenic diseases (e.g. cystic fibrosis,
familial hypercholesterolaemia)




Searching for genetic associations with complex
traits

* Conditions that require both a genetic risk
and specific environmental triggers before
they manifest

 Complex traits are also referred to as multi-
factorial traits, non-communicable diseases
(NCD), chronic diseases

— Examples: diabetes, stroke, asthma, kidney
disease

— Difficult to estimate heritability (genetic
contribution to trait)

* Determining genetic risk for a complex trait



GWAS PRINCIPLES



Genome wide association studies (GWASs)

Purpose: To identify genetic associations to complex
traits by using genetic markers throughout the genome
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Understanding patterns of human
genome seguence variation

HapMap

1000 Genomes 1000 Genomes

A Deep Catalog of Human Genetic Variation

High throughput

genotyping technologies
lllumina
Affymetrix




Association between genetic variants and disease

Cases Controls

O

©0000000000/

Variant allele frequency 25% Variant allele frequency 15%

Allelic association — single SNV
Genotype association — Model for mode of inheritance in terms of the
genotype effect (recessive, dominant, codominant, multiplicative)



GWAS by Linkage Disequilibrium

Stage of analysis European pops African pops

Detecting High LD increases Low LD reduces
association chance of detecting likelihood
associations

Replicating Good chance of Reduced likelihood

association replicating even if  unless causal
causal variant not  variant directly
typed typed

Localising causal Can be difficult May be easier

variant because of high LD because of low LD



GWAS workflow

studv desi e Case-control (e.g. diabetes)
udy design e Quantitative Trait (e.g. LDL-C)

. e Number of SNPs

SNP genotyping Array By e

e Sample size & allele frequency

Power calculations « Effect size

e | ogistic regression (OR, 95%Cl
GWAS ogistic regression | el
e Linear regression (beta values, 95%Cl)
Follow-up interesting e Lowest p values, functional annotation
associations * Genes of biological interest and pathway analysis

¢ Independent study
e Sample size; effect size; similar population

Replication Studies




GWAS Catalogue

The NHGRI-EBI Catalogue of published genome-wide association studies

2018 Apr

Associations: 69,885
Studies: 5,152

Papers: 3,378

@@ www.ebi.ac.uk/gwas

As of 2018-05-29, the GWAS Catalogue contains 3395 publications and 62156 unique SNP-trait associations.
GWAS Catalogue data is currently mapped to Genome Assembly GRCh38.p12 and dbSNP Build 150.



STUDY DESIGN



GWAS

Usually non-hypothesis based (exploratory research)

Examine genetic associations (genetic markers e.g. SNPs
throughout the genome) with a phenotype

Look for highly significant associations (multiple testing
problem)

Associations seldom causal factors (in linkage
disequilibrium — they segregate together) (direct vs
indirect association)

Sample size:

— Small: Will miss important genetic determinants that have a
minor effect on the phenotype

— Large: Will be powered to detect small effects



Study designs

* Quantitative traits: Association across a continuous
phenotype spectrum (e.g. Height, lipid levels, blood
pressure)

— Effect measured as a beta value

e Case-Control studies: Groups of individuals
dichotomised. Cases vs Controls (e.g. Diabetes,
hypertension). Need discrete cut off points for cases.

— Effect measured as an Odds Ratio (OR) e.g. for allelic association
— OR=1 no effect

— OR=1.1 small effect

— OR=2 larger effect

— OR<1 variant lowers risk



Genetic architecture of complex traits

Percentage of phenotype variation explained by genetic
susceptibility
Variant frequency
— Common variants
— Rare variants
Linkage disequilibrium
— Direct of indirect association
Contribution to the trait
— Small effects (many contributing variants)

— Large (fewer contributing variants each explaining more of the
phenotype

— Combination of a few core high effect variants and many small
effect variants



Calculating the power of a GWAS

* Power: The statistical likelihood (probability) of
detecting genuine associations
e Several factors influence power

— Sample size
— Effect size (Odds ratio for case-control studies)

— Allele frequency

* You would like your study to be at least 80% powered
to detect an association



Power: Case — Control Study

Sample size matters

Power to detect association (p=5x10) at a variant with risk allele frequency 0.30|and
allelic OR 1.10
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Slide from Ele Zeggini — June 2018



Power to detect association (p=5x10%) at a variant with| risk allele frequency 0.005fand

allelic OR1.50
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Study Power - Quantitative Traits

Important factors:

1. Sample size 2. Allele frequency and 3. Effect size

Power (%)
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Visualisation of GWAS outcomes

e Manhattan Plots
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Ensure that associated variant has
good genotype clustering (Illumina)
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What expectations could we have?

 With modest sample size we can examine
previous associations and test for similar effects

 With modest sample size we can detect novel
large effect associations

e With large sample sizes we can discover novel
modest to small effect associations

Need to explore insights into the biology and
impact that African studies can bring to science



AFRICAN GENOME STRUCTURE



How do we take into consideration ethnic
differences in genetic association studies and why
does it matter?

Population stratification

Same SNPs can have different effect sizes in different
populations (or associate in one, but not another population)

Most GWAS arrays have more common SNPs for European
populations (H3Africa array more African appropriate)

High false discovery rate if you do not correct for population
structure

Different chromosomal backgrounds in a study population can
influence ability to detect associations

Imputation is a handy tool to extend data
Advantages to studying African populations



PC2 (8.79%)

Population stratification
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Advantage of studying African populations

GWAS

Fine mapping
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African
populations
have lower
linkage
disequilibrium
(LD) and higher
haplotype
diversity



REPLICATION



Replication

Additional independent sample (dataset)
Sufficient size

ldentical phenotype

Look for similar effect

— Same genomic region not necessarily same SNP
(examine LD Block)

— Same direction



Teri Manolio (Nature 2017)
“...as with many things in science, the more we know, the more we have to learn.”

THE GENOME-WIDE TIDE
Large genome-wide association studies that involve more than
10,000 people are growing in number every year — and their GWAS

sample sizes are increasing.

Sample sizes: M More than 200,000 100,000-199,999 1. Explz?ln Only a small
B 50,000-99,999 W 10,000-49,999 fraction of the

heritability of a trait
2. Most associations in
regions of the
genome with no
known function

Cumulative study number

2008 2009 2010 2011 2012 2013 2014 2015 2016

Nature 546, 360-361
(15 June 2017)
Adapted from Manolio, T. Nature 546 360-361 (2017) doi:10.1038/546360a



 Modest study — association with large effect variant — obesity among
Samoans
* Very large study — UK Biobank and blood pressure

* Integrating the science — review on biology of obesity

EXAMPLES



Example of modest genomic study of obesity with

a high effect variant and biological insights

Nature Genetics (Sept 2016) 48(9): 1049-1054

A thrifty variant in CREBRF strongly influences body mass index
in Samoans

Ryan L Minster®! Nicola L Hawley#Z2, Chi-Ting Su#®1-12, Guangyun Sun®3, Erin E Kershaw?,
Hong Cheng?3, Olive D Buhule®-12, Jerome Lin', Muagututi‘a Sefuiva Reupena®, Satupa‘itea
Viali’, John Tuitele®, Take Naseri®, Zsolt Urban'-14, Ranjan Deka3-14, Daniel E Weeks1.5.14,
and Stephen T McGarvey10.11.14

Founder effect in Samoa for high levels of obesity
GWAS: 3,072 participants in discovery study
2,102 in replication study
Highly associated GREBRF missense variant p.Arg457GIn (p=1.4x 10 2°) in meta-analysis
Frequency of associated variant 0.295 in Samoa (very rare elsewhere)
Effect size: 1.36 to 1.45 kg/m? (BMI) per copy of the risk allele
Biological insight: Adipose cell model shows that when the variant is overexpressed,
it selectively decreases energy use and increases fat storage
Conclusion: Supports selection of the allele through the “thrifty” variant hypothesis
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Effect on obesity

Males Femalkes

80 Sex-specific effects
70 - are important

50 4

40 +

- .
20

| | | )
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N=58n=485 Nn=89 n=9GI1n=714n = 158

Genolype at rs373863828
Data from discovery cohort: 1233 men and 1833 women

BMI

How predictive are
the alleles?

L

Novel insights into
obesity

Nature Genetics. (Sept 2016) 48(9): 1049-1054



Example of a large genomic study of a complex

trait and the nature of the results

Genome-wide association analysis identifies novel
blood pressure loci and offers biological insights into
cardiovascular risk

NATURE GENETICS VOLUME 49 | NUMBER 3 | MARCH 2017

Pages 403-415 and then online methods
The International Consortium of Blood Pressure (ICBP) 1000G Analyses

Helen R W.anen"m, Evangelos Evangelou®*%, Claudia P Cabreraf*z‘“. He Gao»>, Meixia !len"z“.". Louise V Wain*, Ahmad Vaez2!, Rick Jansen®?, Roby Joehanes?®, Peter ] van der Most?,

Borbala Mifsud"“", loanna Ntalla', Praveen Surendran, Chunyu Liu"%, James P Cook'’, Aldi T Kraja'!, A Mesut Erzurumluoglu®®, Paul O'Reilly?!, Claudia P Cabrera"2, Helen R Warren'2, Lynda M Rose®,

Fotios Drenos!™., Marie Lob> 4, N,'ek V erwelj!>-1%, Ion'athnn Marten's, !brahlm K“,"Fm” . Germaine C Verwoert®, Jouke-Jan Hottenga®, Rona ] Strawbridge®<”, Tonu Esko?®%6?, Dan E Arking®,
Marcelo P Segzr; Lepe®20, Paul FOl SRelllv'“. Joanne Kmnhtn., Harol(zi9 Smefieru, Norihiro K'ato’-‘. Im;slz He?s, Shih-Jen Hwang™7", Xiuging Guo™, Zoltan Kutalik7”*, Stella Trompet’”6, Nick Shrine, Alexander Teumer””,
E Shyong Tai’”, M Abdullah Said", David Porteous’, Maris Alver™, Neil Poulter™, Martin Farral”, Janina § Ried, Joshua C Bis®, Albert V Smith®42 Najaf Amin®, llia M Nolte?, Leo-Pekka Lyytikiinens*5
Ron T Gansevoort™, Sandosh Padmanabhan™, Reedik Migi™, Alice Stanton™, John Connell™, Anubha Mahajan®, Nicholas ] Wareham®s, Edith Hofer$735, Peter K Joshi®%, Kati Kristiansson®, Michela Traglia®!,

Stephan ] L Bakker36, Andres Metspalu??, Denis C Shields*7, Simon Thom3, Morris Brown!:2, Peter Sever3s, . 00 A Cnald92 M 93,94 Qi Qb 095 9697 Tiard %
Tonu Esko'629, Caroline Hayward!®, Pim van der Harst!5, Danish Saleheen-41, Rajiv Chowdhury, Aki§ Havulinna®, Anoj Goet®, Mike A Nall® Sim Sober”™, Dragana Vuckovic®,Jian'an Luan¥,
John C Chambers**2-*, Daniel I Chasman**%, Aravinda Chakravarti*, Christopher Newton-Cheh'¢-'8, :
Cecilia M Lindgren'544%, Daniel Levy”?, Jaspal S Kooner**>®5!, Bernard Keavney****, Maciej Tomaszewski*>*,
Nilesh ] Samani****, Joanna M M Howson®, Martin D Tobin%, Patricia B Munroe'?, Georg B Ehret¥7-,

Louise V Wain®, The International Consortium of Blood Pressure (ICBP) 1000G Analyses®®,

The CHD Exome+ Consortium®®, The ExomeBP Consortium®®, The T2D-GENES Consortium®,

The GoT2DGenes Consortium®®, The Cohorts for Heart and Ageing Research in Genome Epidemiology
(CHARGE) BP Exome Consortium’, The International Genomics of Blood Pressure (iGEN-BP) Consortium®,
Michael R Barnes">, loanna Tzoulaki*->4 Mark ] Caulfield">° & Paul Elliott>>%0

for The UK Biobank CardioMetabolic Consortium BP working group




Study design

GWAS with quantitative trait — blood pressure
(BP) — three measures

— Systolic blood pressure (SBP)
— Diastolic blood pressure (DBP)
— Pulse pressure (PP)

Not with hypertension (>140/90 mmHG)

BP strong, heritable and modifiable driver of risk
for stroke and coronary artery disease

To date many associated loci (120) — common
variants and small effects



Discovery cohort: ~140 000 people
from UK Biobank with at least 2 sitting
BP measurements.

Analysis: Single variant linear
regression under an additive model

Number of SNVs after imputation:
~9.8 million SNVs with MAF >0.1

P value cut off: p<10®

Replication: 240 loci

Cohorts: 2 large BP consortia

Criteria: p<5 x 108 for genome-wide
significant of combined replication
and discovery set (meta-analysis)

Cut off for replication only of previous
associations and same direction
p<0.01

Results

107 loci validated at p< 5 x 108
32/107 were novel associations
75/107 in other study on BP using UK Biobank
53/75 were validated for the first time

Associations with 107 loci
24 primarily with SBP
41 primarily with DBP
42 primarily with PP

All together: Validated loci
increased percentage of trait
variance explained by about
1% (e.g. increased to 3.56%
for SBP)



Genetic Risk Score (GRS)

Divided individuals into Quintiles

(Q1, Q2, Q3, Q4, Q5) (only >50 year olds)

Odds ratio (OR) for association with
hypertension (sex adjusted)

For individuals >50 years, adjusted for sex, the
highest quintile had a SBP 9.3 mmHg higher

than those in the lowest quintile.

OR was 2.32 for hypertension (HT) compared

to the lowest quintile (HT > 140/90)
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Review that unpacks the biology of obesity —

taking several steps further than genetic
association

DISEASE MECHANISMS Nature Reviews Genetics (Dec 2017) 18:713 - 748

(Convergence between biological,
behavioural and genetic determinants
of obesity

Sujoy Ghosh' and Claude Bouchard?
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Conclusions

Genetic associations for complex multi-factorial traits is complex

NCDs are caused by genetic risk variants and environmental
effects

If heritability is high it should be possible to find genetic risk
variants that explain a lot of the phenotype variability

Genome-wide association studies are used to find genetic risk
variants but often highly associated loci have small effects on the
phenotype (they are therefore individually not good predictors on
the phenotype)
There are two main study designs:

— Case : Control studies (e.g. diabetes vs healthy controls)

— Quantitative traits (e.g. lipid levels — spectrum of low to high)
Outcome of a GWAS

— Genetic association (not disease causality)

— Most often the associated variants are not the actual variants that
contribute to the trait (they are proxies through LD)

— Functional analysis and biological insights



