Parallel, Large Scale and Long Synthetic Oligodeoxynucleotide Purification Using the Catching Full-Length Sequence by Polymerization Technique

Dhananjani N. A. M. Eriyagama, ${ }^{\dagger}$ Shahien Shahsavari, ${ }^{\dagger}$ Bhaskar Halami, ${ }^{\dagger}$ Bao-Yuan Lu, ${ }^{\text {, } \ddagger}$ Fengping Wei ${ }^{\S}$ and Shiyue Fang ${ }^{*, \dagger}$
† Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
\ddagger Nalco Champion, an Ecolab Company, 11177 S. Stadium Drive, Sugar Land, TX 77478, USA
§ CGeneTech, Inc., 7202 E. 87th Street, Suite\#100, Indianapolis, IN 46256, USA

Table of contents

ODN sequences. S2-S3
RP HPLC of ODNs. S3-S20
MALDI-TOF MS of ODNs. S21-S28
Photo of ODN 1m S28-S28
LC-MS data for ODN 1a-c. S29-S45
UV spectra and OD_{260} of ODNs S46-S57

Table S1. ODN sequences		
ODN	length	sequence
1a	15-mer	TTT ATT CCC CAA CAT
1b	21-mer	CAA AGT AGC GTG CAC TTT TGC
1c	23-mer	TCA CAT GAT ACC ATT CTC CTA AT
1d	19-mer	TCG GCA TAC CAT GAT TAC T
1e	20-mer	TAC TTG CTG CTT AGA CCG CT
1f	20-mer	CCC ACG TTT TAG CGC TTC GT
1 g	20-mer	CTG TGT CGC ATG TAA AAG GT
1h	21-mer	CAC GCT TCA TGA TAT AAC CCT
1 i	21-mer	TTG CCA TGA TTG ACA ACC AAT
1j	22-mer	CAA TGG AAG TAC CAT TGA TAC T
1k	26-mer	TAG ACC TAC TAG ATA GGT TCC CAC GT
11	28-mer	TAA TGG AAG TAC CAT TGA TAC TAC CAT T
1m	32-mer	TAG TTT TAT AAT TTC ATC AGC AGT GTT ACC GT
1n	43-mer	TCG GCT CAA CTC AAA CCTATC AAA CTT GTA ACC CCT CGG CGC T
10	64-mer	tat tat agc ata ctc tgt ant agt tgt cai aca tea ata git AAT TCT CCC ATT CTA AAA CGA T
1p	80-mer	TAC TCA TAA TAC TGT TTA CCG TCA TCA TCT TGA AGC AAC ATT GTC ACA TCG TAT GAG TCA ACA AAA TCA TTT TGC ACC AT
1q	90-mer	TAT TAT AGC ATA CTC TGT AAT AGT TGT CAA ACA TTA ATA GTT AAT TCT CCC ATT CTA AAA CGA TTT GAT CGT TTA TTT CTA CAA TTA GAT
1r	110-mer	CAT TAT AGC ATA CTC TGT AAT AGT TGT CAA ACA TTA ATA GTT AAT TCT CCC ATT CTA AAA CGA TTT GAT CGT TTA TTT CTA CAA TTA GAT GGA CTC CAT TTG TAC CGA AT
1s	151-mer	TCA ACA AAA TCA TTT TGC ACC ATG TGG AGC ACC TCC AAA TAA CAC CTT TAT AAC CCA TGT GGC GTA ATC ATT GTT TTC CAT CCT AGA AAG CTC ATA CAA TGC GTT TTT CAT GAG TTT ATT TTC ATG CTC TAG TTT AGT CAT CTT CTT TTC T
1t	197-mer	CCC CAA CAT ACA CAT GAC AAT GGA AGT ACC GTA CCA TTG ATA CTA CCA TTA TAG CAT ACT CTG TAA TAG TTG TCA AAC ATT AAT

AGT TAA TTC TCC CAT TCT AAA ACG ATT TGA TCG TTT ATT TCT ACA ATT AGA TGG ACT CCA TTT GTA CCG AAT GGA TGG ACT TGT AAC TTT ATC GTA CCA TCT TTA AAC ATA TT

1u 203-mer
TTT AAT CCC CAA CAT ACA CAT GAC AAT GGA AGT ACC GTA CCA TTG ATA CTA CCA TTA TAG CAT ACT CTG TAA TAG TTG TCA AAC ATT AAT AGT TAA TTC TCC CAT TCT AAA ACG ATT TGA TCG TTT ATT TCT ACA ATT AGA TGG ACT CCA TTT GTA CCG AAT GGA TGG ACT TGT AAC TTT ATC GTA CCA TCT TTA AAC ATA TT

TTT AAT CCC CAA CAT ACA CAT GAC AAT GGA AGT ACC GTA CCA TTG ATA CTA CCA TTA TAG CAT ACT CTG TAA TAG TTG TCA AAC ATT AAT AGT TAA TTC TCC CAT TCT AAA ACG ATT TGA TCG TTT ATT TCT ACA ATT AGA TGG ACT CCA TTT GTA CCG AAT GGA TGG ACT TGT AAC TTT ATC GTA CCA TCT TTA AAC ATA TTC GCA ATA TGT TCT TCT AAC TCT

TTT AAT CCC CAA CAT ACA CAT GAC AAT GGA AGT ACC GTA CCA TTG ATA CTA CCA TTA TAG CAT ACT CTG TAA TAG TTG TCA AAC ATT AAT AGT TAA TTC TCC CAT TCT AAA ACG ATT TGA TCG TTT ATT TCT ACA ATT AGA TGG ACT CCA TTT GTA CCG AAT GGA TGG ACT TGT AAC TTT ATC GTA CCA TCT TTA AAC ATA TTC GCA ATA TGT TCT TCT AAC TCT GCA CGC TTC ATG ATA TAA CCC TCC TT

275-mer TTT AAT CCC CAA CAT ACA CAT GAC AAT GGA AGT ACC GTA CCA TTG ATA CTA CCA TTA TAG CAT ACT CTG TAA TAG TTG TCA AAC ATT AAT AGT TAA TTC TCC CAT TCT AAA ACG ATT TGA TCG TTT ATT TCT ACA ATT AGA TGG ACT CCA TTT GTA CCG AAT GGA TGG ACT TGT AAC TTT ATC GTA CCA TCT TTA AAC ATA TTC GCA ATA TGT TCT TCT AAC TCT GCA CGC TTC ATG ATA TAA CCC TCC TTA TCA GAT GTC AAA TAT AGT TTT CT

303-mer TTT AAT CCC CAA CAT ACA CAT GAC AAT GGA AGT ACC GTA CCA TTG ATA CTA CCA TTA TAG CAT ACT CTG TAA TAG TTG TCA AAC ATT AAT AGT TAA TTC TCC CAT TCT AAA ACG ATT TGA TCG TTT ATT TCT ACA ATT AGA TGG ACT CCA TTT GTA CCG AAT GGA TGG ACT TGT AAC TTT ATC GTA CCA TCT TTA AAC ATA TTC GCA ATA TGT TCT TCT AAC TCT GCA CGC TTC ATG ATA TAA CCC TCC TTA TCA GAT GTC AAA TAT AGT TTT CTC ACG GCT CAA CTC AAA CCT ATC AAA CTT

Photo of ODN 1m from large scale purification using the catching full-length sequence by polymerization technology

The following pages (S29-S34) contain LC-MS data for ODN 1a

Column	Agilent Extended C-18, $1.8 \mu \mathrm{~m}, 50 \times 2.1 \mathrm{~mm}$				
Mobile phase	A: 200 mM HFIP, 8.1 mM TEA in water B: Methanol				
Gradient	Time: 0-1-11-11.5-14.5-15 (min) B\%: 10-10-70-90-90-10				
Post run: 10 min		$	$	Column temprate: $\mathbf{m L} / \mathrm{min})$	$40^{\circ} \mathrm{C}$
:---	:---				
Injection Volume	2 uL				
Detection	Agilent 1200 Series HPLC with Agilent 6224 Time-of- Flight LC/MS Electrospray lonization (ESI), Negative Mode, 400-3200 mAu, data collection started at 2 min after injection.				

The following pages (S35-S39) contain LC-MS data for ODN 1b

Column	Agilent Extended C-18, $1.8 \mu \mathrm{~m}, 50 \times 2.1 \mathrm{~mm}$
Mobile phase	A: 200 mM HFIP, 8.1 mM TEA in water B: Methanol
Gradient	Time: 0-1-11-11.5-14.5-15 (min) B\%: 10-10-70-90-90-10 Post run: 10 min
Flow rate: (mL/min)	0.2
Column temp	$40^{\circ} \mathrm{C}$
Injection Volume	2 uL
Detection	Agilent 1200 Series HPLC with Agilent 6224 Time-of- Flight LC/MS Electrospray lonization (ESI), Negative Mode, 400-3200 mAu, data collection started at 2 min after injection.

The following pages (S40-S45) contain LC-MS data for ODN 1c

Column	Agilent Extended C-18, $1.8 \mu \mathrm{~m}, 50 \times 2.1 \mathrm{~mm}$
Mobile phase	A: 200 mM HFIP, 8.1 mM TEA in water B: Methanol
Gradient	Time: 0-1-11-11.5-14.5-15 (min) B\%: 10-10-70-90-90-10 Post run: 10 min
Flow rate: (mL/min)	0.2
Column temp	$40^{\circ} \mathrm{C}$
Injection Volume	2 uL
Detection	Agilent 1200 Series HPLC with Agilent 6224 Time-of- Flight LC/MS Electrospray lonization (ESI), Negative Mode, $400-3200$ mAu, data collection started at 2 min after injection.

Other small elution peaks: same ions as in solvent blank

UV of 15-mer ODN 1a. The ODN was synthesized on a $1 \mu \mathrm{~mol}$ scale. One fifth of the CPG was subjected to deprotection and cleavage. The purified ODN was dissolved in $100 \mu \mathrm{~L}$ of water, and $10 \mu \mathrm{~L}$ was taken out and diluted to 2 mL to obtain the UV spectrum. The OD_{260} of the 1 $\mu \mathrm{mol}$ synthesis and purification was calculated to be $28.84(0.2884 \times 5 \times 100 \mu \mathrm{~L} \div 10 \mu \mathrm{~L} \times 2 \mathrm{~mL}$ $\div 1 \mathrm{~mL}$).

UV of 21-mer ODN 1b. The ODN was synthesized on a $1 \mu \mathrm{~mol}$ scale. One fifth of the CPG was subjected to deprotection and cleavage. The purified ODN was dissolved in $100 \mu \mathrm{~L}$ of water, and $10 \mu \mathrm{~L}$ was taken out and diluted to 2 mL to obtain the UV spectrum. The OD_{260} of the 1 $\mu \mathrm{mol}$ synthesis and purification was calculated to be $31.98(0.3198 \times 5 \times 100 \mu \mathrm{~L} \div 10 \mu \mathrm{~L} \times 2 \mathrm{~mL}$ $\div 1 \mathrm{~mL}$).

UV of 23-mer ODN 1c. The ODN was synthesized on a $1 \mu \mathrm{~mol}$ scale. One fifth of the CPG was subjected to deprotection and cleavage. The purified ODN was dissolved in $100 \mu \mathrm{~L}$ of water, and $10 \mu \mathrm{~L}$ was taken out and diluted to 2 mL to obtain the UV spectrum. The OD_{260} of the 1 $\mu \mathrm{mol}$ synthesis and purification was calculated to be $26.64(0.2664 \times 5 \times 100 \mu \mathrm{~L} \div 10 \mu \mathrm{~L} \times 2 \mathrm{~mL}$ $\div 1 \mathrm{~mL}$).

UV of 19-mer ODN 1d. The ODN was synthesized on a $1 \mu \mathrm{~mol}$ scale. One fifth of the CPG was subjected to deprotection and cleavage. The purified ODN was dissolved in $100 \mu \mathrm{~L}$ of water, and $10 \mu \mathrm{~L}$ was taken out and diluted to 2 mL to obtain the UV spectrum. The OD_{260} of the 1 $\mu \mathrm{mol}$ synthesis and purification was calculated to be $74.4(0.744 \times 5 \times 100 \mu \mathrm{~L} \div 10 \mu \mathrm{~L} \times 2 \mathrm{~mL} \div$ 1 mL).

UV of 20-mer ODN 1e. The ODN was synthesized on a $1 \mu \mathrm{~mol}$ scale. One fifth of the CPG was subjected to deprotection and cleavage. The purified ODN was dissolved in $100 \mu \mathrm{~L}$ of water, and $10 \mu \mathrm{~L}$ was taken out and diluted to 2 mL to obtain the UV spectrum. The OD_{260} of the 1 $\mu \mathrm{mol}$ synthesis and purification was calculated to be $68.7(0.687 \times 5 \times 100 \mu \mathrm{~L} \div 10 \mu \mathrm{~L} \times 2 \mathrm{~mL} \div$ 1 mL).

UV of 20-mer ODN 1f. The ODN was synthesized on a $1 \mu \mathrm{~mol}$ scale. One fifth of the CPG was subjected to deprotection and cleavage. The purified ODN was dissolved in $100 \mu \mathrm{~L}$ of water, and $10 \mu \mathrm{~L}$ was taken out and diluted to 2 mL to obtain the UV spectrum. The OD_{260} of the 1 $\mu \mathrm{mol}$ synthesis and purification was calculated to be $11.75(0.1175 \times 5 \times 100 \mu \mathrm{~L} \div 10 \mu \mathrm{~L} \times 2 \mathrm{~mL}$ $\div 1 \mathrm{~mL}$).

UV of 20-mer ODN $\mathbf{1 g}$. The ODN was synthesized on a $1 \mu \mathrm{~mol}$ scale. One fifth of the CPG was subjected to deprotection and cleavage. The purified ODN was dissolved in $100 \mu \mathrm{~L}$ of water, and $10 \mu \mathrm{~L}$ was taken out and diluted to 2 mL to obtain the UV spectrum. The OD_{260} of the 1 $\mu \mathrm{mol}$ synthesis and purification was calculated to be $21.96(0.2196 \times 5 \times 100 \mu \mathrm{~L} \div 10 \mu \mathrm{~L} \times 2 \mathrm{~mL}$ $\div 1 \mathrm{~mL}$).

UV of 20-mer ODN 1 h . The ODN was synthesized on a $1 \mu \mathrm{~mol}$ scale. One fifth of the CPG was subjected to deprotection and cleavage. The purified ODN was dissolved in $100 \mu \mathrm{~L}$ of water, and $10 \mu \mathrm{~L}$ was taken out and diluted to 2 mL to obtain the UV spectrum. The OD_{260} of the 1 $\mu \mathrm{mol}$ synthesis and purification was calculated to be $28.42(0.2842 \times 5 \times 100 \mu \mathrm{~L} \div 10 \mu \mathrm{~L} \times 2 \mathrm{~mL}$ $\div 1 \mathrm{~mL}$).

UV of 22-mer ODN 1j. The ODN was synthesized on a $1 \mu \mathrm{~mol}$ scale. One fifth of the CPG was subjected to deprotection and cleavage. The purified ODN was dissolved in $100 \mu \mathrm{~L}$ of water, and $10 \mu \mathrm{~L}$ was taken out and diluted to 2 mL to obtain the UV spectrum. The OD_{260} of the 1 $\mu \mathrm{mol}$ synthesis and purification was calculated to be $21.73(0.2173 \times 5 \times 100 \mu \mathrm{~L} \div 10 \mu \mathrm{~L} \times 2 \mathrm{~mL}$ $\div 1 \mathrm{~mL}$).

UV of 26 -mer ODN $\mathbf{1 k}$. The ODN was synthesized on a $1 \mu \mathrm{~mol}$ scale. One fifth of the CPG was subjected to deprotection and cleavage. The purified ODN was dissolved in $100 \mu \mathrm{~L}$ of water, and $10 \mu \mathrm{~L}$ was taken out and diluted to 2 mL to obtain the UV spectrum. The OD_{260} of the 1 $\mu \mathrm{mol}$ synthesis and purification was calculated to be $99.6(0.996 \times 5 \times 100 \mu \mathrm{~L} \div 10 \mu \mathrm{~L} \times 2 \mathrm{~mL} \div$ 1 mL).

UV of 28-mer ODN 1I. The ODN was synthesized on a $1 \mu \mathrm{~mol}$ scale. One fifth of the CPG was subjected to deprotection and cleavage. The purified ODN was dissolved in $100 \mu \mathrm{~L}$ of water, and $10 \mu \mathrm{~L}$ was taken out and diluted to 2 mL to obtain the UV spectrum. The OD_{260} of the 1 $\mu \mathrm{mol}$ synthesis and purification was calculated to be $15.74(0.1574 \times 5 \times 100 \mu \mathrm{~L} \div 10 \mu \mathrm{~L} \times 2 \mathrm{~mL}$ $\div 1 \mathrm{~mL}$).

UV of 32-mer ODN 1m. The ODN was synthesized on a $60 \mu \mathrm{~mol}$ scale. All CPG was subjected to deprotection and cleavage. The purified ODN was dissolved in 5 mL of water, and $5 \mu \mathrm{~L}$ was taken out and diluted to 40 mL to obtain the UV spectrum. The OD_{260} of the $60 \mu \mathrm{~mol}$ synthesis and purification was calculated to be $13,076(0.3269 \times 5 \mathrm{~mL} \div 5 \mu \mathrm{~L} \times 40 \mathrm{~mL} \div 1 \mathrm{~mL})$.

UV of 43-mer ODN 1n. The ODN was synthesized on a $0.2 \mu \mathrm{~mol}$ scale. All CPG was subjected to deprotection and cleavage. The purified ODN was dissolved in $200 \mu \mathrm{~L}$ of water, and $20 \mu \mathrm{~L}$ was taken out and diluted to 2 mL to obtain the UV spectrum. The OD_{260} of the $0.2 \mu \mathrm{~mol}$ synthesis and purification was calculated to be 9.664 ($0.4832 \times 200 \mu \mathrm{~L} \div 20 \mu \mathrm{~L} \times 2 \mathrm{~mL} \div 1 \mathrm{~mL}$).

UV of 64-mer ODN 10. The ODN was synthesized on a $0.2 \mu \mathrm{~mol}$ scale. All CPG was subjected to deprotection and cleavage. The purified ODN was dissolved in $200 \mu \mathrm{~L}$ of water, and $20 \mu \mathrm{~L}$ was taken out and diluted to 2 mL to obtain the UV spectrum. The OD_{260} of the $0.2 \mu \mathrm{~mol}$ synthesis and purification was calculated to be $4.106(0.2053 \times 200 \mu \mathrm{~L} \div 20 \mu \mathrm{~L} \times 2 \mathrm{~mL} \div 1 \mathrm{~mL})$.

UV of 80-mer ODN 1p. The ODN was synthesized on a $0.2 \mu \mathrm{~mol}$ scale. All CPG was subjected to deprotection and cleavage. The purified ODN was dissolved in $200 \mu \mathrm{~L}$ of water, and $20 \mu \mathrm{~L}$ was taken out and diluted to 2 mL to obtain the UV spectrum. The OD_{260} of the $0.2 \mu \mathrm{~mol}$ synthesis and purification was calculated to be $15.04(0.7520 \times 200 \mu \mathrm{~L} \div 20 \mu \mathrm{~L} \times 2 \mathrm{~mL} \div 1 \mathrm{~mL}$).

UV of 90-mer ODN 1q. The ODN was synthesized on a $0.2 \mu \mathrm{~mol}$ scale. All CPG was subjected to deprotection and cleavage. The purified ODN was dissolved in $200 \mu \mathrm{~L}$ of water, and $20 \mu \mathrm{~L}$ was taken out and diluted to 2 mL to obtain the UV spectrum. The OD_{260} of the $0.2 \mu \mathrm{~mol}$ synthesis and purification was calculated to be12.746 ($0.6373 \times 200 \mu \mathrm{~L} \div 20 \mu \mathrm{~L} \times 2 \mathrm{~mL} \div 1 \mathrm{~mL})$.

UV of 110-mer ODN 1r. The ODN was synthesized on a $0.2 \mu \mathrm{~mol}$ scale. All CPG was subjected to deprotection and cleavage. The purified ODN was dissolved in $200 \mu \mathrm{~L}$ of water, and $20 \mu \mathrm{~L}$ was taken out and diluted to 2 mL to obtain the UV spectrum. The OD_{260} of the $0.2 \mu \mathrm{~mol}$ synthesis and purification was calculated to be $8.074(0.4037 \times 200 \mu \mathrm{~L} \div 20 \mu \mathrm{~L} \times 2 \mathrm{~mL} \div 1 \mathrm{~mL})$.

UV of 151 -mer ODN 1s. The ODN was synthesized on a $0.2 \mu \mathrm{~mol}$ scale. All CPG was subjected to deprotection and cleavage. The purified ODN was dissolved in $200 \mu \mathrm{~L}$ of water, and $20 \mu \mathrm{~L}$ was taken out and diluted to 2 mL to obtain the UV spectrum. The OD_{260} of the $0.2 \mu \mathrm{~mol}$ synthesis and purification was calculated to be $2.61(0.1305 \times 200 \mu \mathrm{~L} \div 20 \mu \mathrm{~L} \times 2 \mathrm{~mL} \div 1 \mathrm{~mL}$).

UV of 197-mer ODN 1t. The ODN was synthesized on a $0.2 \mu \mathrm{~mol}$ scale. All CPG was subjected to deprotection and cleavage. The purified ODN was dissolved in $200 \mu \mathrm{~L}$ of water, and $20 \mu \mathrm{~L}$ was taken out and diluted to 2 mL to obtain the UV spectrum. The OD_{260} of the $0.2 \mu \mathrm{~mol}$ synthesis and purification was calculated to be $2.848(0.1424 \times 200 \mu \mathrm{~L} \div 20 \mu \mathrm{~L} \times 2 \mathrm{~mL} \div 1 \mathrm{~mL})$.

UV of 203-mer ODN 1u. The ODN was synthesized on a $0.2 \mu \mathrm{~mol}$ scale. All CPG was subjected to deprotection and cleavage. The purified ODN was dissolved in $200 \mu \mathrm{~L}$ of water, and $20 \mu \mathrm{~L}$ was taken out and diluted to 2 mL to obtain the UV spectrum. The OD_{260} of the $0.2 \mu \mathrm{~mol}$ synthesis and purification was calculated to be $9.3(0.465 \times 200 \mu \mathrm{~L} \div 20 \mu \mathrm{~L} \times 2 \mathrm{~mL} \div 1 \mathrm{~mL})$.

UV of 225 -mer ODN 1v. The ODN was synthesized on a $0.2 \mu \mathrm{~mol}$ scale. All CPG was subjected to deprotection and cleavage. The purified ODN was dissolved in $200 \mu \mathrm{~L}$ of water, and $20 \mu \mathrm{~L}$ was taken out and diluted to 2 mL to obtain the UV spectrum. The OD_{260} of the $0.2 \mu \mathrm{~mol}$ synthesis and purification was calculated to be $6.688(0.3344 \times 200 \mu \mathrm{~L} \div 20 \mu \mathrm{~L} \times 2 \mathrm{~mL} \div 1 \mathrm{~mL})$.

UV of 251-mer ODN 1w. The ODN was synthesized on a $0.2 \mu \mathrm{~mol}$ scale. All CPG was subjected to deprotection and cleavage. The purified ODN was dissolved in $200 \mu \mathrm{~L}$ of water, and $20 \mu \mathrm{~L}$ was taken out and diluted to 2 mL to obtain the UV spectrum. The OD_{260} of the 0.2 $\mu \mathrm{mol}$ synthesis and purification was calculated to be $7.316(0.3658 \times 200 \mu \mathrm{~L} \div 20 \mu \mathrm{~L} \times 2 \mathrm{~mL} \div 1$ mL).

UV of 275-mer ODN 1x. The ODN was synthesized on a $0.2 \mu \mathrm{~mol}$ scale. All CPG was subjected to deprotection and cleavage. The purified ODN was dissolved in $200 \mu \mathrm{~L}$ of water, and $20 \mu \mathrm{~L}$ was taken out and diluted to 2 mL to obtain the UV spectrum. The OD_{260} of the $0.2 \mu \mathrm{~mol}$ synthesis and purification was calculated to be $5.456(0.2728 \times 200 \mu \mathrm{~L} \div 20 \mu \mathrm{~L} \times 2 \mathrm{~mL} \div 1 \mathrm{~mL})$.

UV of 303-mer ODN 1y. The ODN was synthesized on a $0.2 \mu \mathrm{~mol}$ scale. All CPG was subjected to deprotection and cleavage. The purified ODN was dissolved in $200 \mu \mathrm{~L}$ of water, and $20 \mu \mathrm{~L}$ was taken out and diluted to 2 mL to obtain the UV spectrum. The OD_{260} of the $0.2 \mu \mathrm{~mol}$ synthesis and purification was calculated to be 13.012 ($0.6506 \times 200 \mu \mathrm{~L} \div 20 \mu \mathrm{~L} \times 2 \mathrm{~mL} \div 1$ mL).

