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Motivation and Background




State of the art cosmological simulations

e Simulations have limited
resolution

e In EAGLE, a mass resolution
of 10° solar masses is
achieved

e However, a large number of
physical processes take
place on smaller scales...

e How do we Include them In
the simulation?

Gasina tyé)ical EAGLE galaxy (Schaye et. al 2015).
Image courtesy of J.'Borrow, S. Bahcroft, and Richard Bower.
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n of a disk alaxy using InterstellarGadget, a modified version of the
SPH code. TOO'000 gas partlcles 100'000 star particles, and a fixed NFW
n isothermal equation of state.
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Building a stellar feedback based

model of the ISM




A stellar feedback modael
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Building a star formation
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Building a 'Zoom-Out' model

e Traditional Zoom-In'
simulation: large-scale with
follow up high resolution
runs on smaller scales. : S

e Instead, run the small-scale
simulations first and extract
macroscopic parameters.

e Here: dispersion injected by .
supernovae (Martizzi, 2015): |
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Figure from the Silcc Collaboration we,bsi}e
?https: /hera.phl.unikoeln.de/~silcc/).



Application to simulations

e Really, what is required is an
equation of state

* When the disk Is In
equilibrium, the jeans length is
of order the scale height, and
we use small scale simulations
to calibrate dispersion

e This leads to

AN 1/2
pr =4.5 (;) G Pyl foaspy

See Schatye (_2001? for the original derivation, and Schaye (2007) for a recent use of
this. Martizzi (2015)'s small scale simulations were used to calibrate the velocity
dispersion in this model.
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Testing a subgrid model




Running simulations with GADGET-2

* Runs of Isolated disk galaxies
to test for stability

e Modified version of GADGET-2
(InterStellarGadget) with a
custom EOS & fixed NFW
profile t= 200

* Why GADGET-27 Relatively
easy to modify for this
purpose.

The original references for the GADGET-2 code can be found in Springel (2005).
For m?re infromation, please see the project website
(http://wwwmpa.mpa-garching.mpg.de/gadget/)

t =250

galaxy ran after approximately 10 rotation p
InterStellarGadget, a modified version of the GADGET-2 SPH code

A Milk Way-type eriods in




Testing a subgrid model

* A useful check for stability is 20
the Toomre (1964) Q parameter, |15
which is given by (for gas) 16

B CSH 1.4 Q
Qoas =
TG Lo §

e Adisk is considered stable .
where Q > 1. e

e An Isothermal disk has an EOS 0:2
Ofp — Cng 0.0

L._ CONSTLNNT ' Plot generated with SurV|s a custom Py ython module used to visualise the Toomre
— . Q parameter of an isolated d alaxy. InterstellarGadget was used to simulate the
galaxy, which has a mas resolutlon similar to EAGLE with 20'000 particles.




The evolution of the Toomre parameter with time
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This plot comes from a run with 200'000 particles with Milky
TOO m re Q Way-like values for scale radius, supernoave efficiency, gas
fraction, etc Units of time are arbritary, with the galax
performing around 10 rotation periods at ©=200.




The evolution of surface density with time
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Successes so far and ongoing issues

* Able to reproduce an * Low surface density
equation of state very similar ,
to the one used in EAGLE * Some regions completely

devoid of gas
* Galaxies end up Iin a quasi-

stable state * Not enough simulation data
yet to make confident
 Galaxies also stabalised by conclusions.

mass flow into the central
region (Krumholz and
Burkhart, 2016)




Future work & Repositories

* Run more simulations using * Modified GADGET-2:
InterStellarGadget github.com/JBorrow/InterStellarGadget

* Analyse using current e Custom initial conditions
pipeline generator:

github.com/JBorrow/GoGoGadget
* More measures of success?

e Toomre Q visualisation:
github.com/JBorrow/SurVis

Contact information available at dur.ac.uk/joshua.borrow






Appendix: Pressure generation from supernovae

At first glance, It may seem It can also be seen that F
that the equation comprises three factors
pr = FY, (Pf“’“\ - K K3 (me)
m*/ pPT = 7 2k
: 2 Ty
IS unreasonable, however
performing some quick * K1: supernova rate compared
dimensional analysis: to star formation rate
o] = M||L] e K2: mass ratio of SN star to
PTI = TRL) mean star
Prin] L LM e K3: efficiency of momentun
=[S =5 S
ms | [T (L]2[T] Injection from SNe.




Appendix: Useful information about GMCs

Component Fractional Scale Temperature (K) Density
Volume Height (pc) (atoms/cm3)
Molecular clouds <1% 80 10-20 102-10°
Cold Neutral Medium (CNM) 1-5% 100-300 50-100 20-50
Warm Neutral Medium (WNM) 10-20% 300-400 6000-10000 0.2-0.5
Warm lonized Medium (WIM) 20-50% 1000 8000 0.2-0.5
H Il regions <1% 70 8000 10-10*
Hot lonized Medium (HIM) 30-70% 1000-3000 10°-10/ 10-10

Data adapted from Ferriere (2001) who compiled it from various sources.



The evolution of the Toomre parameter with time
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