
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Design and Architecture of a Gateway for Supporting
Both Batch and Interactive Computing Modes on

Supercomputers
Marjo Poindexter
Texas Advanced

Computing Center
University of Texas at

Austin
Austin, TX, USA

mpoindexter@tacc.utexas.e
du

Rion Dooley
Texas Advanced

Computing Center
University of Texas at

Austin
Austin, TX, USA

dooley@tacc.utexas.edu

Joe Stubbs
Texas Advanced

Computing Center
University of Texas at

Austin
Austin, TX, USA

jstubbs@tacc.utexas.edu

 Ritu Arora
Texas Advanced

Computing Center
University of Texas at

Austin
Austin, TX, USA

rauta@tacc.utexas.edu

Julia Looney
Texas Advanced

Computing Center
University of Texas at

Austin
Austin, TX, USA

jlooney@tacc.utexas.edu

Abstract— Supercomputing resources are used in both
interactive and batch computing modes. The interactive mode is
typically used for software development and testing purposes, or
for running various command-line tools that work in a user-
guided manner. The batch mode is often used for running a large
number of jobs simultaneously or for large-scale runs that do not
require interaction with the users. We needed a gateway (a web-
portal) that could support both interactive and batch computing
modes. The interactive mode was required for using a command-
line tool for code parallelization through a web browser, and the
batch mode was required for compiling and running the
programs parallelized using the tool on the production systems at
open-science data centers. We are iteratively developing this
gateway, and its current version is live at https://ipt.tacc.cloud. An
overview of the design and implementation of this gateway is
presented in this paper. With minimal modifications, the
architecture of this gateway can be reused for supporting other
similar projects.

Keywords—interactive mode, batch mode, supercomputing,
Agave, Abaco, Interactive Parallelization Tool (IPT), SGCI,
Gateway, Serverless, Functions-as-a-Service (FaaS), HPC

I. INTRODUCTION
The Interactive Parallelization Tool (IPT) is a command-line
tool for parallelizing serial C/C++ applications in a user-guided
manner [1]. The parallel programming models that are
currently supported by IPT are MPI [2], OpenMP [3] and
CUDA [4]. During execution, IPT interactively solicits
specifications from the end user regarding what to parallelize
and where, eventually generating a parallel version of the code.
It is very natural to compile the parallel versions of the code
generated by IPT and test them for accuracy and performance
by running them on the High Performance Computing (HPC)
platforms (or supercomputers). While small-scale testing can
be done directly on the compute nodes on which IPT is
running, for the large-scale runs, users may find that the HPC
platforms of their choice are oversubscribed at a given point in
time and hence, they may face a significant wait-time when
attempting to run their code. In these situations, batch job
execution through the existing scheduling system is used. In
this manner, both interactive and batch computing paradigms

are required throughout the process of developing parallel
programs using IPT and in testing these programs on the
production-quality HPC platforms.

One of our goals was to lower the adoption barriers to IPT
by making it available in a ready-to-use and secure manner. To
meet this goal, we opted for deploying IPT in the cloud and
making it accessible via a web browser so that the users do not
need to download any additional software for using IPT.
Another goal was to provide a unified interface for supporting
the compilation and testing of the code generated by IPT on
production-quality HPC resources. The effort to materialize
these goals has culminated into the IPT gateway:
https://ipt.tacc.cloud. This gateway supports the entire
workflow for interactively generating parallel code using IPT
(Figure 1), and compiling and testing the generated code on
remote HPC platforms in batch mode.

Figure 1. Terminal supported in the IPT gateway

 The IPT gateway was designed to optimally use the
existing cloud computing resources and services that are
available to the open-science community. It was implemented
with the support from the National Science Foundation (NSF)
funded Science Gateway Community Institute (SGCI) [5]. The
gateway further leverages the investments made by NSF in the

form of the Agave [6] and Abaco [7] software projects. The job
submissions through the IPT gateway are faciliated through an
XSEDE [8] community account and a local community
account. The IPT gateway is deployed on the NSF funded
Jetstream Cloud [8] and the VMware system that is operated
by the Texas Advanced Computing Center (TACC). It supports
job submission and execution on TACC’s Stampede2 [8] and
Lonestar5 [9] HPC clusters, and San Diego Supercomputing
Center’s Comet [8].

A high-level description of the IPT gateway architecture is
presented in Section 2 followed by a brief summary of the user
interface considerations in Section 3. Section 4 discusses
several of the expected and unexpected returns on investment
from reusing existing platforms and technologies while section
5 introduces some related technologies and the reasons for
choosing our current stack.

II. IPT GATEWAY ARCHITECTURE
The IPT gateway is a combination of (1) a stateless Django

web application, Abaco, Docker Swarm, TACC’s instance of
the Agave Platform, and HPC and storage allotments through
community allocations from XSEDE and TACC. Each of these
components is described in detail in the subsequent sub-
sections. The architecture of IPT gateway is shown in Figure 2.

Figure 2. Architecture of the IPT gateway

A. IPT Gateway Application
IPT gateway is built upon the Django web application
framework [10]. It leverages Agave’s OAuth2 server for user
authentication and relies on proxied calls to Agave for job,
connection, data, and historical information. IPT gateway uses
the Agavepy [11] Python library for all of its interactions with
Abaco and Agave. While existing frontends are readily
available for Agave, we chose to use Django because it
provides a natural extension point from which an
administrative backend dashboard can be built for managing
and monitoring user sessions, generating reports, and
controlling access to the gateway.

B. The Agave Platform
Agave is an open source, Science-as-a-Service (SaaS)

platform for the open-science community. While the Agave
Platform provides a broad range of functionality, for the

purposes of the IPT gateway, Agave provides a high-level
HTTP-friendly API for gateway developers to interact with
different systems and applications to run code, manage data,
collaborate with others, and integrate third-party services.
Agave provides history in a way that enables repeatability, and
a permissions model for keeping applications and results
private, sharing with select colleagues, or publishing to entire
communities. The Agave software provides the API for
managing data movement (file-upload and download) and
authorization. It keeps track of the metadata for terminal
instances (used in the IPT gateway) such as the URL,
username, and status of the instances.

C. Actor-based Computing (Abaco)
Abaco provides a mechanism for asynchronous processing

in gateways (e.g., to start up some long running process in the
background). It provides all the scheduling, monitoring,
logging, security, etc. needed to realize a serverless platform
while also ensuring consistency of user data across sessions
through enforcement of predefined policies around data
volume accessibility and portability.

In the IPT gateway, Abaco manages the Docker containers
running the terminal emulator and IPT executable. Starting
and stopping these containers as part of user login/logout takes
too long to do synchronously within a web request, so it must
be queued in the background. Docker containers for the IPT
gateway can do this by making an API request to Abaco. From
the administrator console in the IPT gateway, one can stop all
the containers (for different users) by clicking on stop buttons
provided on the web-interface without waiting for one
container to stop and going to another one. This functionality
is also facilitated by Abaco. The metadata related to the status
of the containers (start/stop states) and users is also tracked
with Abaco.

D. Interaction of the various software components
When a user logs onto the IPT gateway, and requests a

terminal, the Django application calls Abaco’s REST API
requesting a session for the user. The IPT gateway tracks user
sessions internally using Agave’s Metadata service, while
Abaco manages session containers and metadata. This
separation of concern allows independent scaling of the
frontend and backend components.

When Abaco receives a new session request, it
communicates to the Docker Swarm cluster to launch a new
agent container for the user. The agent then starts the user
session container and saves the terminal information
(username, URL, and state) as a new entry in Agave’s
Metadata API on behalf of the user. IPT leverages Docker
Swarm to provide an elastic container infrastructure to deploy
user session environments. User sessions are encapsulated
within a single Docker container. Each container represents a
unique, isolated container with persistent storage upon login.
The user’s session environment contains a terminal emulator,
IPT software, parallel libraries, and compilers. The swarm
cluster provides load balancing as well as scalability since the
nodes can be added or removed on the basis of the
requirement.

Starting and stopping these containers as part of user
login/logout takes too long to do synchronously within a web
request, so users are notified up front if their container is still
starting up. Standard polling is used by the User Interface (UI)
and backend server to track container status and update UI.

III. RECYCLING, REUSE, AND ROI
In its Cyberinfrastructure Vision for 21st Century

Discovery white paper, the NSF points out how critical
cohesive cyberinfrastructure and software platforms are to
competitiveness going forward. The IPT project is yet another
data point in support of this vision. Minimally replicating the
functionality of the IPT gateway "from scratch" would easily
take months of dedicated development time. It is unlikely that
the code would benefit from developers with strong
backgrounds in security, HPC, data management, distributed
systems, database and system administration, networking,
devops, graphic design, web development, web standards, and
real-time communication. Once built, the code would carry
100% of the technological debt associated with its
development. Since we only had enough funding for N months
of total development time over the life of the project, we would
then instantly have to switch gears in order to develop an open
source community to maintain the code. Changes in storage,
resource availability, hosting, etc. would carry with them
significant risk and threaten to derail the entire project.

In practice, none of those turned out to be issues because
we leveraged the existing cyberinfrastructure to handle the
majority of the gateway’s complexity for us. This, in turn,
allowed us to develop the initial IPT gateway with minimal
effort compared to the time it would have taken had we not
taken advantage of the existing infrastructure. This helped us to
quickly engage our community and incorporate initial
feedback, and shield our users from the impact of major
hardware and network upgrades to the underlying HPC
infrastructure at TACC. While the IPT gateway focuses on a
niche use case, the gateway technology stack is highly reusable
in part or aggregate. Abaco is actively used on several projects
to handle everything from automated building of Singularity
images, to event-driven Functions-as-a-Service. Agave is
actively used by researchers worldwide to bridge the gap
between HPC and the web. Any gateway could take these
technologies independently and realize the same benefit as the
IPT gateway.

Other projects with a need for remote, interactive access to
HPC resources and batch execution of well-defined tasks could
take the existing IPT gateway’s Django code, update the form
fields and style-sheets, create a Docker image containing the
new interactive application, update the Agave application’s
IPT gateway-specific calls to run its batch jobs with the ones
they would like to use, and customize the Abaco code for their
resources. As future work, IPT gateway code will be refactored
for reducing the coupling between some of the code
components so that it can be reused by other projects with
minimum coding effort.

IV. IPT GATEWAY USER INTERFACE
The IPT gateway frontend is built using Bootstrap 3 and

Django’s Jinja2 templates. A standard horizontal tabbed layout
is used to organize the site. Each tab corresponds to a page in
the web application. As shown in Figure 3, each page
represents a unique user interaction with the software.

Figure 3. Screenshots of the IPT Gateway. From top to
bottom: Batch compilation on remote HPC system, batch
execution of HPC jobs on HPC system, batch job history

When a user first logs in, they are taken to the Terminal
page where they have access to an interactive web-terminal
running on their own Docker container. From there, they can
interact with their code as they normally would. The Compile
and Run tabs present forms that allow users to replicate their

interactive builds remotely on their target HPC systems. The
History tab shows a detailed history of the user’s previous
build and run requests. From this page the full history,
including output, logs, and parameters can be reviewed.

V. RELATED WORK
The IPT gateway draws on numerous other open source

applications and technologies common to many science
gateways. The Wetty terminal [12] is a popular web-based
terminal emulator. Butterfly [13], tty.js [14], and Guacamole
[15] are other options, but offer hosting, networking, port, and
security restrictions that are less attractive for our particular use
cases. Appsoma [16], HubZero [17], Open OnDemand [18],
and Jupyter [19] all offer web-based terminal access and the
ability to author form-based launching of HPC applications.
During the initial project planning, HubZero and Jupyter Hub
were considered as all-inclusive solutions to build the gateway.
Both have strong user communities, active support channels,
and healthy release cycles. Further, we were familiar with the
project teams from other projects. An early prototype of IPT
was in fact deployed on a HubZero instance named as DiaGrid
for the feasibility analysis [20].

We decided against any of the well-established gateways
frameworks for the IPT gateway due to the hosting and
administrative overhead required for the associated software
stacks. Without funding for system administrators, dedicated
hosting, or an operations team, we knew we had to leverage as
much professionally hosted and managed software as possible.
While we were confident there existed a way to scale-out
HubZero in the event of unexpected growth, we had no
experience doing that, nor could we commit to scaling every
aspect of the infrastructure to pull it off. Jupyter gave the most
flexibility with respect to the overall implementation
flexibility, but also presented a challenge because we could not
control the user experience with it. Given the amount of
training currently done with IPT, and our stated desire to move
all of that training onto the IPT Gateway, the notebook
environment was a liability more than a benefit.

Various other frameworks and middleware options exist
that might have also helped us achieve our goals. Eclipse Che
[21], and Cloud 9 [22] provide first class web-based IDE
environments with well-designed plugin systems and active
communities behind them. Apache Airavata [23] and
OpenStack Heat [24] all provide many of the backend platform
features leveraged by our gateway, but all required significant
learning curves, hosting, management, and ambiguous
sustainability models for our project. In the end, we decided to
build upon the Agave Platform, Abaco, and a vanilla Django
web skeleton familiar to our initial developers. This stack gave
us operational familiarity, minimal technological debt, and a
familiar programming language.

VI. CONCLUSION
IPT has been deployed to the cloud to lower the adoption

barriers to parallel programming and HPC. With the help of the
its gateway, IPT can now be conveniently accessed through a
web-browser. Not only can the users generate parallel
programs through the IPT gateway, they can also test the

generated programs for accuracy and performance on the
supercomputers such as Stampede2, Lonestar5, and Comet.
The IPT gateway is being developed iteratively and several
features for improving the usability of the gateway and
supporting community-building efforts will be added in future.

ACKNOWLEDGMENT
We are very grateful to NSF for funding IPT through award

1642396. We are also very grateful to TACC, XSEDE (NSF
award # ACI-1548562), and SGCI (NSF award # ACI-
1547611) for providing resources and support for the IPT
project. The deployment of IPT in the cloud is enabled by
Agave (NSF awards # 1450459, 1127210) and Abaco (NSF
award # 1740288) and we are grateful for these too.

REFERENCES
[1] R. Arora, J. Olaya, and M. Gupta, “A Tool for Interactive

Parallelization,” In Proceedings of the 2014 Annual Conference on
Extreme Science and Engineering Discovery Environment (XSEDE '14),
ACM, New York, NY, USA, Article 51, 8 pages, 2014.

[2] W. Gropp, E. Lusk, and A. Skjellum, “Using MPI: Portable Parallel
Programming with the Message-Passing Interface”, MIT Press, 1999.

[3] The OpenMP API specification for parallel programming: accessed on
May 16, 2018: http://openmp.org/wp/

[4] What is CUDA, accessed on May 16, 2018:
https://developer.nvidia.com/what-cuda

[5] K. Lawrence, M. Zentner, N. Wilkins‐Diehr, J. Wernert, M. Pierce, S.
Marru, and S. Michael. "Science gateways today and tomorrow: positive
perspectives of nearly 5000 members of the research
community," Concurrency and Computation: Practice and
Experience 27, No. 16 (2015): 4252-4268.

[6] Agave Platform, accessed on May 16, 2018: https://agaveapi.co/
[7] Abaco, accessed on May 16, 2018: https://github.com/TACC/abaco
[8] Extended Sciences and Engineering Discovery Environment (XSEDE),

accessed on May 16, 2018: https://www.xsede.org/ecosystem/resources
[9] LoneStar5 system, accessed on May 16, 2018:

https://portal.tacc.utexas.edu/user-guides/lonestar5
[10] Django, accessed on May 16, 2018: https://www.djangoproject.com/
[11] Agavepy, accessed on May 16, 2018: https://github.com/TACC/agavepy
[12] Wetty, accessed on May 16, 2018:

https://github.com/krishnasrinivas/wetty
[13] Butterfly, accessed on May 16, 2018:

https://github.com/buttterflyframework
[14] tty.js, accessed on May 16, 2018: https://github.com/chjj/tty.js/
[15] Guacamole, accessed on May 16, 2018: https://guacamole.apache.org/
[16] AppSoma, accessed on May 16, 2018: https://github.com/appsoma
[17] Hubzero, accessed on May 16, 2018: https://hubzero.org/
[18] OpenOnDemand, accessed on May 16, 2018:

https://github.com/OSC/Open-OnDemand
[19] Jupyter, accessed on May 16, 2018: http://jupyter.org/
[20] R. Arora, K. Chen, M. Gupta, S. Clark, and C. Song, “Leveraging

DiaGrid hub for interactively generating and running parallel programs,”
In Proceedings of the 2015 XSEDE Conference: Scientific
Advancements Enabled by Enhanced Cyberinfrastructure (XSEDE '15),
ACM, New York, NY, USA, Article 44 , 8 pages, 2015.

[21] Ecplise che, accessed on May 16, 2018: https://www.eclipse.org/che/
[22] AWS Cloud 9, accessed on May 16, 2018:

https://aws.amazon.com/cloud9/
[23] Apache Airavata, accessed on May 16, 2018: https://airavata.apache.org/
[24] OpenStack Heat, accessed on May 16, 2018:

https://wiki.openstack.org/wiki/Heat
[25] OpenFaas, accessed on May 16, 2018: https://github.com/openfaas/faas

