Supporting Information

Water-in-Acid Gel Polymer Electrolyte Realized through a PhosphoricAcid-Enriched Polyelectrolyte Matrix toward Solid-State Supercapacitors

Vidyanand Vijayakumar, †,§ Meena Ghosh, †,§ Arun Torris A. T., ‡ Nikhil Chandran M. K., † Sanoop B. Nair, ‡ Manohar V. Badiger, $^{*,\sharp,\S}$ and Sreekumar Kurungot *,†,§

[†]CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India

[‡]Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India

§Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan 2, Rafi Marg, New Delhi 110001, India

Number of pages: 11 (Page S2-S3: Equations and calculations used for performance assessment)

Number of Figures: 11 (Page S4-S8)

Number of Tables: 2 (Page S9 and S10)

Equations and calculations used for performance assessment¹

The swelling ratio (Q) is calculated from Equation S1

$$Q = \frac{Ws - Wd}{Wd} \times 100 \qquad (S1)$$

Ws = Mass of Swollen specimen

Wd = Mass of pre-swollen specimen

The equation (2) is used for the calculation of specific gravimetric (F g⁻¹)/areal capacitance (mF cm⁻²) from the charge-discharge method.

$$C = \frac{2 \times (I \times \Delta t)}{\Delta V * M \text{ or } A}$$
 (S2)

where,

 $\Delta t = Discharge time$

 ΔV = Potential window

I = Constant current used for charging and discharging

M = Weight of active material in one of the electrode

A = Active material coated area in the electrode.

In order to get the single electrode capacitance, the obtained device capacitance was multiplied by a factor of 2 which is included in **Equation S2**.

Gravimetric energy density (E_d) and power density (P_d) were calculated from the capacitance value obtained from the charge-discharge method.

Energy density (E_d)
$$((Wh kg^{-1})) = \frac{cs}{8 \times 3.6} V^2$$
 (S3)

where,

'Cs' is the specific capacitance calculated by the charge-discharge (F g⁻¹) method and 'V' is the voltage window.

Power density (P_d)
$$((W kg^{-1})) = \frac{Ed}{t}$$
 (S4)

where, ' E_d ' is the energy density from **Equation S3** and 't' is the discharge time in hour calculated from the discharge curve.

The ionic conductivity of the GPEs was calculated from **Equation S5** and S6.

$$\rho \left(\Omega \text{ cm}\right) = \frac{RA}{l} \qquad (S5) \qquad \qquad \sigma \left(S \text{ cm}^{-1}\right) = \frac{1}{\rho} \qquad (S6)$$

 σ = Conductivity of the membrane

 ρ = Resistivity of the membrane

R = bulk resistance of the membrane

A = Area of the membrane

1 = Thickness of the membrane

The Arrhenius relationship is given in **Equation S7**.

$$\sigma = \sigma^{o} \exp(-E_a/RT)$$
 (S7)

In the above equation, σ , σ^o , Ea, R, and T are the ionic conductivity, the pre-exponential factor, the activation energy for ion transport, the gas constant and the absolute temperature, respectively.

The activation energy calculated for He-Ao-Ac-sw is obtained from the linear fitting of the ln σ vs. 1/T plot.

Figure S1. The digital images of (a) PAOETMA gel and (b) PHEMA gel before and after swelling in H_3PO_4 , (c) pre-swollen He-Ao-Ac-30% film and (d) swollen He-Ao-Ac-sw PGPE.

Figure S2. The plot representing the tensile stress vs. strain for the He-Ao-Ac-30%. Similar plot corresponding to the He-Ao-Ac-sw PGPE specimen is given in the inset.

Quasi-solid-state PVA based water-in-acid GPE

Figure S3. Highly viscous nature of the PVA based water-in-acid GPE.

Figure S4. FTIR spectra of the pristine PVA powder and the PVA-AIW GPE.

Figure S5. (a) The thermogravimetric analysis (TGA) of the pre-swollen films (He-Ao-Ac-0% and 30%) and the water-in-acid PGPE (He-Ao-Ac-sw) and (b) The Nyquist plots corresponding to He-Ao-Ac-30% and He-Ao-Ac-sw PGPE over the whole frequency range.

Figure S6. (a) The Nyquist plots corresponding to the He-Ao-Ac-sw PGPE film at different temperatures ranging from 30 to 70°C; (b) the ionic conductivity values calculated from the ESR values obtained from the Nyquist plots given in Figure S6a.

Figure S7. (a) The digital images of the various components viz., electrodes and the water-in-acid PGPE used for the SC device fabrication; (b) digital image of the final device.

Figure S8. (a) to (e) The full CV profiles for the devices (PANI-1 to 5) recorded at various scan rates from 10 mVs^{-1} to 200 mVs^{-1} .

Figure S9. (a) to (e) The CD profiles for the devices (PANI-1 to 5) recorded at various current densities from 0.25 to 5 mA cm⁻².

Figure S10. (a) The plots representing the specific gravimetric capacitance corresponding to the PANI-x SC devices at various scan rates; (b) the plot representing the specific areal capacitance corresponding to the PANI-x SC devices at various current densities.

Figure S11. Cycling stability of the PANI-5-PVA-WIA device at a current density of 10 mA cm⁻².

Table S1: The ionic conductivity of the proton conducting GPEs already reported in the literatures and the water-in-acid PGPE reported in this work are compared and summarised.

Composition of the polymer electrolyte	Physical nature of the polymer electrolyte	Ionic Conductivity	Experimental conditions	Reference in the main text
PHEMA-PTMPA-H ₃ PO ₄	<i>in-situ</i> prepared GPE film	$2.80 \times 10^{-2} \text{ S cm}^{-1}$	At 303 K	3
Carboxymethyl Cellulose doped with oleic acid and plasticized with glycerol (CMC-OA-Gly SBE)	free-standing film	1.64×10 ⁻⁴ S cm ⁻¹	At 303 K	37
Gellan gum+Borax+H ₃ PO ₄ /H ₂ SO ₄ /HCl	free-standing film	5.1×10 ⁻³ to 3.7×10 ⁻⁴ S cm ⁻¹	At 303 K	38
PVA-H ₃ PO ₄	free-standing film	$4.1 \times 10^{-3} \text{ S cm}^{-1}$	At 303 K	39
PVA-H ₃ PO ₄	free-standing film	$2.56 \times 10^{-3} \mathrm{S \ cm^{-1}}$	Room temperature	40
PVA-H ₃ PO ₄	free-standing film	$3.4 \times 10^{-3} \text{ S cm}^{-1}$	At 303 K	41
PVP-NH ₄ Br	free-standing film	$1.06 \times 10^{-3} \text{ S cm}^{-1}$	At 303 K	42
PEO + 8 wt% HCF ₃ SO ₃ + 50 wt% DMA + 3 wt% SiO ₂	free-standing film	$7.38 \times 10^{-3} \text{ S cm}^{-1}$	At 303 K	43
PVdF-HFP+EMITf+ NH₄Tf	quasi-solid-state	$2.3 \times 10^{-2} \text{ S cm}^{-1}$	Room temperature	44
P(MMA-co-HEMA) (60 wt.% of HEMA) + (PC+DMF) (30 wt.% of DMF)+40 wt.% Diphenyl phosphate	quasi-solid-state	$5.7 \times 10^{-4} \text{ S cm}^{-1}$	At 283 K	5
PVA-Gluteraldheyde-HClO ₄	free-standing film	ca. 1×10 ⁻³ S cm ⁻¹	At 298 K	6
P(HEMA-co-AOETMA)+H ₃ PO ₄	free-standing film	9.8 × 10 ⁻² S cm ⁻¹	At 303 K	This work

Table S2: A table summarising the electrochemical performance of the previously reported H_3PO_4 electrolyte-based PANI SCs (some other electrode/electrolyte based SCs are also mentioned) compared to the water-in-acid PGPE based SC reported in this work are compared and summarised.

Electrolyte used	Details of Device Fabrication	ESR	Specific Capacitance	Cyclic stability	Reference in main text
PVA-H ₃ PO ₄	Polypyrrole as electrode material and quasi-solid-state electrolyte. Active material loading is not mentioned.	9.9 to 16.5 Ω	84 to 93 F g ⁻¹ at 0.5 A g ⁻¹	74 to 84 % capacitance retention after 2000 cycles at 0.5 A g ⁻¹	41
PVA-H ₃ PO ₄	Neat PANI as electrode material and quasi-solid-state device configuration. Active material loading is not mentioned.	> 1.5 Ω	293 F g ⁻¹ at 0.5 A g ⁻¹	60 % retention after 1000 cycles at 1 Ag ⁻¹	57
PVA-H ₃ PO ₄	Screen printed MnO ₂ based microsupercapacitor	-	-	80% capacitance retention after 1000 cycles at 50 μA cm ⁻²	58
PVA-H ₃ PO ₄	Quasi-solid-state electrolyte along with PANI-MWCNT thin film	-	7.8 mF cm ⁻² at 0.5 mA current.	91 % retention of specific capacitance after 1000 cycles	59
PVA-H ₃ PO ₄	MnO ₂ /PANI coaxial nanowires, quasi- solid-state electrolyte, electrode mass loading of 8.5 mg cm ⁻²	2.9 Ω	346 mF cm ⁻² at 5 mV s ⁻¹	Almost 100% retention after 1000 cycles at 1.5 mA cm ⁻² current density	60
PVA-H ₂ SO ₄	cellulose nanofibers- PANI electrode, quasi-solid-state electrolyte	ca. 1.9 Ω	406.8 F g ⁻¹ at 1 A g ⁻¹	80% capacitance retention after 1000 cycles	61
P(HEMA-co- AOETMA)+H ₃ PO ₄	PANI electrodes sandwiched in between the water-in-acid PGPE. PANI mass loading from 1 to 5 mg cm ⁻²	0.61 to 0.78 Ω	385 F g ⁻¹ at a current density of 0.25 mA cm ⁻² /0.25 A g ⁻¹ for PANI-1 mg cm ⁻² and 285 F g ⁻¹ /1288 mF cm ⁻² at 0.25 mA cm ⁻² for PANI-5 mg cm ⁻²	100% capacitance retention after 9000 continuous charge discharge cycles at 10 mA cm ⁻² .	This work

1. Vijayakumar, V.; Anothumakkool, B.; Torris A. T, A.; Nair, S. B.; Badiger, M. V.; Kurungot, S., An all-solid-state-supercapacitor possessing a non-aqueous gel polymer electrolyte prepared using a UV-assisted in situ polymerization strategy. Journal of Materials Chemistry A 2017, 5 (18), 8461-8476.