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Abstract. We generalise Constrained Dynamic Pushdown Networks,
introduced by Bouajjani et al., to Constrained Dynamic Tree Networks.
In this model, we have trees of processes which may monitor their children.
We allow the processes to be defined by any computation model for
which the alternating reachability problem is decidable. We address the
problem of symbolic reachability analysis for this model. More precisely,
we consider the problem of computing an effective representation of their
reachability sets using finite state automata. We show that backwards
reachability sets starting from regular sets of configurations are always
regular. We provide an algorithm for computing backwards reachability
sets using tree automata.
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1 Introduction
Bouajjani et al. [2] defined Constrained Dynamic Networks of Pushdown Systems:
a model of concurrent computation where configurations of processes are tree
structures, and each process is given by a pushdown system. During an execution,
new child processes can be created, and a parent can test the states of its children
before performing an execution step. They considered the global backwards
reachability problem for these systems. That is, given a regular set of target
configurations, compute the set of configurations that can reach the target set.
They showed that, under a stability constraint, this backwards reachability set is
regular and computable.

The stability constraint requires that once a test a parent may make on its
children is satisfied, then it will remain satisfied, even if the children continue
their execution. In the simplest case, this allows a parent to test for termination
in a given state of its children. In general, this constraint allows a parent to
(repeatedly) test whether its children have passed certain stages of execution
(and their state in doing so).

We show here that Bouajjani et al.’s result is not dependent on the processes
in the tree being modelled by pushdown systems. In fact, all that is required is
that the alternating reachability problem is decidable for the systems labelling
the nodes in the tree. Intuitively, in the alternating reachability problem, some
steps during the run of the system may be required to split into separate paths.
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From the initial state, we ask whether all paths of the execution reach a given
final state.

Thus, we introduce Constrained Dynamic Tree Networks, which are tree
networks of processes as before, but the individual processes can be labelled by
any system for which the alternating reachability problem is decidable.

One particular instance of interest is the case of networks of collapsible
pushdown systems [14]. Collapsible pushdown systems are a generalisation of
pushdown systems that are known to be equi-expressive with Higher-Order
Recursion Schemes. The alternating reachability problem is known to be decidable
for these systems [31]. In fact, the backwards reachability sets of alternating
collapsible pushdown systems are also known to be computable and regular [4].
Thus, we obtain a new model of concurrent higher-order programs for which the
backwards reachability sets are also computable and regular. An advantage of our
approach is that we do not need to consider the technical difficulties of reasoning
about collapsible pushdown systems. The proof presented here only needs to take
care of the concurrent aspects of the computations. Thus, we obtain results for
quite complex systems with a relatively modest proof.

Modern day programming increasingly embraces higher-order programming,
both via the inclusion of higher-order constructs in languages such as C++,
JavaScript and Python, but also via the importance of callbacks in highly popular
technologies such as jQuery and Node.js. For example, to read a file in Node.js,
one would write

fs.readFile('f.txt', function (err, data) { ..use data.. });

In this code, the call to readFile spawns a new thread that asynchronously
reads f.txt and sends the data to the function argument. This function will
have access to, and frequently use, the closure information of the scope in which
it appears (for example, variables defined before the readFile statement). The
rest of the program runs in parallel with this call. This style of programming is
fundamental to both jQuery and Node.js programming, as well as being a popular
for programs handling input events or slow IO operations such as fetching remote
data or querying databases (e.g. HTML5’s indexedDB).

Analysing such programs is a challenge for verification tools which usually
do not model higher-order recursion, or closures, accurately. However, several
higher-order model-checking tools have been recently developed. This trend was
pioneered by Kobayashi et al. [17]. The feasibility of higher-order model-checking
in practice has been demonstrated by numerous higher-order model-checking
tools [16,18,20,29,5,6,35]. Since all of these tools can handle the alternating
reachability problem, it is possible that our techniques may be used to provide
model checking tools for concurrent higher-order programs.

Our construction follows Bouajjani et al. and uses a saturation method to
construct a regular representation of the backwards reachability set. However,
our automaton representation is different: it separates the representation of the
system states from the tree structure. We also use different techniques to prove
correctness of the construction. In particular, our soundness proof works by
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defining and showing soundness of each transition of the automaton, rather than
dissecting complete runs. This is an application of a technique first used for a
saturation technique for solving parity games over pushdown systems [15].

This is the full version of an article to appear in RP 2018. All appendices are
included and there is no external underlying data.
1.1 Related Work
Dynamic pushdown networks have been studied without the process tree structure
or constraints allowing a parent to inspect its children [25,38]. Various decidability-
preserving locking techniques have also been investigated [23]. Some of these
works also allow the tree structure to be taken into account [22,30]. Touili and
Atig have also considered communication structures that are not necessarily
trees [40]. However, these works consider pushdown networks only.

There has been some work studying concurrent variants of recursion scheme
model checking, including a context-bounded algorithm for recursion schemes [19],
and further underapproximation methods such as phase-bounded, ordered, and
scope-bounding [12,37]. These works allow only a fixed number of threads.

Dynamic thread creation is permitted by both Yasukata et al. [41,42] and by
Chadha and Viswanathan [7]. In Yasukata et al.’s model, recursion schemes may
spawn and join threads. Communication is permitted only via nested locks. Their
work is a generalisation of results for order-1 pushdown systems [11]. Chadha and
Viswanathan allow threads to be spawned, but only one thread runs at a time,
and must run to completion. Moreover, the tree structure is not maintained.

The saturation technique was popularised by Bouajjani et al. [1] for the
analysis of pushdown systems, which was implemented in the successful Moped
tool [36,39]. Saturation methods also exist for ground tree rewrite systems and
related systems [24,3,26], though use different techniques.

Ground tree rewrite systems may also be generalised to trees where the nodes
are labelled by higher-order stacks. Penelle proves decidability of first order logic
with reachability over such systems [33]. However, this result does not allow
nodes to have an unbounded number of direct children, and does not consider
collapsible stacks in their full generality.

A related model of tree rewriting was introduced by Clemente et al. [8]. This
model allows more powerful rewriting rules than ground tree rewrite systems
while still enjoying decidability of alternating reachability. It is shown that
reachability over alternating variants of a number of pushdown system models
can be reduced to this model. In particular, this includes (ordered) annotated
pushdown systems which are tightly related to (concurrent) collapsible pushdown
systems. We believe it is likely that constrained dynamic networks of annotated
pushdown systems could also be encoded in this model. However, our result
applies to any system for which alternating reachability is decidable, and does
not require an encoding of the underlying model into any particular form.

There is various research into meta-results on the analysis of concurrent
systems, where the concurrent structure is the object of the research. Recent work
by La Torre et al. has shown that parameterised safety analysis is possible of
asynchronous networks of shared-memory systems [21], provided, amongst other
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constraints, the downwards closure of the system is computable. Muscholl et al.
also consider a parameterised model where processes may spawn an arbitrary
(uncontrolled) amount of identical child processes [28]. Collapsible pushdown
systems are known to have these properties [9,13,43,32]. Other works have studied
multi-stack pushdown systems and offered either bounded tree-width [27], or
split-width [10], as explanations for decidability. However, these results have not
been extended to higher orders.

2 Alternating transition system
We define the notion of alternating transition system. An alternating transition
system accepts labels γ to which operations θ can be applied. Transitions of the
system are of the form s

θ−→ S. where S is a set of states. A label γ is accepted
from s whenever θ(γ) is accepted from every state in S. If a state s is final, it
accepts all labels.

We will consider Γ to be a set of labels, and Ops a set of operations θ : Γ 9 Γ
over Γ . Note, we do not require that θ is defined over all elements of Γ . We also
define the special operation Id such that Id(γ) = γ for all γ ∈ Γ .

Definition 1 (Alternating transition systems over Γ,Ops). An alternating
transition system over Γ,Ops is a tuple N = (S,F, η), where S is a finite set of
states, F ⊆ S is the set of final states, η ⊆ S×Ops× 2S is the set of transitions.

Given γ ∈ Γ and s ∈ S, we inductively define acceptance of γ from s, denoted
γ ` s. We have γ ` s if s is final, or if there is a transition ν = (s, θ, S) such
that θ(γ) is defined and θ(γ) ` s′ for every s′ ∈ S.

Requirement In all the following, we suppose that for every alternating transi-
tion system N , given γ ∈ Γ and s ∈ S, we can decide whether γ ` s.

Example 1. An alternating pushdown system with stack alphabet Σ is an al-
ternating transition system with Γ = Σ∗ and the set of operations Ops =
{(a, u) | a ∈ Σ, u ∈ Σ∗}. where for all w ∈ Σ∗

(a, u)(w) =
{
uv w = av

undefined otherwise.

Here we represent a stack as a word, and the top of the stack appears leftmost.
A transition s

(a,u)−−−→ S represents an alternating transition from a configuration
(s, aw) of the pushdown system (with control state s and stack aw) to a set of
configurations containing (s′, uw) for each s′ ∈ S. We will have aw ` s if we can
show s′ ` uw for each s′ ∈ S.

3 Constrained Dynamic Tree Networks
We define constrained dynamic tree networks (CDTNs), which allow process
trees with dynamic thread creation and parents to inspect their children.

Definition 2 (Constrained Dynamic Tree Network over Γ,Ops). A constrai-
ned dynamic network over Γ,Ops is a tuple M = (P,F, δ) with:
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– P is a finite set of states and F ⊆ P is the set of final states,
– δ a finite set of transitions of the following form:

C1 φ : p θ−→ pa, with θ ∈ Ops, p, pa ∈ P, and φ is a regular language over P∗.
C2 φ : p −→ pa B pb, with p, pa, pb ∈ P, and φ is a regular language over P∗.

An M-configuration is a tree labelled by P × Γ . Let T (P × Γ ) denote the
set of these configurations. More explicitly, a configuration is either a leaf node
(p, γ)(∅) or a tree (p, γ)(t1, · · · , tm) with root (p, γ) and children t1, · · · , tm where
p ∈ P, γ ∈ Γ , and for each 1 ≤ i ≤ m we have that ti is an M-configuration.
A context C is a tree labelled by (P× Γ ) ∪ {�} containing exactly one node
labelled by �, which is a leaf. We write C[t] to denote the configuration obtained
by replacing � by t in C. Furthermore, let

S((p, γ)(t1, · · · , tm)) = p

extract the internal state of the root node of a configuration.
Transitions of the form C1 apply θ to a node, while transitions of the form

C2 create a new child process. That is, the application of a transition of the
form C1 to a configuration C[(p, γ)(t1, · · · , tm)] yields C[(pa, θ(γ))(t1, · · · , tm)],
if θ(γ) is defined and S(t1) · · ·S(tm) ∈ φ. The application of a transition of
the form C2 to a configuration C[(p, γ)(t1, · · · , tm)] yields the configuration
C[(pa, γ)(t1, · · · , tm, (pb, γ)(∅))] if S(t1) · · ·S(tm) ∈ φ.
3.1 Stability constraint
We give the restriction on child constraints φ that allows us to preserve decid-
ability of reachability for CDTNs. Intuitively, this constraint asserts that once a
constraint φ is satisfied, it will remain satisfied even if its children progress.

Definition 3 (Stability relation [2]). Given an alphabet Σ and a binary
relation ρ over Σ, we say that a subset S of Σ is ρ-stable if for every a, b ∈ Σ,
ρ(a, b) ∧ a ∈ S⇒ b ∈ S.

A language L is ρ-stable if it is defined by a regular expression of the form

e ::= S, ρ-stable set | e+ e | e.e | e∗

In [2], it is shown that if a language L is ρ-stable, for every a, b ∈ Σ, u, v ∈ Σ∗,
uav ∈ L ∧ ρ(a, b)⇒ ubv ∈ L. Given a CDTN M = (P,F, δ) we define

ρδ = {(p, p′) | ∃φ : p θ−→ p′ ∈ δ ∨ ∃φ : p −→ p′ B p′′ ∈ δ} .

We say M is ρδ-stable iff for all φ : p θ−→ pa ∈ δ and φ : p −→ pa B pb ∈ δ we have
φ is ρδ-stable (can be checked looking at regular expressions defining each φ).
3.2 Automaton
We now define a notion of tree automata over the configurations of a constrained
dynamic tree network. As these configurations can have an unbounded arity, we
need to have an automaton model which can deal with unbounded arity, thus we
use an adapted version of hedge automata. Transitions of our automata are of
the form p(L) −→ q, meaning they can rewrite a tree to a state q, if
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– the internal state of its root is p,
– the ith son of its root can be rewritten to the state qi, and
– q1 · · · qm is in the regular language L (if the node has m sons).

Moreover, the automaton checks that the element of the root is accepted by an
alternating transition system which is bound to the transition (more precisely, we
will use a single alternating transition system for the whole automaton, which has
a unique initial state for each rule of the automaton). In the following definition,
let Reg(Q) be the set of regular languages over alphabet Q.

Definition 4 (M-automaton). Given a CDTN M = (P,F, δ), an M-automa-
ton is a tuple A = (Q,F , ∆,N ), where:

– Q is a finite set of states and F ⊆ Q the set of final states,
– ∆ ⊆ P× Reg(Q)×Q a finite set of transitions of the form p(L) −→ q,
– N = (S,F, η) an alternating transition system over Γ,Ops, such that for every
r ∈ ∆, there is a unique state sr ∈ S. Without loss of generality, we suppose
that these states have no incoming transition3 and that these states are not
final4. Intuitively, sr accepts the set of elements of Γ that allow r to fire.
A M-automaton is analogous to a tree automaton, with the difference that
letters are replaced with sets of labels accepted from a state of an alternating
transition system.

An A-configuration is a tree labelled by (P×Γ )∪Q, such that only leaves can
be labelled by Q. Given a transition r = p(L) −→ q and two A-configurations t and
t′, we have t r−→ t′ if and only if t = C[(p, γ)(q1, · · · , qm)], t′ = C[q], q1 · · · qm ∈ L
and γ ` sr.

Let ∗−→
∆

be the transitive closure of
(⋃

r∈∆
r−→
)

. The set of M-configurations

recognised by A from the state q is Lq(A) = {t ∈ T (P× Γ ) | t ∗−→
∆

q}.

Note, the membership problem for M-automata is decidable whenever it is
decidable whether γ ` s for a given γ and s. Similarly, emptiness is decidable
whenever it is decidable if ∃γ.γ ` s for a given s.

Example 2. We can accept regular sets of pushdown networks as defined by
Bouajjani et al. [2] by defining the word automata used to recognise pushdown
stacks as alternating transition systems with operations of the form (a, ε), where ε
is the empty word, and operations have the same semantics as in Example 1. That
is, each operation consumes the leftmost character of the word representation of
the stack. For this we will need an explicit end-of-stack marker.
3 If it is not the case, we create a copy of these states on which we conserve all the

transition as an “internal state”, and remove the incoming transitions to these states.
4 If so, for a state sr, we create a new final state s and add the transition sr

Id−→ s, and
remove sr from the set of final states.
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4 Backwards Reachability
In this section, we show that we can compute the backwards reachability set
of CDTNs. That is, if a CDTN M is ρδ-stable, then the set of predecessors of
a regular set is regular. Here, by regular we mean the set is accepted by an
M-automaton. We remark in the conclusion how this notion of regularity may
be related to a more conventional one.

Given S a set ofM-configurations, we denote pre∗M(S) the set of predecessors
of elements of S, i.e., pre∗M(S) = {s | ∃s′ ∈ S, s ∗−−→

M
s′}.

Theorem 1. GivenM a ρδ-stable CDTN and A anM-automaton, it is possible
to compute a M-automaton A′ such that L(A′) = pre∗M(L(A)).

For the proof, we construct the automaton A′ from A and M in two steps.
4.1 The automaton Ap.
First we add to the states of the automaton the internal state of the root of the
M-configuration that was reduced to this state. Informally, we replace every
transition p(L) −→ q with p(L) −→ (q, p), so given an M-configuration t such that
if t ∗−→

∆
q, we have t ∗−−→

∆p

(q, S(t)). This will be useful in the actual construction

of A′, as to inversely apply M-rules, we will need to check if the constraint of
the rule is satisfied, which will be given by this information (using the stability
property, as we remember the final state of the root of each son). More formally,
we will also need to adapt the constraint L and to add states to the inner
alternating transition system. For notational convenience, let Qp = Q× P.

We define Ap = (Qp,F × P, ∆p,Np), where

∆p =

p(LP) −→ (q, p)

∣∣∣∣∣∣
p(L) −→ q ∈ ∆,

LP =
{

(q1, p1) · · · (qm, pm)
∣∣∣∣ q1 · · · qm ∈ L,
p1, · · · , pm ∈ P

}
and Np = (Sp,Fp, ηp), with
– Sp = S\{sr | r ∈ ∆} ∪ {sr | r ∈ ∆p},
– Fp = F ∩ Sp ∪ {sr | r = p(LP) −→ (q, p), sr′ ∈ F, r′ = p(L) −→ q},
– ηp = η ∪ {sr

θ−→ S | sr′
θ−→ S ∈ η, r = p(LP) −→ (q, p), r′ = p(L) −→ q}.

Lemma 1. L(Ap) = L(A).

Proof. We only have to observe that for every t, t ∗−−→
∆p

(q, S(t)) if and only if

t
∗−→
∆

q, and that (q, p) is final if and only if q is final.

4.2 From constraints over P to constraints over Qp.
In order to faithfully compute the automaton A′, we need to be able to transfer
the constraint of M to the states of A′. Indeed, we need to recognise only
valid predecessors of the configurations recognised by A, i.e. those which satisfy
the constraints φ. Given a regular language φ ⊆ P∗, we thus define 〈φ〉 =
{(q1, p1) · · · (qm, pm) | p1 · · · pm ∈ φ, q1, · · · , qm ∈ Q}. It is straightforward to see
that this language is also regular.
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4.3 Closed set of constraints
During the construction of A′, we add new transitions of the form p(L) −→ (q′, p′).
The constraints L will be constructed from those already appearing in Ap and
the constraints φ used in M, using intersection and right-quotient operations.
Intersection L∩ 〈φ〉 allows us to check that the guarding constraint of anM-rule
is satisfied at the considered position in the configuration. The right-quotient

L(q, p)−1 = {(q1, p1) · · · (qm, pm) | (q1, p1) · · · (qm, pm)(q, p) ∈ L}

allows us to get immediate predecessors by an operation of the form C2. We
define Λ to be the smallest family of languages over Qp such that:

– If r = p(L) −→ (q, p) ∈ ∆p, then L ∈ Λ,
– If L ∈ Λ and τ = φ : p θ−→ pa ∈ δ, or τ = φ : p −→ pa B pb ∈ δ, then
L ∩ 〈φ〉 ∈ Λ,

– If L ∈ Λ and (q, p) ∈ Qp, then L(q, p)−1 ∈ Λ.

Finiteness of Λ was shown by Bouajjani et al. [2]. To prove it, observe that as
the L and φ are regular, there are automata recognising them. Moreover there is a
finite number of such constraints. We can take the product of all these automata
to get a finite automaton, and associate each constraint with a set of final states
of the product. Indeed, each L ∈ Λ can be associated with a set of final states (as
taking the right-product is equivalent to moving backward by one transition, and
as we already have a product automaton, we don’t have to introduce new states
for the intersection). Thus, only a finite number of automata can be generated.

Lemma 2. [2, Lemma 3] Λ is finite.

4.4 Constructing A′.
We now actually describe our saturation algorithm constructing A′. To do so we
start from Ap and only add new transitions: we will never add new states, so this
process terminates. The main idea is, for every M-rule r = φ : p θ−→ pa and every
transition pa(L) −→ (q′, p′) starting with pa, to add a new transition starting with
p and ending in the same states (q′, p′). Moreover, we ensure the sons of the node
we apply the rule to satisfy φ by setting the constraint of the rule to L ∩ 〈φ〉.
We also ensure that the elements recognised from the state associated with the
new rule are predecessors by θ of those recognised from the one associated with
the old rule. For the spawning rule φ : p −→ pa B pb, we moreover ensure that
there is exactly one son less and the label was also accepted by the last son. We
need that the label was also accepted by the last son since the spawn operation
creates a copy of the parent process’s label. Hence, the label of the parent must
also be the label of the last son.

We construct A′ = (Q× P,F × P, ∆′,N ′), with N ′ = (Sp,Fp, η′). We give
the formal definition of the construction first, and then informally explain the
two rules R1. and R2..

We define ∆′ and η′ inductively as the fixed point of the following sequence.
We begin with ∆′0 = ∆p and η′0 = ηp. Now, suppose ∆′i−1 and η′i−1 are defined.
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We construct ∆′i and η′i to be at least ∆′i−1 and η′i−1 plus transitions added with
one of the following rules:

R1. if we have:
– τ = φ : p θ−→ pa ∈ δ,
– r = pa(L) −→ (q′, p′) ∈ ∆′i−1,

we add
– r′ = p(L ∩ 〈φ〉) −→ (q′, p′) to ∆′i,
– ν′ = sr′

θ−→ {sr} to η′i.
R2. if we have:

– τ = φ : p −→ pa B pb ∈ δ,
– r1 = pa(L1) −→ (q′, p′) ∈ ∆′i−1,
– r2 = pb(L2) −→ (q′′, p′′) ∈ ∆′i−1, with ε ∈ L2,

we add
– r′ = p(L1(q′′, p′′)−1 ∩ 〈φ〉) −→ (q′, p′) to ∆′i,
– ν′ = sr′

Id−→ {sr1 , sr2} to η′i.

This process terminates when ∆′i−1 = ∆′i and η′i−1 = η′i. As the set of states is
fixed, there is a finite number of possible rules, thus we terminate and A′ exists.

Intuitively, R1. works as follows. We want to extend the automaton to recognise
the result of a reverse application of φ : p θ−→ pa. That is, whenever a configuration
t′ with the root node having internal state pa is accepted, we should now accept a
configuration t with root internal state p. Hence, we look for a transition (r) that
will read and accept the root node of t′ and introduce a new transition (r′) that
will read and accept the root of t. In addition, we need to take care of the children
of the root. In particular, to be able to apply τ the children must satisfy φ. This
is why we intersect with 〈φ〉. Furthermore, to simulate the (reverse) update to γ,
we add the transition sr′

θ−→ {sr} to assert that the label accepted by r′ would
be accepted by r after an application of θ.

The rule R2. works similarly to R1., except we need to deal with the addition
of a new child in the transition from t to t′. This is a removal when applied in
reverse, hence the introduced transition performs a right-quotient on the language
of children. In addition, we have to ensure that the spawned child has the same
label as the parent. To do this, we look at the transition r2 used to accept the
final child. Note, the right quotient removes the target (q′′, p′′) of this transition.
When applying this transition is reverse, the label γ of the root of t must be the
same as the label of the root of t′ and its final child. This explains the transition
sr′

Id−→ {sr1 , sr2} which ensures γ is accepted at both the root and its final child.

5 Correctness
We show that A′ accepts pre∗M(L(A)). It is sufficient to prove the following
property, which we discuss in the following subsections.

Proposition 1. Given (q, p) ∈ Qp, we have L(q,p)(A′) = pre∗M(L(q,p)(Ap)).
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5.1 Soundness
Proposition 2. Given (q, p) ∈ Qp, we have L(q,p)(A′) ⊆ pre∗M(L(q,p)(Ap)).

We give the complete proof of this proposition in Appendix A. Intuitively, to
prove this proposition, we associate to each state of an automaton (and the inner
alternating transition system as well) a meaning that is intimately connected to
the backwards reachability set we want to construct. We consider a transition
r = p(L) −→ (q, p′) to be sound under the following condition: if we take elements
satisfying the meaning of each state appearing at the left of the transition, then
the configuration including all these elements satisfies the meaning of the right
state of the transition. Intuitively this says that, assuming all actions taken
by other transitions in the automaton are correct, the current transition does
nothing wrong. We inductively show that every transition appearing in A′ is
sound. Finally, we show that if an automaton is sound and contains Ap, it satisfies
the proposition, showing that it is the case for A′.
5.2 Completeness
The proof of completeness of A′ is conceptually simpler than the soundness proof.
It proceeds by a straightforward induction over the length of the run showing
a configuration is in the backwards reachability set. In the base case we have
the configuration is accepted by Ap and the proof is immediate. In the inductive
case, we have t reaches t′ by a single transition, and an accepting run of A′ over
t′. We then inspect the transition from t to t′ and show that our construction of
A′ ensures that we can modify the accepting run of t′ to obtain an accepting run
of t. For space reasons, we give the proof in Appendix A.

Proposition 3. Given (q, p) ∈ Qp, we have pre∗M(L(q,p)(Ap)) ⊆ L(q,p)(A′).

6 Conclusion
We have shown that the saturation algorithm for constrained dynamic pushdown
networks introduced by Bouajjani et al. [2] can be generalised to not only push-
down networks, but networks of any system for which the alternating reachability
problem is decidable. In particular, this includes collapsible pushdown systems,
or higher-order recursion schemes, which thus allows the analysis of a kind of
concurrent higher-order programs.

We showed that, given a target set of configurations represented by an M-
automata, the backwards reachability set is computable and also representable
by an M-automaton. We make some remarks on M-automata as a notion of
regularity. In order to accept a configuration, an automaton must perform several
alternating reachability checks. This is not regular in the conventional sense.
However, for alternating pushdown systems, and indeed alternating collapsible
pushdown systems, the backwards reachability set of a regular set of stacks is
known to have a regular representation [1,4]. Thus, we can replace the alternating
reachability tests with regular automata which run over the stack contents la-
belling each node. Thus we obtain a truly regular representation of the backwards
reachability sets of CDTNs over these systems.
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A natural avenue of future work is to attempt to generalise our model further,
to permit more intricate communication between processes. One option is to
allow the child nodes to inspect the internal state of their parent processes. In
general this leads to an undecidable model. It is an open problem to discover
a form of interesting upwards communication that is decidable. Similarly, we
may seek to relax the stability constraint. One such option is to use the stability
constraint defined by Touili and Atig [40] where internal states are grouped
into mutually reachable equivalence classes. Thus, any run moves through a
bounded number of equivalence classes. We can then insist that constraints are
over the equivalence classes rather than individual states. This is reminiscent of
context-bounded analysis [34]. We can adapt our construction to allow downwards
and upwards communication of this form, but it is not clear whether Λ remains
finite.
Acknowledgments We thank the anonymous reviewers for their remarks. This
work was supported by the Engineering and Physical Sciences Research Council
[EP/K009907/1].

References
1. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata:

Application to model-checking. In CONCUR, 1997.
2. A. Bouajjani, M. Müller-Olm, and T. Touili. Regular symbolic analysis of dynamic

networks of pushdown systems. In CONCUR, 2005.
3. W. S. Brainerd. Tree generating regular systems. Information and Control, 14(2):217–

231, 1969.
4. C. H. Broadbent, A. Carayol, M. Hague, and O. Serre. A saturation method for

collapsible pushdown systems. In ICALP, 2012.
5. C. H. Broadbent, A. Carayol, M. Hague, and O. Serre. C-shore: a collapsible

approach to higher-order verification. In ICFP, 2013.
6. C. H. Broadbent and N. Kobayashi. Saturation-based model checking of higher-order

recursion schemes. In CSL, 2013.
7. R. Chadha and M. Viswanathan. Decidability results for well-structured transition

systems with auxiliary storage. In CONCUR, 2007.
8. L. Clemente, P. Parys, S. Salvati, and I. Walukiewicz. Ordered tree-pushdown

systems. In FSTTCS, 2015.
9. L. Clemente, P. Parys, S. Salvati, and I. Walukiewicz. The diagonal problem for

higher-order recursive schemes is decidable. In LiCS, 2016.
10. A. Cyriac, P. Gastin, and K. N. Kumar. MSO decidability of multi-pushdown

systems via split-width. In CONCUR, 2012.
11. T. M. Gawlitza, P. Lammich, M. Müller-Olm, H. Seidl, and A. Wenner. Join-

lock-sensitive forward reachability analysis for concurrent programs with dynamic
process creation. In VMCAI, 2011.

12. M. Hague. Saturation of concurrent collapsible pushdown systems. In FSTTCS,
2013.

13. M. Hague, J. Kochems, and C.-H. L. Ong. Unboundedness and downward closures
of higher-order pushdown automata. In POPL, 2016.

14. M. Hague, A. S. Murawski, C.-H. Luke Ong, and O. Serre. Collapsible pushdown
automata and recursion schemes. In LiCS, 2008.

15. M. Hague and C.-H. L. Ong. Winning regions of pushdown parity games: A
saturation method. In CONCUR, 2009.



12 M. Hague and V. Penelle

16. N. Kobayashi. Model-checking higher-order functions. In PPDP, 2009.
17. N. Kobayashi. Higher-order model checking: From theory to practice. In LiCS,

2011.
18. N. Kobayashi. A practical l inear time algorithm for trivial automata model checking

of higher-order recursion schemes. In FoSSaCS, 2011.
19. N. Kobayashi and A. Igarashi. Model-checking higher-order programs with recursive

types. In ESOP, 2013.
20. Naoki Kobayashi. GTRecS2: A model checker for recursion schemes based on

games and types. A tool available at http://www-kb.is.s.u-tokyo.ac.jp/˜koba/
gtrecs2/, 2012.

21. S. La Torre, A. Muscholl, and I. Walukiewicz. Safety of parametrized asynchronous
shared-memory systems is almost always decidable. In CONCUR, 2015.

22. P. Lammich, M. Müller-Olm, and A. Wenner. Predecessor sets of dynamic pushdown
networks with tree-regular constraints. In CAV, 2009.

23. Peter Lammich, Markus Müller-Olm, Helmut Seidl, and Alexander Wenner. Con-
textual locking for dynamic pushdown networks. In SAS, 2013.
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A Correctness
A.1 Soundness

We complete the proof of Proposition 2. That is, we show:

Given a state (q, p) ∈ Qp, we have L(q,p)(A′) ⊆ pre∗M(L(q,p)(Ap)).

We first formalise the definition of “the meaning of a state”.

Definition 5 (Meaning of a state). Given a state (q, p) ∈ Qp and a M-
configuration t, we define t |= (q, p)⇔ t ∈ pre∗M(L(q,p)(Ap)).

Given a state s ∈ Sp which is not a sr, and γ ∈ Γ , we define γ |= s⇔ γ ` s.
Given a state sr ∈ Sp, with r = p(L) −→ (q, p′), and γ ∈ Γ , we define γ |= sr

iff for all t1 |= (q1, p1), · · · , tm |= (qm, pm), with (q1, p1) · · · (qm, pm) ∈ L, we have
(p, γ)(t1, · · · , tm) |= (q, p′).

Given a set of states S ⊆ Sp, and γ ∈ Γ , we define γ |= S ⇔ ∀s ∈ S, γ |= s.

Once we have defined the meaning of the states of the automaton, we can define
soundness of a transition.

Definition 6 (Soundness of a transition). A transition r = p(L) −→ (q, p′) is
sound if for every t1 |= (q1, p1), · · · , tm |= (qm, pm) with (q1, p1) · · · (qm, pm) ∈ L,
and γ |= sr, we have (p, γ)(t1, · · · , tm) |= (q, p′).

A transition ν = s
θ−→ S is sound if for every γ ∈ S such that θ(γ) |= S, we

have γ |= s.

Intuitively an automaton is sound if all of its transitions are sound. We will
later show that a sound automaton does not accept configurations that are not
in the backwards reachability set.

Definition 7 (Soundness of an automaton). An automaton A is sound if:

– A is constructed from Ap by adding rules of the form defined earlier.
– Every transition of ∆ and η is sound.

We show A′ is sound inductively, hence we must start with the base case and
show that Ap is sound.

Lemma 3. Ap is sound.
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Proof. Ap is constructed from itself by adding nothing.
Given r = p(L) −→ (q, p), we consider (q1, p1) · · · (qm, pm) ∈ L, t1, · · · , tm,

with for every i, ti |= (qi, pi), and γ |= sr. By definition of γ |= sr, we have
(p, γ)(t1, · · · , tm) |= (q, p). Thus, r is sound.

Given ν = s
θ−→ S with s not a sr, we consider γ such that θ(γ) |= S. Thus,

for every s′ ∈ S, θ(γ) ` s′, and thus, by definition, we have γ ` s. This is the
definition of γ |= s, and thus ν is sound.

Given ν = sr
θ−→ S with r = p(L) −→ (q, p), we consider γ such that θ(γ) |= S.

As we suppose that no state sr′ has an incoming transition in ηp, we get as
previously γ ` s. We consider (q1, p1) · · · (qm, pm) ∈ L, t1 |= (q1, p1), · · · , tm |=
(qm, pm). By definition, for every i, we have ti ∈ pre∗M(t′i), for some t′i such that
t′i
∗−−→
∆p

(qi, p′i). Thus, the following run is valid:

(p, γ)(t′1, · · · , t′m) ∗−−→
∆p

(p, γ)((q1, p1), · · · , (qm, pm)) r−→ (q, p).

Thus, (p, γ)(t′1, · · · , t′m) ∈ L(q,p)(Ap), and thus (p, γ)(t1, · · · , tm) ∈ pre∗M(L(q,p)(Ap)).
By definition, we have (p, γ)(t1, · · · , tm) |= (q, p), and we can deduce that γ |= sr,
which concludes the proof that ν is sound.

We can now show the inductive case, to show that A′ is sound.

Lemma 4. A′ is sound.

Proof. We prove this property by induction on A′i. A′0 = Ap is sound by the
previous lemma. Suppose Ai−1 is sound. We distinguished the possible cases for
adding new rules.

– For rules added with R1., first, we show r′ is sound. Consider t1 |= (q1, p1),
. . . , tm |= (qm, pm), with (q1, p1) · · · (qm, pm) ∈ L ∩ 〈φ〉, and γ |= sr′ . By
definition of γ |= sr′ , we get that (p, γ)(t1, · · · , tm) |= (q′, p′), which allows
to conclude that r′ is sound.
Now, let us show that ν′ is sound. Consider γ such that θ(γ) |= sr. We
want to show that γ |= sν′ . Consider t1 |= (q1, s1), · · · , tm |= (qm, sm).
Thus, for every i, we have t′i ∈ L(qi,pi)(Ap) such that ti ∈ pre∗M(t′i). As
Ai−1 is sound, r is sound. Thus we have (pa, θ(γ))(t′1, · · · , t′m) |= (q′, p′),
which means (pa, θ(γ))(t′1, · · · , t′m) ∈ pre∗M(L(q′,p′)(Ap)). For all i, S(t′i) =
pi, as t′i ∈ L(qi,pi)(Ap). Thus, we can apply τ to (p, γ)(t′1, · · · , t′m) and
get (pa, θ(γ))(t′1, · · · , t′m). Thus, (p, γ)(t′1, · · · , t′m) ∈ pre∗M(L(q′,p′)(Ap)), and
finally, (p, γ)(t1, · · · , tm) ∈ pre∗M(L(q′,p′)(Ap)). Thus, by definition we have,
(p, γ)(t1, · · · , tm) |= (q′, p′), which proves that γ |= sr′ , and thus ν′ is sound.

– For rules added with R2., first, we show r′ is sound. Consider t1 |= (q1, p1),
. . . , tm |= (qm, pm), with (q1, p1) · · · (qm, pm) ∈ L(q′′, p′′)−1∩〈φ〉, and γ |= sr′ .
By definition of γ |= sr′ , we get that (p, γ)(t1, · · · , tm) |= (q′, p′), which allows
to conclude that r′ is sound.
Now, let us show that ν′ is sound. Consider γ such that γ |= sr1 and γ |= sr2 .
We want to show γ |= sr′ . Consider t1 |= (q1, p1), · · · , tm |= (qm, pm).
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Thus, for every i, we have t′i ∈ L(qi,pi)(Ap) such that ti ∈ pre∗M(ti). As
A′i−1 is sound, r1 and r2 are sound. As ε ∈ L2, we have (pb, γ)(∅)) |=
(q′′, p′′). Thus, (pa, γ)(t′1, · · · , t′m, (pb, γ)(∅)) |= (q′, p′), which means that
(pa, γ)(t′1, · · · , t′m, (pb, γ)(∅)) ∈ pre∗M(L(q′,p′)(Ap)). For all i, S(t′i) = pi,
as t′i ∈ L(qi,pi)(Ap). Thus, we can apply τ to (p, γ)(t′1, · · · , t′m) and get
(pa, γ)(t′1, · · · , t′m, (pb, γ)(∅)). Thus, (p, γ)(t′1, · · · , t′m) ∈ pre∗M(L(q′,p′)(Ap)),
and finally we obtain, (p, γ)(t1, · · · , tm) ∈ pre∗M(L(q′,p′)(Ap)). Thus, by defi-
nition, (p, γ)(t1, · · · , tm) |= (q′, p′), which proves that γ |= sr′ , and thus ν′ is
sound.

Thus, A′i is sound, which concludes the proof.

We are now ready to complete the proof by showing that a sound automaton
only accepts the correct configurations.

Lemma 5. If A′ is sound, for every state (q0, p0), we have that L(q0,p0)(A′) ⊆
pre∗M(L(q0,p0)(Ap)).

Proof. To show this lemma, it is sufficient to show that if t ∈ L(q0,p0)(A′), then
t |= (q0, p0).

First, we show that for every element γ, and every s ∈ S′, γ ` s⇒ γ |= s. We
show it by induction on the size of the run. First, suppose s is final, thus, by
definition of the soundness we have that γ |= s for every γ. Suppose now we have
γ ` s, such that the run accepting γ from s starts with a transition ν = s

θ−→ S.
By definition, we have for every s′ ∈ S, θ(γ) ` s′. By hypothesis of induction,
we have that θ(γ) |= s′, and then θ(γ) |= S. Thus as ν is sound, we obtain that
γ |= s.

We now prove that if t ∈ L(q0,p0)(A′), then t |= (q0, p0). We show it by
induction on the size of the run. First suppose t = (p, γ)(∅). We thus have
t
r−→ (q0, p0), with r = p(L) −→ (q0, p0), ε ∈ L and γ ` sr. We thus have γ |= sr,

from what precedes. Thus, as the transition r is sound by hypothesis, we have
t |= (q0, p0).

Suppose now t = (p, γ)(t1, · · · , tm), and t ∗−→
∆

(p, γ)((q1, p1), · · · , (qm, pm)) r−→
(q0, p0), with r = p(L) −→ (q0, p0), (q1, p1) · · · (qm, pm) ∈ L and γ ` sr. We thus
have γ |= sr, from what precedes. By hypothesis of induction, we have for every i,
ti |= (qi, pi). Thus, as the transition r is sound by hypothesis, we have t |= (q0, p0).

Thus, for every state (q, p), we have that L(q,p)(A′) ⊆ L(q,p)(pre∗M(Ap)).
A.2 Completeness
We show Proposition 3. That is:

Given a state (q0, p0) ∈ Qp, we have pre∗M(L(q0,p0)(Ap)) ⊆ L(q0,p0)(A′).

The proof is made inductively: first we recall that L(q0,p0)(Ap) is included in
L(q0,p0((A′). Thus, we show that the predecessor by oneM-rule of a configuration
t accepted by A′ is accepted by A′. In this last proof, the stability condition
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plays a crucial role, to show that the transition introduced by the automaton for
this rule is actually applicable to accept the predecessor t.

We choose t such that t ∈ pre∗M(L(q0,p0)(Ap)). We show by induction on the
size of the run that t ∈ L(q0,p0)(A′).

If t ∈ L(q0,p0)(Ap), then as ηp ⊆ η′ and ∆p ⊆ ∆′, we have the result.
We choose t′, such that t ∈ preM(t′). By the induction hypothesis we have

t′ ∈ L(q0,p0)(A′). There are two cases to consider.

– When the transition uses a rule of the form C1 then t = C[(p, γ)(t1, · · · , tm)],
and t′ = C[(pa, θ(γ))(t1, · · · , tm)]. Let us decompose the run of A′ accepting
t′:

t′
∗−−→
∆′

C[(pa, θ(γ))((q1, p1), · · · , (qm, pm))] r−→ C[q′, p′] ∗−−→
∆′

(q0, p0)

where r = pa(L) −→ (q′, p′), and θ(γ) ` sr.
Let us show that (q1, p1) · · · (qm, pm) ∈ 〈φ〉. For every i, we have ti

∗−−→
∆′

(qi, pi).
From the proof of the soundness of A′, we get that ti ∈ pre∗M(L(qi,pi)(Ap)).
Thus, there is t′i ∈ L(qi,pi)(Ap), such that S(t′i) = pi, and ti ∈ pre∗M(t′i).
Thus, we have ρ∗∆′(S(ti), S(t′i)). As, by hypothesis, we can apply r to t, we
have S(t1) · · ·S(tm) ∈ φ. As φ is ρ∆′-stable, we deduce that p1, · · · pm ∈ φ,
and thus (q1, p1) · · · (qm, pm) ∈ 〈φ〉.
By construction of A′, we have that r′ = p(L ∩ 〈φ〉) −→ (q′, p′) in ∆′ and
ν′ = sr′

θ−→ sr in η′. As θ(γ) ` sr, we get that γ ` sr′ . As we have moreover
(q1, p1) · · · (qm, pm) ∈ L ∩ 〈φ〉 the following run is valid:

t
∗−−→
∆′

C[(q1, p1), · · · , (qm, pm)] r′

−→ C[q′, p′] ∗−−→
∆′

(q0, p0)

Thus t ∈ L(q0,p0)(A′).
– When the transition uses a rule of the form C2 then t = C[(p, γ)(t1, · · · , tm)],

and t′ = C[(pa, γ)(t1, · · · , tm, (pb, γ)(∅))]. Let us decompose the run of A′
accepting t′:

t′
∗−−→
∆′

C[(pa, θ(γ))((q1, p1), · · · , (qm, pm), (pb, γ)(∅))]
r2−→ C[(pa, θ(γ))((q1, p1), · · · , (qm, pm), (q′′, p′′))]
r1−→ C[q′, p′]
∗−−→
∆′

(q0, p0)

where r1 = pa(L1) −→ (q′, p′), r2 = pb(L2) −→ (q′′, p′′) with ε ∈ L2, γ ` sr1 ,
and γ ` sr2 .
Let us show that (q1, p1) · · · (qm, pm) ∈ 〈φ〉. For every i, we have ti

∗−−→
∆′

(qi, pi).
From the proof of the soundness of A′, we get that ti ∈ pre∗M(L(qi,pi)(Ap)).
Thus, there is t′i ∈ L(qi,pi)(Ap), such that S(t′i) = pi, and ti ∈ pre∗M(t′i).
Thus, we have ρ∗∆′(S(ti), S(t′i)). As, by hypothesis, we can apply r to t, we
have S(t1) · · ·S(tm) ∈ φ. As φ is ρ∆′-stable, we deduce that p1, · · · pm ∈ φ,
and thus (q1, p1) · · · (qm, pm) ∈ 〈φ〉.
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By construction of A′, we have that r′ = p(L1(q′′, p′′)−1 ∩ 〈φ〉) −→ (q′, p′)
in ∆′ and ν′ = sr′

θ−→ {sr1 , sr2} in η′. As γ ` sr1 and γ ` sr2 , we get that
γ ` sr′ . As we have moreover (q1, p1) · · · (qm, pm) ∈ L1(q′′, p′′)−1 ∩ 〈φ〉 the
following run is valid:

t
∗−−→
∆′

C[(q1, p1), · · · , (qm, pm)] r′

−→ C[q′, p′] ∗−−→
∆′

(q0, p0)

Thus t ∈ L(q0,p0)(A′).

Hence the automaton is complete.
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