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Preface

This book contains the solutions to all of the problems in my book
Elementary Classical Mechanics, also available on figshare (https://doi.
org/10.6084/m9.figshare.5309851.v4).

This book was typeset with the Tufte latex package.
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1
Solutions for Problem Set 1

1. The graphical constructions are given in Fig. 1.1. The resultants in
(a) and (b) have equal length and opposite direction. The resultants
in (c) and (d) have the same direction, but the resultant in (c) has
twice the length of the resultant in (d).

-A

B

2C
C2-

B-

A

B

A2 C-

A

B1
2
_

C1
2
_-

-A+B+2C

A-B-2C

2A+B-C

A + (1/2)B -(1/2) C

(a)

(b)

(c)

(d)

Figure 1.1: The resultants are denoted by
the dashed vectors.

2. The same vectors from Fig. 1 of the problems are used here.

(a) This is shown in Fig. 1.2

(b) Referring to Fig. 1.3, in (i) A + B is constructed, and in (ii) C is
added to A + B . In (iii) B + C is constructed and in (iv) B + C is
added to A. It follows that (ii) = (iv).

(c) This is illustrated in Fig. 1.4, where the scalar a is taken to be 1
2 ,

and the scalar b is taken to be − 3
2 .

(d) This is illustrated in Fig. 1.5, where, as above, the scalar a is taken
to be 1

2 , and the scalar b is taken to be − 3
2 .
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B+A

AB

A

B

A+B

Figure 1.2: A + B = B + A.

A
B

A+B

C

B+C

B

A

B+C

A+(B+C)

C

A+B

(A+B)+C

(i)

(ii)

(iii)

(iv)

Figure 1.3: Addition and subtraction
laws of vectors using the parallelogram
law.

(e) This is illustrated in Fig. 1.6, where, as above, the scalar a is taken
to be 1

2 .

3.(a) The main idea here is that scalar multiplication is commutative.
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A

A

Aa
Ab

Aab( )
Aba( ) (ab)

Figure 1.4: Scalar multiplication laws of
vectors using the parallelogram law.

A

Aa
Ab

(a+b) A

Aa Ab+

Aa

Ab

Figure 1.5: Scalar multiplication laws of
vectors using the parallelogram law.

Then we have:

A · B = |A| |B| cos θ = |B| |A| cos θ = B ·A,

where it is assumed evident that “the angle between A and B” is
the same as the “the angle between B and A”.

(b) In order to prove this we use the idea of the projection of one
vector on another. We will take it as evident that the projection
of B + C on A is the projection of B on A plus the projection of C
on A. Let a ≡ A

|A| . Then the previous statement is mathematically
written as:

(B + C) · a = B · a + C · a.

Multiplying this expression by |A| gives:
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AB

A

B

A+B

Aa

Aa

Ba

Ba

Aa Ba+

A+Ba ( )

Figure 1.6: Scalar multiplication and
vector addition laws using the parallel-
ogram law.

(B + C) · |A|a = B · |A|a + C · |A|a,

or

(B + C) ·A = B ·A + C ·A.

Using commutativity of the dot product gives:

A · (B + C) = B ·A + C ·A.

(c) The main idea here is that scalar multiplication is commutative.
First, if a ≥ 0 the result follows easily from applying the defini-
tion of the dot product. From Fig. 1.7 it follows that:

−A · B = −|A| |B| cos θ.

Using this result, the result obtained for a > 0 can be easily
obtained for a < 0 following exactly the same reasoning.

4. We have

(A + B) · (A− B) = A ·A−A · B + B ·A− B · B = |A|2 − |B|2.

This expression is zero if and only if |A| = ±|B|. Since the magni-
tude of a vector is never negative, the minus sign is impossible.
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A

B

θ

π − θ
A

B

−

Figure 1.7: Graphical illustration of the
algebra of the dot product.

AA

A

B

A-BA-B

A+BA+B

B

Figure 1.8: Geometry of vector addition
and subtraction and the relationship to a
parallelogram.

5. See Fig. 1.9. We have:

Area of parallelogram = h |B|,
= |A | sin θ |B|,
= |A× B|

It should be clear from Fig. 1.9 and the calculation above that the
area of the triangle with sides A and B is given by 1

2 |A× B|.
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A

B

h

θ

Figure 1.9: Relationship between the
cross product and the area of a parallel-
ogram.
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Solutions for Problem Set 2

1. Let

A = A1i + A2j + A3k,

B = B1i + B2j + B3k,

C = C1i + C2j + C3k,

D = D1i + D2j + D3k.

(a) We have

A× B = (A2B3 − A3B2)i + (A3B1 − A1B3)j + (A1B2 − A2B1)k,

and

B×A = (B2 A3 − B3 A2)i + (B3 A1 − B1 A3)j + (B1 A2 − B2 A1)k.

By inspection, you see that A× B = −B×A.

(b) We have:

(A + B)× (C + D) = ((A2 + B2)(C3 + D3)− (A3 + B3)(C2 + D2)) i

+ ((A3 + B3)(C1 + D1)− (A1 + B1)(C3 + D3)) j

+ ((A1 + B1)(C2 + D2)− (A2 + B2)(C1 + D1)) k.

Also,

A× C = (A2C3 − A3C2)i + (A3C1 − A1C3)j + (A1C2 − A2C1)k,

B× C = (B2C3 − B3C2)i + (B3C1 − B1C3)j + (B1C2 − B2C1)k.
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A×D = (A2D3−A3D2)i+(A3D1−A1D3)j+(A1D2−A2D1)k,

B×D = (B2D3 − B3D2)i + (B3D1 − B1D3)j + (B1D2 − D2C1)k.

By inspection of these quantities it follows that the equality holds.

(c) Once A× B has been computed in components, the result be-
comes trivial as it just involves commutation of scalar multiplica-
tion.

2. A× B = −23i + 10j + 31k, A · B = 11.

3. The two vectors are parallel (one is a scalar multiple of the other),
so A× B = 0.

4.(a) a · b = 1, c · d = 1, hence a·b
c·d = 1.

(b) This expression is not mathematically valid.

(c) The vector operations are all fine. However, the denominator is
zero since b · c = 0.

(d) Dividing by a vector is not defined.

(e) (a · b) d = i + j and |i + j| =
√

2.

(f) |c− d| = | − i| = 1, therefore a |c− d| = a = i− j,

(g) This would be much clearer if there were parentheses in appro-
priate places in the expression. The usual rules of algebra require
that multiplications are performed first, then addition. The same
holds in vector algebra. In this case we compute the dot product
of b and c first (which is a scalar), then add it to a. However,
adding a scalar to a vector is not defined.

(h) a× b = (i− j)× i = k,

(i) This is ambiguous since (a× b)× c, is not equal to a× (b× c),
and therefore you don’t know which cross product to compute
first,

(j) This expression describes the addition of a vector and a scalar,
which is not a mathematically valid operation.

(k) This expression might appear ambiguous since it is not clear
whether to evaluate the cross product first or the dot product,
and evaluating the dot product first would give nonsense. How-
ever, in the literature there is a convention for such expressions
involving cross products and dot products. It is a × b · d ≡
(a× b) · d. In this case we have (a× b) · d = k · (i · j) = 0,
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(l) This expression is not mathematically valid since you cannot
compute the cross product of a vector with a scalar.

5. Let PQ denote the vector starting at the point P and ending at the
point Q.

A + PQ = B.

Then

PQ = B−A,

= (B1 − A1)i + (B2 − A2)j + (B3 − A3)k,

and

|PQ| =
√
(B1 − A1)2 + (B2 − A2)2 + (B3 − A3)2,

6. We will omit denoting the explicit dependence of the functions on t
for the sake of a less cumbersome notation.

(a) aA = aA1i + aA2j + aA3k, then

d
dt
(aA) =

(
da
dt

A1 + a
dA1

dt

)
i +
(

da
dt

A2 + a
dA2

dt

)
j +
(

da
dt

A3 + a
dA3

dt

)
k,

=
da
dt

A1i +
da
dt

A2j +
da
dt

A3k + a
dA1

dt
i + a

dA2

dt
j + a

dA3

dt
k,

=
da
dt

(A1i + A2j + A3k) + a
(

dA1

dt
i +

dA2

dt
j +

dA3

dt
k
)

,

=
da
dt

A + a
dA
dt

.

(b) A · B = A1B1 + A2B2 + A3B3, then

d
dt

(A · B) =

(
dA1

dt
B1 + A1

dB1

dt

)
+

(
dA2

dt
B2 + A2

dB2

dt

)
+

(
dA3

dt
B3 + A3

dB3

dt

)
,

=
dA1

dt
B1 +

dA2

dt
B2 +

dA3

dt
B3 + A1

dB1

dt
+ A2

dB2

dt
+ A3

dB3

dt
,

=
dA
dt
· B + A · dB

dt
.
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(c) A× B = (A2B3 − A3B2)i + (A3B1 − A1B3)j + (A1B2 − A2B1)k,
then

d
dt

(A× B) =

(
dA2

dt
B3 + A2

dB3

dt
− dA3

dt
B2 − A3

dB2

dt

)
i

+

(
dA3

dt
B1 + A3

dB1

dt
− dA1

dt
B3 − A1

dB3

dt

)
j

+

(
dA1

dt
B2 + A1

dB2

dt
− dA2

dt
B1 − A2

dB1

dt

)
k,

=

(
dA2

dt
B3 −

dA3

dt
B2

)
i +
(

dA3

dt
B1 −

dA1

dt
B3

)
j +
(

dA1

dt
B2 −

dA2

dt
B1

)
k

+

(
A2

dB3

dt
− A3

dB2

dt

)
i +
(

A3
dB1

dt
− A1

dB3

dt

)
j +
(

A1
dB2

dt
− A2

dB1

dt

)
k,

=
dA
dt
× B + A× dB

dt
.

7.(a) ∫ 3

2
4(t− 1)dti− (2t + 3)dtj + 6t2dtk,

=
(

2t2 − 4t
) ∣∣∣∣3

2
i− (t2 + 3t)

∣∣∣∣3
2
dtj + 2t3

∣∣∣∣3
2
k,

= 6i− 8j + 38k.

(b) ∫ 2

1
(ti− 2k) ·A(t)dt =

∫ 2

1

(
4(t2 − t)− 12t2

)
dt = −

∫ 2

1

(
8t2 + 4t

)
dt = −74

3
.

8. We have x(t) = e−t cos t, y(t) = e−t sin t, z(t) = e−t, then:

ẋ = −e−t cos t− e−t sin t, ẏ = −e−t sin t + e−t cos t, ż = −e−t,

ẍ = e−t cos t + e−t sin t + e−t sin t− e−t cos t = 2e−t sin t,

ÿ = e−t sin t− e−t cos t− e−t cos t− e−t sin t = −2e−t cos t,

z̈ = e−t.

Then we have:

|v| =
√

ẋ2 + ẏ2 + ż2 = e−t
√
(cos t + sin t)2 + (cos t− sin t)2 + 1 =

√
3e−t.

Similarly,

|a| =
√

ẍ2 + ÿ2 + z̈2 = e−t
√
(2 sin t)2 + (−2 cos t)2 + 1 =

√
5e−t.
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9. We have r = a cos ωti + a sin ωtj + bt2k, then:

v = −aω sin ωti + aω cos ωtj + 2btk,

a = −aω2 cos ωti− aω2 sin ωtj + 2bk.

and

|v| =
√

a2ω2(sin2 ωt + cos2 ωt) + (2bt)2 =
√

a2ω2 + (2bt)2,

|a| =
√

a2ω4(cos2 ωt + sin2 ωt) + (2b)2 =
√

a2ω4 + (2b)2.

The particle follows the path of a helix in three dimensions.





3
Solutions for Problem Set 3

1. We have

r = 3 cos 2ti + 3 sin 2tj + (8t− 4)k,

then

v = −6 sin 2ti + 6 cos 2tj + 8k,

and

ds
dt

= v = |v| =
√

v · v =
√

36 + 64 = 10.

(a)

T =
v
v
= −3

5
sin 2ti +

3
5

cos 2tj +
4
5

k.

(b) This should be clear.

(c) κ =

∣∣∣∣ dT
ds

∣∣∣∣. We have:

dT
ds

=
dT
dt

dt
ds

=

(
−6

5
cos 2ti− 6

5
sin 2tj

)
1

10
.

Therefore

κ =
3
25

.

(d) R = 1
κ = 25

3 .

(e) N = R dT
ds = 25

3
(
− 6

5 cos 2ti− 6
5 sin 2tj

) 1
10 .

2. We have:

r = cos ωti + sin ωtj,

from which it follows that:
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v = −ω sin ωti + ω cos ωtj,

and

a = −ω2 cos ωti−ω2 sin ωtj.

(a) This is a trivial calculation.

(b) a = −ω2r

(c) r× v = ωk.

3. mr̈ · ṙ.

4. ∇V(r) · ṙ.

5. Use the previous problem:

dV
dt

= (xi + yj + zk) · (− sin ti + cos tj + k) ,

= (cos ti + sin tj + tk) · (− sin ti + cos tj + k) = t.

6. First, you should have verified that the two points are on the curve.
Then recall the definition of arclength, s:

ds
dt
≡

√(
dx
dt

(t)
)2

+

(
dy
dt

(t)
)2

+

(
dz
dt

(t)
)2

.

So for this problem we have:

length =
∫ π

2

0

√
2dt =

π√
2

.

It is crucial that you understand the reason for the choice of the
limits in the integral.

7. Use the indefinite integral from the previous problem to compute
arclength as a function of t:

s =
∫ s

0
ds =

∫ t

0

√
2dt =

√
2t.

(Why were the limits on the integrals chosen as above?) Then we
have:

r(t) = cos ti+ sin tj+ tk = cos
1√
2

si+ sin
1√
2

sj+
1√
2

sk = r(t(s)) = r(s).

(Make sure you understand what is meant by the four equality signs
in the expression above.)
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8.
dr
dt

= − sin ti + cos tj + k.

dr
ds

=
1√
2

(
− sin

1√
2

si + cos
1√
2

sj + k
)

.

ds
dt

=
√

2.
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Solutions for Problem Set 4

1. First,

∫
C

A · dr =
∫

C

(
(3x2 − 6yz)i + (2y + 3xz)j + (1− 4xyz2)k

)
· (dxi + dyj + dzk),

=
∫

C
(3x2 − 6yz)dx + (2y + 3xz)dy + (1− 4xyz2)dz.

(a) If x = t, y = t2, z = t3, then the points (0, 0, 0) and (1, 1, 1)
correspond to t = 0 and t = 1, respectively. Then we have

∫
C

A · dr =
∫ t=1

t=0
(3t2 − 6t5)dt + (2t2 + 3t4)d(t2) + (1− 4t9)d(t3),

=
∫ t=1

t=0
(3t2 − 6t5)dt + (4t3 + 6t5)dt + 3(t2 − 4t11)dt,

=
(

t3 − t6 + t4 + t5 + t3 − t12
) ∣∣∣∣1

0
= 2.

(b) Along the straight line joining (0, 0, 0) to (1, 1, 1) we have x =

t, y = t, z = t. Then since dx = dy = dz = dt, we have:

∫
C

A · dr =
∫

C
(3x2 − 6yz)dx + (2y + 3xz)dy + (1− 4xyz2)dz,

=
∫ 1

0
(3t2 − 6t2)dt + (2t + 3t2)dt + (1− 4t4)dt,

= (−t3 + t2 + t3 + t− 4
5

t5)

∣∣∣∣1
0
=

6
5

.

2.
∂φ

∂x
= 3x2 + y + y cos xy− 2x

z
sin

x2

z
.

∂φ

∂y
= z + x + x cos xy.
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∂φ

∂z
= y +

x2

z2 sin
x2

z
.

3. Show that ∇×A = 0.

∂A1

∂x
= 2y,

∂A1

∂y
= 2x,

∂A1

∂z
= 3z2.

∂A2

∂x
= 2x,

∂A2

∂y
= 2,

∂A2

∂z
= 0.

∂A3

∂x
= 3z2,

∂A3

∂y
= 0,

∂A3

∂z
= 6xz.

Now it is easy to verify that:

∂A3

∂y
− ∂A2

∂z
=

∂A1

∂z
− ∂A3

∂x
=

∂A2

∂x
− ∂A1

∂y
= 0.

4. First, note the each vector field is the gradient of a scalar valued
function, A = ∇V. Therefore, the line integral of the vector along
a path between two points is the difference of the scalar valued
function evaluated at the two points.

(a) V = sin x sin y sin z. V(1, 1, 1)−V(0, 0, 0) = (sin 1)3.

(b) V = xyz. V(1, 1, 1)−V(0, 0, 0) = 1.

(c) V = z2

2 . V(1, 1, 1)−V(0, 0, 0) = 1
2 .
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Solutions for Problem Set 5

1. The answer to both parts of this question involve an understanding
of Newton’s first law: velocity doesn’t change unless there is a force,
and the velocity changes in the direction of the force.

(a) The initial velocity vector and the vector defining the gravita-
tional force define a plane, which we label as the y − z plane.
Motion must occur in this plane since there is no force acting
“out of the plane.”

(b) There is no force in the y direction. Therefore the initial velocity
in the y direction never changes.

2. The starting point is Newton’s equations, which are given by:

m
d2x
dt2 i = Fi, x(0) = 0, ẋ(0) = v0.

We integrate once (with respect to time) to get speed and velocity:

∫ t

0

d
dτ

(
dx
dτ

(τ)

)
dτi =

F
m

∫ t

0
dτi,

or

dx
dt

(t)i =
(

v0 +
F
m

t
)

i,

which gives the velocity as a function of time. The speed is the
magnitude of velocity:

dx
dt

(t) = v0 +
F
m

t. (5.1)

To get distance we integrate the expression for velocity (with respect
to time):
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∫ t

0

dx
dτ

(τ)dτ =
∫ t

0

(
v0 +

F
m

τ

)
dτ,

or

x(t) = v0t +
F

2m
t2. (5.2)

Finally, we solve for speed as a function of position. Start with (5.2).
This is a quadratic equation for t that we can solve for t:

t = −mv0

F
± m

F

√
v2

0 +
2Fx(t)

m
.

There are two choices of sign here. Which one do we take? Now t
is positive (we start from t = 0 and t increases). The constants m, F,
and v0 are all positive, which implies that x(t) is positive (look at
(5.2)). Therefore for t positive we must have:

t = −mv0

F
+

m
F

√
v2

0 +
2Fx(t)

m
.

Substituting this into (5.1) (and writing dx
dt (t) = v(t)) gives:

v(t) =

√
v2

0 +
2Fx(t)

m
, (5.3)

or

(v(t))2 = v2
0 +

2Fx(t)
m

.

3. We denote the position vector of the object by r = zk. The Newton’s
equations become:

m
d2z
dt2 k = −mgk, z(0) = 0, ż(0) = v0 > 0,

or,

d2z
dt2 k = −gk, z(0) = 0, ż(0) = v0 > 0,

Now these equations are identical to those of the previous problem
with

F
m

= −g.
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So, using (5.2), we have

z(t) = v0t− g
2

t2. (5.4)

Next we need to compute the time taken to reach the highest point.
We must ask ourselves, “what characterizes the highest point”? The
object goes up, stops “instantaneously”, and falls back down. So the
highest point is reached at the time when the speed vanishes.

Using (5.1), we have:

dz
dt

(t) = v0 − gt. (5.5)

Setting the left-hand-side of this equation to zero gives:

t =
v0

g
.

What is the maximum height? We merely substitute this time into
(5.4) to get:

zmax =
v2

0
2g

.

To get the speed as a function of distance from the origin we use
(5.3 to obtain:

v(t) =
√

v2
0 − 2gz(t). (5.6)

4. First, we write down Newton’s equations:

m
d2z
dt2 k = −mgk− β

dz
dt

k, z(0) = h, ż(0) = 0,

or

ẇ +
β

m
w = −g, w(0) = 0, (5.7)

where w ≡ dz
dt . As discussed in class, this is a linear, inhomogeneous

first order equation for w. We solve for w, then integrate the result to
get the height.

To find the general solution of (5.7), we find a solution to the homo-
geneous equation:

ẇ +
β

m
w = 0,
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a particular solution to the inhomogeneous equation:

ẇ +
β

m
w = −g. (5.8)

then add the two together, and evaluate the unknown constant in
the homogeneous solution by satisfying the initial condition.

The solution to the homogeneous equation is given by:

w(t) = Ce−
β
m t,

where C is a constant.

Now we need to obtain a particular solution to the inhomogeneous
problem. There is a general method for this. But this problem has
a particular structure that makes it simple. Look at the right-hand-
side of (5.8). It is a constant. The derivative of a constant is zero.
Now look at the left hand side of (5.8). It has a term that is a
derivative of w, plus a constant times w. Hence, it follows that we
can find a solution of the form w = constant. In this case:

wp = −mg
β

.

Then the general solution is:

w(t) = Ce−
β
m t − mg

β
.

Now w(0) = 0, so we have:

w(0) = C− mg
β

= 0,

or

C =
mg
β

,

and therefore:

w(t) =
mg
β

e−
β
m t − mg

β
.

or

dz
dt

= w(t) =
mg
β

(
e−

β
m t − 1

)
.

This gives the speed as a function of time. We easily see that there
is a limiting speed since:
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lim
t→∞

w(t) = lim
t→∞

mg
β

(
e−

β
m t − 1

)
= −mg

β
.

We could quickly get the acceleration as a function of time by dif-
ferentiating the expression for the velocity as a function of time:

z̈ = −ge−
β
m t.

To obtain the position as a function of time we integrate the expres-
sion for the velocity as a function of time:

∫ t

0

dz
dτ

(τ)dτ =
∫ t

0

(
mg
β

(
e−

β
m τ − 1

))
dτ,

which gives:

z(t) = h− mg
β

t− m2g
β2

(
e−

β
m t − 1

)
.

5. Substitute the proposed solution into the ODE and see if it indeed
satisfies the ODE.

(a) We need to show that:

m
d2(k1s1)

dt2 − (a0 + a1(t))(k1s1)− (b0 + b1(t))
d
dt
(k1s1) = 0.

but this is the same as:

k1

(
m

d2s1

dt2 − (a0 + a1(t))s1 − (b0 + b1(t))ṡ1

)
= 0.

and we know that the expression in parentheses is zero since
s1(t) is a solution.

(b) We need to show that:

m
d2(k1s1 + k2s2)

dt2 − (a0 + a1(t))(k1s1 + k2s2))− (b0 + b1(t))
d
dt
(k1s1 + k2s2) = 0.

but this is the same as:

k1

(
m

d2s1

dt2 − (a0 + a1(t))s1 − (b0 + b1(t))ṡ1

)
+ k2

(
m

d2s2

dt2 − (a0 + a1(t))s2 − (b0 + b1(t))ṡ2

)
= 0.

and we know that the expressions in parentheses are zero since
s1(t) and s2(t) are solutions.
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(c) No.

(d) What do you know? You know that s̃(t) is a solution of Newton’s
equations satisfying s̃(0) = 12 and ds̃

dt (0) = 0. What we would
like to find is a solution of Newton’s equations, ŝ(t) satisfying
ŝ(0) = 24 and dŝ

dt (0) = 0. It is very tempting to appeal to the
linear properties of the equation by setting ŝ(t) ≡ 2s̃(t) ,then
ŝ(0) = 2s̃(0) = 24 and dŝ

dt (0) = 2 ds̃
dt (0) = 0. However, this is not

correct since these properties only apply to linear homogeneous
equations. So we have:

s̃(t) = s̃(0)− 1
2

gt2

ŝ(t) = ŝ(0)− 1
2

gt2.

The term 1
2 gt2 is due to the inhomogeneous term in Newton’s

equations.

6.(a) linear,

(b) nonlinear,

(c) linear,

(d) linear,

(e) nonlinear.

7. In class we showed that the general solution of Newton’s equation
in one dimension for a constant force is:

s(t) = s0 + v0(t− t0) +
F

2m
(t− t0)

2.

So for this problem we have:

s(t) = s0 +
g

2m
t2.

8. In class we showed that the general solution of Newton’s equation
in one dimension for a purely time-dependent force is:

s(t) = s0 + v0(t− t0) +
1
m

∫ t

t0

∫ τ′

t0

F(τ)dτdτ′.

So for this problem we have:

s(t) = s0 +
1
m
(t− sin t).

Does this result make sense? The force is bounded, and it’s average
value is zero. Yet, according to the solution for the position as a
function of time, the particle moves to infinity as t→ ∞.
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9. From the lecture in class we define:

V(s) = −
∫ s

c
(s′ − s′2)ds′,

where c is a “conveniently chosen” constant. Choosing c = 0 we
have:

V(s) = − s2

2
+

s3

3
.

Then we showed that all solutions must satisfy:

m
2

ṡ2 − s2

2
+

s3

3
= constant.

What do we mean by “all solutions”? Where are the initial condi-
tions? You will see plenty of this later in the course.

10. With t =
√

mτ we have:

d
dt

=
d

dτ

dτ

dt
=

1√
m

d
dτ

,

and

d2

dt2 =
1
m

d2

dτ2

from which the result easily follows.

11. No. This should be a trivial calculation. In general, superposition
does NOT hold for nonlinear ODE’s. This is ONE of the major dif-
ferences. (However, there are certain exceptional situations where
nonlinear ODEs can be said to obey a superposition principle.)
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Solutions for Problem Set 6

1. We did this example in class without friction. In this case, in addi-
tion to the forces W and N acting on P, there is a frictional force f
directed up the incline (in a direction opposite to the motion) and
with magnitude:

µN = µmg cos α, or

f = −µmg cos αe1.

Using this to modify Newton’s equations that we derived in class,
you should readily see that:

m
d2(se1)

dt2 = W + N + f,

= mg sin αe1 − µmg cos αe1.

The acceleration is given by:

d2s
dt2 e1 = g(sin α− µ cos α)e1, (6.1)

where, recall, s is the distance from the top of the incline. It should
be clear that we must have sin α > µ cos α or the frictional force is
so great that the particle does not move at all.

Next we compute the velocity. Replacing d2s
dt2 by dv

dt in (6.1), using the
fact that the particle starts from rest (i.e., v(0) = 0), and integrating
from 0 to t gives the velocity:

ve1 = g(sin α− µ cos α)te1.

Finally, we compute the distance traveled after time t. Replacing v
with ds

dt in the above equation, using s(0) = 0, and integrating from
0 to t gives:
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s =
g
2
(sin α− µ cos α)t2,

where we have dropped e1 since we are only interested in displace-
ment.

2. In class, we solved for the motion of the projectile in the absence
of the incline. We found that the position vector at any time t was
given by:

r = (v0 cos β)tj +
(
(v0 sin β)t− g

2
t2
)

k,

or, in components,

y = (v0 cos β)t, z = (v0 sin β)t− g
2

t2. (6.2)

The equation for the incline (which is a line in the y − z plane) is
given by:

z = y tan α. (6.3)

Substituting (6.2) into (6.3), it follows that the projectiles path and
the incline intersect at those values of t for which:

(v0 sin β)t− g
2

t2 = ((v0 cos β)t) tan α,

i.e.,

t = 0, or t =
2v0(sin β cos α− cos β sin α)

g cos α
=

2v0 sin(β− α)

g cos α
.

The value t = 0 gives the intersection point O. The second value of
t gives point A, which is the required point. Using this value of t in
the first equation of (6.2), the range of the projectile up the incline
is given by:

R = y sec α = (v0 cos β)

(
2v0 sin(β− α)

g cos α

)
sec α =

2v2
0 sin(β− α) cos β

g cos2 α
.

3. Three forces are acting on the object: the weight, W = −mgk, the
normal force N of the surface on the object, and the frictional force
f. Hence, Newton’s equations have the form:

m
dv
dt

i = W + N + f.
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But N = −W, and the magnitude of f is f = µN = µmg so that
f = −µmgi. Then Newton’s equations are written as:

m
dv
dt

i = −µmgi, or
dv
dt

= −µg. (6.4)

Integrating this equation, and using v = v0 at t = 0 gives:

v = v0 − µgt, or
dx
dt

= v0 − µgt. (6.5)

Integrating again, using x = 0 at t = 0 gives:

x = v0t− 1
2

µgt2. (6.6)

From (6.5), we see that the object comes to rest (i.e. v = 0) when:

v0 − µgt = 0 or t =
v0

µg
.

Substituting this time into (6.6), and noting that x = x0 at this time
gives:

x0 =
v2

0
µg
− 1

2
µg
(

v0

µg

)2
,

or

µ =
v2

0
2gx0

.

4. z(t) negative is a perfectly valid solution of the differential equa-
tion governing the dynamics of the projectile. However, a difficulty
arises if we want to use the differential equation to model a par-
ticular physical situation. For example, if z = 0 is the ground (i.e.
the ”flat Earth”) then we cannot consider situations in which z(t)
becomes negative.

5. Using the expression for the position of z as a function of time from
the first example of the Week 18 Notes, we have:

−H = (v0 sin α)t− g
2

t2,

or

t2 − 2v0 sin α

g
t− 2H

g
= 0.

Solving this quadratic equation for t gives:
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t =
v0 sin α

g
± 1

2

√
4v2

0 sin2 α

g2 +
8H
g

.

Of the two roots, we take the ”plus sign” since the other is negative
(and the minus sign, which is perfectly valid from the point of view
of the differential equation, is not valid for the physical situation we
are modelling):

t =
v0 sin α

g
+

√
v2

0 sin2 α

g2 +
2H
g

.

Now there is a detail we need to check. If the projectile is to go over
the ”side of the cliff” (and therefore hit the bottom at z = −H), the
horizontal distance that it travels must be larger than d.

6.(a) t = d
v0 cos α .

(b) The height that it reaches after this time is:

T = d tan α− gd2

2v2
0 cos2 α

.

For the correct physical interpretation, the right hand side of this
expression must be positive, i.e.. we must have

tan α >
gd

2v2
0 cos2 α

,

or

d <
2v2

0 sin α cos α

g
.

(c) The equation to solve for d is:

T = d tan α− gd2

2v2
0 cos2 α

.

Using the values of the parameters given in the statement of the
problem, we have:

10 = d− 0.00098 d2,

There are two possible values:

d = 10.2m and d = 1010.308m.

Does it make sense for there to be two possible values of d? If you
think about the shape of the path of the projectile (a parabola) it
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does make sense, but only if the two values for d are smaller than
the range (without the wall being present). Using the parameters
given, and the formula for the range from the lecture notes, we
compute that R = 1020.4m.
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Solutions for Problem Set 7

1. F and the displacement, r would be proportional, i.e. lie along the
same line, if r and d2r

dt2 were proportional. However, we know that
this is not generally the case (although it could be true in special
cases, see problem 4 below).

2. A force of this particular form does no work since it is perpendicular
to the velocity(think about this in the context of the question above).

3. An issue with both of these questions is how to translate ”common
language” into mathematical formulae.

(a) We have proven that the work done by the net forces acting on a
particle of constant mass m in moving a particle from a point P1

to a point P2 is the kinetic energy of the particle at P2 minus the
kinetic energy of the particle at P1.

(b) If we equate motion to nonzero velocity then if there is no motion,
there is no velocity (of the particle), and therefore it has no kinetic
energy, and therefore no change in kinetic energy is possible.

4.(a) The position vector is:

r = xi + yj = a cos ωti + b sin ωtj,

or

x = a cos ωt, y = b sin ωt,

which are just the parametric equations of an ellipse having semi-
major axis of length a and semi-minor axis of length b. Alter-
nately, since ( x

a

)2
+
(y

b

)2
= cos2 ωt + sin2 ωt = 1,

we also obtain the “other” equation for an ellipse that we usually
learn:
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x2

a2 +
y2

b2 = 1.

(b) Assuming that the particle has constant mass, the force acting on
it is:

F = m
d2r
dt2 = m

d2

dt2 (a cos ωti + b sin ωtj) ,

= m
(
−ω2a cos ωti−ω2b sin ωtj

)
,

= −mω2 (a cos ωti + b sin ωtj) = −mω2r,

from which it follows immediately that the force is directed to-
wards the origin.

(c) The velocity is given by:

v = −ωa sin ωti + ωb cos ωtj.

Therefore the kinetic energy is given by:

1
2

mv · v =
1
2

m
(

ω2a2 sin2 ωt + ω2b2 cos2 ωt
)

.

So we have:

Kinetic energy at A (where cos ωt = 1, sin ωt = 0) =
1
2

mω2b2.

Kinetic energy at B (where cos ωt = 0, sin ωt = 1) =
1
2

mω2a2.

(d)

Work done =
∫ B

A
F · dr,

=
∫ π

2ω

0

(
−mω2 (a cos ωti + b sin ωtj)

)
· (−ωa sin ωti + ωb cos ωtj) dt,

=
∫ π

2ω

0
mω3(a2 − b2) sin ωt cos ωtdt,

=
1
2

mω2(a2 − b2) sin2 ωt
∣∣∣∣ π

2ω

0
=

1
2

mω2(a2 − b2).

(e) Using the previous two results:

Work done =
1
2

mω2(a2 − b2) =
1
2

mω2a2 − 1
2

mω2b2,

= kinetic energy at B− kinetic energy at A.
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(f) Using the result above from (d), in making a complete circuit
around the ellipse we go from t = 0 to t = 2π

ω . Therefore:

Work done =
∫ 2π

ω

0
mω3(a2 − b2) sin ωt cos ωtdt,

=
1
2

mω2(a2 − b2) sin2 ωt
∣∣∣∣ 2π

ω

0
= 0.

(g) The force was obtained in b). A direct calculation shows that
∇× F = 0.

(h) Since the force is conservative there exists a potential V such that:

F = −mω2xi−mω2yj = −∇V = −∂V
∂x

i− ∂V
∂y

j− ∂V
∂z

k.

Then we have:

mω2x =
∂V
∂x

, mω2y =
∂V
∂y

,
∂V
∂z

= 0.

Solving these equations (and setting the integration constant to
zero) gives the potential:

V =
1
2

mω2x2 +
1
2

mω2y2 =
1
2

mω2(x2 + y2) =
1
2

mω2r2.

(i)

Potential at point A (where r=a) =
1
2

mω2a2,

Potential at point B (where r=b) =
1
2

mω2b2.

Then we have

Work done from A to B = Potential at A− Potential at B,

=
1
2

mω2a2 − 1
2

mω2b2,

which agrees with the result obtained in d).

5. First we collect together the relevant results from the example that
have already been computed in the notes.

F = −mgk,

v = v0 cos αj + (v0 sin α− gt) k,

r = (v0 cos α)tj +
(
(v0 sin α)t− 1

2
gt2
)

k,
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and, if the particle is launched at t = 0, the time required for the
particle to reach its highest point is:

th =
v0 sin α

g
.

(a) We have:

∫ th

0
F · dr =

∫ th

0
F · dr

dt
dt

=
∫ th

0
−mg(v0 sin α− gt)dt,

= −(mg sin α)t +
mg2

2
t2
∣∣∣∣

v0 sin α
g

0
,

= −m
2

v2
0 sin2 α.

(b) Let P1 denote the point where the projectile is launched (the ori-
gin) and P2 denote the highest point of the projectile. Then we
have:

TP2 − TP1 =
1
2

mv2
0 cos2 α− 1

2
mv2

0 = −1
2

mv2
0 sin2 α.

6. First we collect together the relevant results from the Problem Set 6

Solutions (Problem 1):

F = (mg sin α− µmg cos α)e1,

v = (g sin α− µg cos α)t e1,

s =
g
2
(sin α− µ cos α) t2,

The particle starts at rest from the top of the incline. If the incline is
of length L, then the time to reach the bottom is obtained by solving:

L =
g
2
(sin α− µ cos α) t2,

or

tb =

√
2L

g(sin α− µ cos α)
.

(a) We have:
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∫ tb

0
F · dr =

∫ tb

0
F · dr

dt
dt,

=
∫ tb

0
mg2 (sin α− µ cos α)2 tdt,

=
mg2

2
(sin α− µ cos α)2

(√
2L

g(sin α− µ cos α)

)2

,

= mg (sin α− µ cos α) L.

(b) The particle starts from rest at the top of the incline, so at t = 0
we have Ttop = 0. At the bottom of the incline the velocity is
given by:

vb = (g sin α− µg cos α)

√
2L

g(sin α− µ cos α)
e1

Then the kinetic energy at the bottom of the incline, Tb, is given
by:

Tb =
1
2

m

(
(g sin α− µg cos α)

√
2L

g(sin α− µ cos α)

)2

= mg (sin α− µ cos α) L.
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Solutions for Problem Set 8

1. First, we write down some preliminary quantities. The initial veloc-
ity is given by:

v0 = v0 cos αj + v0 sin αk. (8.1)

We will denote the (unknown) time-dependent position and veloc-
ity vectors by:

r(t) = y(t)j + z(t)k, (8.2)

v(t) = ẏ(t)j + ż(t)k. (8.3)

Now, here is an important point to understand. The only force act-
ing on the projectile is the gravitational force in the vertical direc-
tion, i.e., there are no forces in the horizontal direction. Now recall
Newton’s First Law:

Every particle persists in a state of rest or of uniform motion in a straight
line (i.e., with constant velocity) unless acted upon by a force.

It follows from this that the horizontal component of velocity does
not change in time. Hence,

ẏ = v0 cos α.

This can be integrated immediately (using y(0) = 0) to give:

y(t) = (v0 cos α)t.

Now we return to finding the maximum height reached. We choose
the reference point for the gravitational potential energy so that it
is zero for z = 0. The maximum height is characterized as the
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point where zero vertical velocity is attained (and we know that the
horizontal velocity component is the same as it was initially). So we
have:

P.E. at O + K. E. at O = P.E. at max. height + K. E. at max. height
0 + 1

2 mv2
0 = mgzmax + 1

2 m(v0 cos α)2,

So, a bit of easy algebra gives:

zmax =
v2

0 sin2 α

2g
.

Now to finish the problem we need to compute the position vector.
Since we have already computed y(t), we need only find z(t). How
do we do this using energy? The same way. The total energy at an
arbitrary point along the path is 1

2 m(ẏ2 + ż2) + mgz. Since energy is
conserved we can equation this to the total energy at the origin:

1
2

m(ẏ2 + ż2) + mgz =
1
2

mv2
0.

Substituting ẏ from above gives:

1
2

m((v0 cos α)2 + ż2) + mgz =
1
2

mv2
0.

This gives us an equation for ż which we can integrate to get z(t):

ż =
√

v2
0 sin2 α− 2gz,

or

∫ z

0

dz′√
v2

0 sin2 α− 2gz′
=
∫ t

0
dt′ = t.

I did this integral in the Week 20 Notes:

∫ z

0

dz′√
v2

0 sin2 α− 2gz′
=
−2
√

v2
0 sin2 α− 2gz′

2g

∣∣∣∣z
0
= t.

Working through the algebra, you will find:

z = (v0 sin α)t− 1
2

gt2.
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2. The energy at the top of the incline is solely potential energy given
by:

mg` sin α.

The energy of the particle at an arbitrary point on the incline is:

1
2

mṡ2 + mg(`− s) sin α.

Equating these (because energy is conserved) gives:

mg` sin α =
1
2

mṡ2 + mg(`− s) sin α.

Hence,

ṡ =
√

2gs sin α.

This can be integrated to find s(t):

∫ s

0

ds′

2s′ sin α
=

2s′√
2gs′ sin α

∣∣∣∣s
0
=
∫ t

0
dt′ = t.

After some algebra you get:

s =
1
2

g sin αt2.

3.(a) Since there is no net force acting on the particles we use conser-
vation of momentum and conclude that:

mv0 + MV0 = mv + MV. (8.4)

This answer is correct. However, we are overlooking a point that
deserves further thought. Certainly when the particles are not
in contact, by assumption, there are no forces acting on either
particle. But what about at the instant of contact? Certainly each
particle exerts a force on the other (or else the momentum of
each particle could not change, even though the total momentum
is unchanged). The key here is to consider Newtons third law of
motion.

(b) Using (8.4), we have:

ξ̇ =
mẋ + MẊ

m + M
=

mv + MV
m + M

=
mv0 + MV0

m + M
= constant.
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(c) We will use momentum conservation and energy conservation to
obtain two (linear) equations to solve for the two unknowns v
and V. We first rewrite

1
2

mv2
0 +

1
2

MV2
0 =

1
2

mv2 +
1
2

MV2. (8.5)

as

m(v2 − v2
0) = M(V2

0 −V2), (8.6)

and (8.4) as:

m(v− v0) = M(V0 −V). (8.7)

Dividing (8.6) by (8.7) gives:

v + v0 = V0 + V. (8.8)

Therefore (8.4) and (8.8) give the following pair of equations to
solve for the unknowns v and V:

mv + MV = mv0 + MV0,

v−V = −v0 + V0. (8.9)

These two equations can easily be solved for v and V to obtain
the result:

v =
m−M
m + M

v0 +
2M

m + M
V0,

V =
M−m
m + M

V0 +
2m

m + M
v0. (8.10)

(d) Using (8.10), we see that for m = M it follows that v = V0 and
V = v0. In other words, after the collision the mass on the left
moves with the initial velocity of the mass on the right, and the
mass on the right moves with the initial velocity of the mass on
the left.

(e) We compute the limit as M→ ∞ to obtain:

v = −v0 + 2V0,

V = V0. (8.11)

If V0 = 0 we see that the small mass ”bounces off” the large mass
and reverses its direction with the same speed, but velocity in the
opposite direction.
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Solutions for Problem Set 9

1.(a)

ṡ = v,

v̇ = −s.

(b) V(s) = s2

2 sketched in Fig. 9.1.

(c) Stable equilibria at (s, v) = (0, 0) (relative minima of the poten-
tial).

(d) Phase portrait sketched in Fig. 9.1.

V(s)

s

v

s

Figure 9.1: Graph of the potential energy
function and the phase portrait.

(e) Using the expression derived from the energy integral in class:

∫ s

0

ds′√
2E− s′2

= sin−1 s′√
2E

∣∣∣∣s
0
= t.

or

s =
√

2E sin t, and v = ṡ.
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2.(a)

ṡ = v,

v̇ = s− s3.

(b) V(s) = − s2

2 + s4

4 sketched in Fig. 9.2.

(c) Stable equilibria at (s, v) = (±1, 0) (relative minima of the po-
tential), a saddle point at (s, v) = (0, 0) (relative maxima of the
potential).

(d) Phase portrait sketched in Fig. 9.2.

v

V(s)

s

s

1-1

4
1_

Figure 9.2: Graph of the potential energy
function and the phase portrait.

3.(a)

ṡ = v,

v̇ = s− s2.

(b) V(s) = − s2

2 + s3

3 sketched in Fig. 9.3.

(c) Stable equilibrium at (s, v) = (1, 0) (relative minima of the po-
tential), a saddle point at (s, v) = (0, 0) (relative maxima of the
potential).

(d) Phase portrait sketched in Fig. 9.3.
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v

V(s)

s

s

1

Figure 9.3: Graph of the potential energy
function and the phase portrait.
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Solutions for Problem Set 10

1. We have

v = ±
√

2
m

√
E−V(s).

It follows that:

dv
ds

= ∓
√

1
2m (E−V(s))

dV
ds

(s).

At the crossing point (or, as I referred to it in class, turning point),
v = 0, E = V(s). However, we need to take into account both
branches of this function, i.e, the ± signs. Look at each branch
separately and consider the limiting behaviour of the slope as the s
axis is approached.

The question could also be answered by implict differentiation. A
level set of the energy is given by:

H(s, v) =
1
2

mv2 + V(s) = E.

Implictly differentiating with respect to s gives:

mv
dv
ds

+
dV
ds

= 0,

or

dv
ds

= − 1
mv

dV
ds

which is infinite at v = 0. (In order to draw this conclusion, do we
have to say something about dV

ds at the turning point?)

Make sure you understand what it means, and what we are assum-
ing, when we implicitly differentiate the energy function. If you
don’t, ask for an explanation.
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2. The phase portrait does not change at all in the sense of the geome-
try of the level sets of the energy function. However, the value of the
energy for the different level sets changes according to the value of
the constant.

3. Yes. Substitute this (constant) function into the left hand side, and
right had side, of Newton’s equations and show equality. What do
the left and right hand sides equal?

4. See Fig. 10.1. There are four equilibria: two stable and two unstable.

s

s

v

V(s) Figure 10.1: Graph of the potential en-
ergy function and the phase portrait.

5. See Fig. 10.2. There are three equilibria: two unstable and one
stable.

6. See Fig. 10.3. There are no equilibria.

7. See Fig. 10.4. There is one unstable equilibrium.

8.

Λ =
dΩ

dt
= 12ti− 2j + (36t2 − 16t)k.

evaluating this expression at t = 1 gives:

12i− 2j + 20k.

9.(a) From Newton’s second law:
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s

V(s)

s

v

Figure 10.2: Graph of the potential en-
ergy function and the phase portrait.

s

v

s

V(s) Figure 10.3: Graph of the potential en-
ergy function and the phase portrait.

2
dv
dt

= 24t2i + (36t− 16)j− 12tk,

or,
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s

v

s

V(s) Figure 10.4: Graph of the potential en-
ergy function and the phase portrait.

dv
dt

= 12t2i + (18t− 8)j− 6tk.

Integrating this expression with resepct to t gives:

v = 4t3i + (9t2 − 8t)j− 3t2k + c1.

At t = 0, v = v0, and therefore:

v0 = 6i + 15j− 8k = c1,

and we have:

v = (4t3 + 6)i + (9t2 − 8t + 15)j− (3t2 + 8)k.

(b) Using the previous result:

v =
dr
dt

= (4t3 + 6)i + (9t2 − 8t + 15)j− (3t2 + 8)k.

Integrating this expression gives:

r = (t4 + 6t)i + (3t3 − 4t2 + 15t)j− (t3 + 8t)k + c2.

At t = 0, r = r0, and therefore:

r = r0 = 3i− j + 4k = c2,
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and we have:

r = (t4 + 6t + 3)i + (3t3 − 4t2 + 15t− 1)j− (t3 + 8t− 4)k.

(c)

Λ = r× F =
(
(t4 + 6t + 3)i + (3t3 − 4t2 + 15t− 1)j− (t3 + 8t− 4)k

)
×
(

24t2i + (36t− 16)j− 12tk
)

,

=
(

32t3 + 108t2 − 260t + 64
)

i−
(

12t5 + 192t3 − 168t2 − 36t
)

j

−
(

36t5 − 80t4 + 360t3 − 240t2 − 12t + 48
)

k

(d)

Ω = r× (mv) = m(r× v) = 2
(
(t4 + 6t + 3)i + (3t3 − 4t2 + 15t− 1)j− (t3 + 8t− 4)k

)
×

(
(4t3 + 6)i + (9t2 − 8t + 15)j− (3t2 + 8)k

)
,

= (8t4 + 36t3 − 130t2 + 64t− 104)i− (2t6 + 48t4 − 56t3 − 18t2 − 96)j

− (6t6 − 16t5 + 90t4 − 80t3 − 6t2 + 48t− 102)k

10. The time rate of change of the angular momentum about the origin
is given by the tirque about the origin. Therefore we only need
to show that the torque about the origin is zero. This is a trivial
computation:

Λ = r× F = r× f (r)
r
r
=

f (r)
r

(r× r) = 0.

11. It follows from the previous problem that:

r× F = 0,

and therefore

r×m
dv
dt

= 0,

or

r× dv
dt

= 0,

which is the same as (why?)

d
dt

(r× v) = 0.

Integrating this equation with respect to time gives:

r× v = h, (10.1)
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where h is a constant vector. Now r× v is perpendicular to r (why?).
Therefore taking the dot product of both sides of (10.1) with r gives:

r · (r× v) = 0 = r · h.

Therefore the position vector is always perpendicular to the con-
stant vector h, so that the motion is always in a plane.
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1. The magnitude of the areal velocity is given by 1
2 |r× v|. Hence, we

need to compute r× v in cartesian coordinates, and then compute
the magnitude of the resulting vector.

r× v = (xi + yj)× (ẋi + ẏj) = xẏk− yẋk.

Then

|r× v| = xẏ− yẋ.

2. We start with the equation derived in class:

r̈− h2

r3 =
f (r)
m

. (11.1)

We need two preliminary relations. From r2θ̇ = h we have:

θ̇ =
h
r2 . (11.2)

Differentiating r2θ̇ = h with respect to t gives:

2rṙθ̇ + r2θ̈ = 0,

or

θ̈ = −2θ̇

r
ṙ = −2h

r3 ṙ. (11.3)

Now we use the chain rule:

dr
dt

=
dr
dθ

dθ

dt
= θ̇

dr
dθ

=
h
r2

dr
dθ

. (11.4)
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d2r
dt2 =

(
d
dt

(
dr
dθ

))
θ̇ +

dr
dθ

θ̈,

=
d2r
dθ2 θ̇2 +

dr
dθ

θ̈,

=
h2

r4
d2r
dθ2 −

2h2

r5

(
dr
dθ

)2
, where we have used (11.2), (11.3) and (11.4).(11.5)

Now substituting (11.5) into (11.1) gives the result.

3. This result uses conservation of energy. From class we derived the
following equation that expresses conservation of energy for a par-
ticle moving in a central force field:

1
2

m
(

ṙ2 + r2θ̇2
)
−
∫

f (r)dr = E.

Substituting θ̇ = h
r2 into this equation gives:

1
2

m
(

ṙ2 +
h2

r2

)
−
∫

f (r)dr = E,

or

ṙ2 =
2E
m

+
2
m

∫
f (r)dr− 2h2

mr2 ≡ G(r).

From this expression we obtain:

dr
dt

=
√

G(r),

or

t =
∫ 1√

G(r)
dr.

The second equation follows by writing θ̇ = h
r2 as:

dt =
1
h

r2dθ.

4.(a) The potential is given by:

V(r) =
∫ K

r2 dr = −K
r

.

(b) The work done is given by:

V(r = a)−V(r = b) =
K
b
− K

a
=

K(a− b)
ab

.
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5. From

r2θ̇ = h = constant,

we derive the quadrature:

∫
dθ = h

∫ dt
r(t)2 .

6. In the lectures we showed that:

r× v = r2θ̇k.

Hence, mr2θ̇k is the angular momentum of the particle about O.
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