Synthesis, anti-bacterial and anti-protozoal activities of amidinobenzimidazole derivatives and their interactions with DNA and RNA

Andrea Bistrović^a, Luka Krstulović^b, Ivana Stolić^b, Domagoj Drenjančević^{c,d}, Jasminka Talapko^d, Martin C. Taylor^e, John M. Kelly^e, Miroslav Bajić^b and Silvana Raić-Malić^a*

^aDepartment of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, HR-10000 Zagreb, Croatia; ^bDepartment of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia; ^cDepartment of Transfusion Medicine, Osijek University Hospital, Josipa Huttlera 4, HR-31000 Osijek, Croatia ;^dFaculty of Medicine, Department of Microbiology and Parasitology,University of Osijek, Cara Hadrijana 10/E, HR-31000 Osijek, Croatia; ^eDepartment of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK

*Corresponding Author:

Tel.: 00385-1-4597-213. Fax.: 00385-1-4597-224. E-mail: sraic@fkit.hr;

Content	Pages
1. UV/VIS specrta of novel compounds	S2–S6
2. CD titrations of novel compounds	S7–S10
3. Antimicrobial activities of novel compounds against Gram-	S11
positive and Gram-negative bacteria.	
3. ¹ H and ¹³ C NMR spectra of novel compounds	S12–S22

1. Spectroscopic characterization of compounds

Due to the low solubility of investigate compounds in pure water, a stock solutions were prepared in DMSO, $c = 1 \times 10^{-3}$ mol dm⁻³. Stock solutions have been characterized by UV-Vis spectroscopy. DMSO solutions of all studied compounds were shown to be stable over longer period at 4–8 °C. Table 1 gives values for the molar absorption coefficients of compounds in water-DMSO (≥ 1 %) mixture.

	λ_{max}	$\epsilon \cdot 10^3$		λ_{max}	$\epsilon \cdot 10^3$		λ_{max}	$\epsilon \cdot 10^3$
	/ nm	/ dm ³ mol- ¹ cm ⁻¹		/ nm	/ dm ³ mol- ¹ cm ⁻¹		/ nm	/ dm ³ mol- ¹ cm ⁻¹
7a	257	30.7	8a	255	22.4	9a	259	24.9
	315	31.4		313	23.1		313	22.4
7b	259	29.6	8b	256	28.1	9b	261	30.5
	313	27.0		312	27.5		321	25.2
7c	256	26.9	8c	255	24.3	9c	258	32.5
	313	28.7		313	30.0		317	35.9
7d	257	27.5	8d	255	22.1	9d	259	23.3
	313	35.1		313	26.9		317	26.9
7e	257	31.6	8e	254	20.6	9e	259	34.5
	314	37.7		312	24.3		319	35.3

Table S1. Molar absorption coefficients of investigated compounds

Fig. S1. UV/VIS spectra

	ctDNA	polyA-polyU	polyC-polyG
7d	¹⁰ / ₉ ¹⁰ / ₉ ¹	10 00 00 00 00 00 00 00 00 00	4 4 4 4 4 4 4 4 4 4 4 4 4 4

Fig. S2. CD titrations

3. Antimicrobial activities

Table S2

Antimicrobial activities of compounds 7a–7e, 8a–8e and 9a–9e against Gram-positive and Gram-negative bacteria.

	MIC (µg/mL)						
Compd	S. aureus ATCC 25923	<i>E. faecalis</i> ATCC 29212	<i>E. coli</i> ATCC 25925	<i>K. pneumonia</i> ATCC 700803	P. aeruginosa ATCC 27853	A. baumannii ATCC 19606	
7a	32	64	32	128	128	>256	
7b	>256	128	>256	>256	>256	>256	
7c	64	64	256	>256	>256	>256	
7d	32	64	32	64	32	>256	
7e	32	128	32	128	64	>256	
8a	128	256	256	>256	>256	>256	
8b	128	64	256	>256	>256	>256	
8c	32	64	256	>256	>256	>256	
8d	64	128	>256	>256	>256	>256	
8e	64	256	256	>256	>256	>256	
9a	128	128	256	>256	>256	>256	
9b	128	256	256	>256	>256	>256	
9c	128	32	256	>256	>256	>256	
9d	64	128	128	>256	128	>256	
9e	32	128	64	>256	128	>256	
Ceftazidime	-	-	0.5	-	4	-	
Ciprofloxacin	-	-	0.004	0.06	0.5	0.06	
Âmpicilin	1	2	-	-	-	-	
Gentamicin	0.125	8	-	-	-	-	

Fig. S3 a) 1 H NMR and b) 13 C NMR of compd. 3c

Fig. S4 a) ¹H NMR and b) ¹³C NMR of compd. 3e

Fig. S5 a) 1 H NMR and b) 13 C NMR of compd. 7b

165 160 155 150 145 140 135 130 125 120 115 110 106 100 95 90 #5 00 75 70 65 60 55 90 45 40 35 fl.(ppm)

a)

\$ \$\$ \$1 1 \$

b)

a)

a)

Fig. S11 a) ¹H NMR and b) ¹³C NMR of compd. 9b

Fig. S12 a) ¹H NMR and b) ¹³C NMR of compd. 9c

Fig. S13 a) ¹H NMR and b) ¹³C NMR of compd. 9e

