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Section 1 -  Testing the effect of heterogeneous rates on GeoSSE models 

Section 2 -  Extended simulation results 

Section 3 -  Performance of GeoSSE+extirpation models 

 
 
Table S1: Description of scenarios and parameter values used to simulate the data. Scenarios A to E are 
instances of the original GeoSSE model and GeoHiSSE models with varying number of rate categories. 
Scenarios F to H are comprised of different models. Scenario F is a custom extension of the GeoSSE 
model allowing anagenetic transitions (i.e., jumps) between the endemic ranges. Scenario G has only two 
endemic areas A and B (see more information in Magnuson-Ford and Otto 2012). Scenario H is not a 
joint tree and trait model and follow similar procedures as used by Rabosky and Goldberg (2015). 
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Scenario Model Rate 
class 

Parameters Simulation 
stop criteria 

sAB sA sB xA xB dA dB 

A GeoSSE 0 0.1 0.1 0.2 0.03 0.03 0.05 0.05 ntips=500 

B GeoHiSSE 
0 0.1 0.1 0.1 0.03 0.03 0.05 0.05 

ntips=500 1 0.2 0.2 0.2 0.03 0.03 0.05 0.05 
2 0.4 0.4 0.4 0.03 0.03 0.05 0.05 

C GeoHiSSE 

0 0.1 0.1 0.1 0.03 0.03 0.05 0.05 

ntips=500 
1 0.2 0.2 0.2 0.03 0.03 0.05 0.05 
2 0.3 0.3 0.3 0.03 0.03 0.05 0.05 
3 0.4 0.4 0.4 0.03 0.03 0.05 0.05 
4 0.5 0.5 0.5 0.03 0.03 0.05 0.05 

D GeoHiSSE 
0 0.1 0.2 0.1 0.03 0.03 0.05 0.05 

ntips=500 1 0.2 0.4 0.2 0.03 0.03 0.05 0.05 
2 0.4 0.8 0.4 0.03 0.03 0.05 0.05 

E GeoSSE 0 0.5 0.1 0.1 0.03 0.03 0.05 0.05 ntips=500 

F 

GeoSSE + 
jumps with 
qAB = qBA 

= 0.05 

0 0.1 0.1 0.1 0.03 0.03 0.01 0.01 ntips=500 

G 

BiSSEness 
with 

p0c=p1c=0.1
and 

p0a=p1a=1 

0 NA 0.1 0.1 0.03 0.03 0.01 0.01 ntips=500 

H 
BiSSE tree 
and Mk3 
ranges 

For generating the trees: lambda0 = 0.5; lambda1 = 1; mu0 = mu1 = 0; q01 = q10 = 0.006 
For simulation of the areas: qA_AB = qAB_A = 0.05; qB_AB = qAB_B = 0.05; qA_B = 

qB_A = 0 [Kept only sims with at least 50 species in the less frequent range.] 
ntips=500 
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Table S2: Additional 17 models used in empirical study of conifers in addition to the 18 models described 
in Table 1 in the main text. 
 

Model Description free parameters 

19 CID - GeoHiSSE, 4 rate classes, null model, cladogenetic 11 

20 CID - GeoHiSSE+extirpation, 4 rate classes, null model, cladogenetic 13 

21 CID - GeoHiSSE, 4 rate classes, null model, anagenetic 13 

22 CID - GeoSSE,  s 01 =0 and  x 01 =0, anagenetic 4 

23 GeoSSE,   s 01 =0 and  x 01 =0, anagenetic 6 

24 CID - GeoHiSSE, 3 rate classes,  s 01i =0 and  x 01i =0, anagenetic 9 

25 GeoHiSSE, 2 rate classes, full model,  s 01i =0 and  x 01i =0, anagenetic 13 

26 CID - GeoHiSSE, 5 rate classes,  s 01i =0 and  x 01i =0, anagenetic 13 

27 CID - GeoHiSSE, 2 rate classes,  s 01i =0 and  x 01i =0, anagenetic 7 

28 CID - GeoHiSSE, 4 rate classes,  s 01i =0 and  x 01i =0, anagenetic 11 

29 CID - GeoSSE+extirpation,  s 01 =0 and  x 01 =0, anagenetic 6 

30 GeoSSE+extirpation,   s 01 =0 and  x 01 =0, anagenetic 8 

31 CID - GeoHiSSE+extirpation, 3 rate classes,  s 01i =0 and  x 01i =0, anagenetic 11 

32 GeoHiSSE+extirpation, 2 rate classes, full model,  s 01i =0 and  x 01i =0, anagenetic 17 

33 CID - GeoHiSSE+extirpation, 5 rate classes,  s 01i =0 and  x 01i =0, anagenetic 15 

34 CID - GeoHiSSE+extirpation, 2 rate classes,  s 01i =0 and  x 01i =0, anagenetic 9 

35 CID - GeoHiSSE+extirpation, 4 rate classes,  s 01i =0 and  x 01i =0, anagenetic 13 
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Figure S1: Scheme of the transition rates between rate classes (RC0 to RC4) used for the simulation 
scenarios with multiple rate classes (Sims B, C and D). Transitions between rate classes were modelled 
with the same rate (0.05) following a meristic Markov model. As a result, diversification rates vary 
following a gradient across the branches of the three. 
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Figure S2: Proportion of widespread lineages on trees simulated under scenarios E and F. See Table S1 for 
description of model parameters. Top histogram (A) shows results from a standard GeoSSE model with 
speciation rates for widespread lineages five times faster than endemic lineages. Bottom histogram (B) are 
results from simulations using a modification of the GeoSSE model allowing jump dispersion events. Of 
course, scenario H has no extant or extinct lineages in the widespread range (see ‘Simulation study’ 
section of the main text and Table S1). 
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Figure S3: Summary of model support for simulated scenarios A to D. Plots show distribution of Akaike 
Information Criterion weights (AICw) for each model (columns) computed with 100 simulation 
replicates. Box-plots in red are area-dependent models and gray plots are area-independent models. A) 
Data simulated under the area-dependent GeoSSE model. B) and C) simulated phylogenies with three and 
five diversification shifts unrelated to geography, respectively. D) Simulation of area-dependent 
diversification GeoHiSSE model with two rate classes. Table 1 shows list and description of fitted models 
and Table S1 show details for each simulation scenario. 
 

 

 

6 



 

280
281
282
283
284
285
286
287
288

 

 

 

 

 

Figure S4: Summary of model support for simulated scenarios E to H. Plots show distribution of Akaike 
Information Criterion weights (AICw) for each model (columns) computed with 100 simulation 
replicates. Box-plots in red are area-dependent models and gray plots are area-independent models. E) 
Data simulated under a GeoSSE model with speciation rates associated to the widespread range 5x faster 
than endemic areas. F) Data simulated under a modified GeoSSE model allowing anagenetic transitions 
(i.e., jumps) between endemic ranges. G) Data generated using a BiSSEness model (Magnuson-Ford and 
Otto 2012) with two endemic regions. H) Data generated using an anagenetic Markov model (details on 
main text and Table S1). Table 1 shows list and description of fitted models and Table S1 show details for 
each simulation scenario. 
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Figure S5: Accuracy of parameter estimates for simulations scenarios A to D. Plots show the proportional 
difference between estimated parameters and their true values computed for nodes and tips in the tree. 
Light blue shades represent the running 5% and 95% quantiles computed for all simulation replicates 
using 100 cumulative bins equally spaced from the root towards the tips of the tree. Dark blue shades (not 
always visible) show the limits between the running 25% and 75% quantiles. Red lines show the median 
of parameter estimates. See Figure S5 for estimates of net diversification. 
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Figure S6: Accuracy of parameter estimates for simulations scenarios A to D. Plots show the proportional 
difference between estimated parameters and their true values computed for nodes and tips in the tree. 
Light blue shades represent the running 5% and 95% quantiles computed for all simulation replicates 
using 100 cumulative bins equally spaced from the root towards the tips of the tree. Dark blue shades (not 
always visible) show the limits between the running 25% and 75% quantiles. Red lines show the median 
of parameter estimates. 
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Section 1 

Testing the effect of heterogeneous rates on GeoSSE models --   Earlier studies showed that the 

Binary State-dependent Speciation and Extinction model (BiSSE) shows an undesirable behavior 

when faced with rate heterogeneity in diversification across the tree that is not associated with 

character states (Rabosky and Goldberg, 2015). Rabosky and Goldberg (2015) show that BiSSE 

has an issue both with respect to the frequency in which the trait-dependent models are selected 

when no such process is present and with misleading parameter estimates for such models. The 

explanation for this behavior is general enough and may apply to every State-dependent 

Speciation and Extinction model (SSE). When rates of diversification are heterogeneous across 

the phylogenetic tree, the original SSE models have no means to accommodate the shifts in rates 

other than set speciation and/or speciation associated with different states to differ across the 

branches of the tree (Beaulieu and O’Meara, 2016). Thus, here we evaluate the behavior of the 

original GeoSSE model to area-independent shift in diversification rates, in order to show 

evidence of a similar pattern. 

For this we used the same datasets generated for the simulation scenarios B and C (Table 

S1), but we restricted the set to include only the homogeneous GeoSSE models (see Figure 3, top 

panel). We chose to include representatives of our expanded GeoSSE models (i.e., 

GeoSSE+extirpation and anagenetic GeoSSE) because these might be prone to the same issues 

when no hidden rate classes are included in the set of models. The model set is comprised by one 

area-dependent and one area-independent configuration of the original GeoSSE, the 

GeoSSE+extirpation, and the anagenetic GeoSSE models (i.e., models 1, 2, 7, 8, 19, and 20 

described on Table 1). We fit each model using Maximum Likelihood to obtain parameter 

estimates, computed their Akaike model weight (AIC w ) and performed model averaging. 

Results show that the distribution of parameter estimates averaged across all models in 

the set and pooled for all simulation replicates is centered in the true value for the simulated 

datasets (Figure S6, top row). In other words, parameter estimates show no difference between 

rates of diversification associated with areas  0  or  1 . Akaike weights across all simulations are not 

overwhelmingly biased towards area-dependent models (Figure S6, bottom row). For instance, in 

many of the simulation replicates there is substantial AICw for both area-independent and 
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area-dependent models, meaning that parameter estimates averaged across these models include 

contributions from both equal rates and area dependent rates. These results contrast with 

previous descriptions of the problem associated with BiSSE models. 

 

 

Figure S7: Results for relative net diversification rates and Akaike model weights (AICw) for simulation 
scenarios B and C. Both scenarios show heterogeneous diversification rates not associated with the areas 
(Table S1). Top plots show the distribution of ratios between net diversification rates for areas  0  and  0 + 1 
computed for each simulation replicate. Red dashed vertical lines represent the true value for the ratios 
whereas horizontal blue lines show the empirical 95% CI. Bottom plots show distribution of weights 
across all simulation replicates for each of the models in the set, see Table 1 (in the main text) for 
description of the models. 
 

When we evaluate the same results using model selection based on AIC and keeping all 

models within 2 AIC units of the best model, the results are very different. About one third of the 

replicates show strong support for area-dependent models of diversification (30% for Scen B and 

28% for Scen C), approximately 40% showed decisive support for null models (37% for Scen B 
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and 44% for Scen C), whereas the rest included both area-dependent and independent models 

among the best models. In other words, one of each three simulation replicates showed a problem 

of model misspecification or returned inconclusive results. 

Our results show that the original implementation of the GeoSSE model, without the 

inclusion of hidden states, shows model adequacy issues that are similar to BiSSE (Rabosky and 

Goldberg 2015; Beaulieu and O’Meara 2016). However, by focusing on the parameter estimates 

averaged across the models, instead of relying solely on a model choice framework, one is much 

more likely to arrive in the conclusion that there is no difference in the rates of diversification 

associated with each of the geographical areas or that this difference is reduced even when using 

only the simplest set of models. It is important to note, however, that proper usage of the 

GeoHiSSE (as well as HiSSE) models require that there is an trait-independent model (CID) with 

a comparable number of free diversification parameters for each of the area-dependent models in 

the set. Notwithstanding, our results here show that model - averaging over the parameters 

estimates for area-independent and area-dependent GeoSSE models can provide accurate 

parameter estimates. 
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Section 2 

Extended simulation results  -- Here we performed two sets of simulations to test the behavior of 

the GeoSSE model including hidden states. The first set of simulations is composed of four 

different scenarios that test area-independent and area-dependent diversification with varying 

degrees of heterogeneity in rates of diversification (Scenarios A to D). The second set has 

another four simulation scenarios that explore the behavior of the model under extreme cases. 

The first three scenarios (E to G) simulate cases of reduced frequency (or complete absence) of 

widespread lineages whereas the last scenario (H) tests the case in which ranges have evolved 

only due to anagenetic changes (no cladogenetic events). Table 1 shows the parameter values 

used to simulate trees and geographic range distributions observed at the tips for 100 replicates 

for each of the scenarios. In all simulations we used 500 lineages in the tree as the stopping 

criteria. For the simulations with multiple rate classes (scenarios B, C and D), we used a meristic 

Markov model to control the transitions between rate classes such that each transition would 

represent a gradual change from the fastest rate class to the slowest by passing through the 

intermediary ones (see Figure S1). We fitted the 18 models shown in the Table 1 (available on 

the main text of this study) to each of the replicates for each of the simulation scenarios using 

maximum likelihood. Then we performed model-averaging using Akaike weights. Figures S3 

and S4 show the distribution of Akaike weights of models pooled for all replicates for each 

simulation scenario for simulation sets A to D and E to G, respectively. 

 

Area-dependent and area-independent simulations  -- Results with scenarios A to D show that our 

GeoHiSSE models, in overall, are adequate to study rates of diversification dependent or not on 

geographical ranges. Figure S3 shows a summary of the results. In many cases multiple models 

with congruent diversification histories showed high Akaike weights. For example, in simulation 

scenario A, model 2 is an original implementation of the area-dependent GeoSSE model without 

hidden states whereas model 8, which also showed high Akaike weight in part of the simulations, 

is an area-dependent GeoSSE+extirpation model. 

In the case of the area-independent simulation scenarios B and C, there are multiple 

models with high Akaike weight. However, every model showed in gray in Figure S3 (and 
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Figure S4) are area-independent models. Simulation scenarios B and C show replicates with high 

Akaike weights for the models 3, 6 and 9 (Table 1, main text). Models 3 and 6 are instances of 

the area-independent model with different number of rate categories; model 3 has three hidden 

states and assumes that all transitions (including dispersions and transitions between rate classes) 

are constrained to be symmetrical and model 6 has two hidden states, but transition rates are 

estimated from the data. Model 9 is another area-independent model with symmetrical transition 

rates, but allows for rates of local extinction and range reduction to be estimated separately. 

Results for simulation scenarios A to C are examples of the utility of applying 

model-averaging to estimate parameters taking into account the uncertainty in model choice. 

Here different models show high Akaike weights on the simulations, but all these models are 

congruent with the generated data. The fact that there is uncertainty associated with which model 

show high Akaike weights has to do with the signal in the simulated data. Tree shape, frequency 

of observed ranges across lineages, distribution of branch lengths and etc, all vary among the 

simulation replicates within each scenario. Thus, it is natural to expect some level of model 

uncertainty, especially when fitting more realistic models that take into account heterogeneous 

rates of diversification associated or not with the observed species ranges, such as in our study. It 

is important to note, however, that model uncertainty is different from process uncertainty. Note 

that the diversity of models observed for each simulation scenario do not vary in function of 

whether the process is area-dependent or area-independent diversification. Although there is 

variance on the support for each model across replicates, the conclusion of whether the process is 

dependent or independent of range does not change. Applying model-averaging across the set of 

models allows to estimate parameter estimates incorporating this uncertainty and one can 

evaluate the certainty about the process by evaluating the distribution of Akaike   weight across 

the models. [Not very distant from the interpretation of model averaging when performing 

Bayesian model averaging - See  Similarities between BAMM and model-averaging using AICw . ] 

The last simulation scenario (D) is an area-dependent scenario with three rate classes. 

Results are congruent with simulation scenario A, but with more variance in Akaike weights 

among models. It seems that model uncertainty is somewhat associated with rate heterogeneity 

across the tree, which is not surprising, given that this is the main reason for the inadequacy of 
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the original implementation of the SSE models. Again, the uncertainty among models does not 

bias our conclusions about the biological process behind the observed data. Most of the model 

weight across the simulation replicates is associated with area-dependent models. 

 

Model performance under extreme scenarios --  The simulated scenarios from A to D followed a 

joint tree and geography model of evolution, where diversification rates were tied to 

geographical areas and range evolution occurred through cladogenesis (i.e., through speciation of 

widespread lineages), or along the branches of the tree (i.e., due to dispersion and extirpation). 

However, our knowledge of the processes that led us to observe lineages in particular geographic 

areas is often incomplete and empirical data can behave in ways not expected by our models. In 

other words, simulations based solely on SSE models, including hidden states or not, as 

generating models are naive surrogates with respect to empirical data sets. Here, we study two 

extreme cases of geographic range evolution with the objective of identifying odd behaviors 

when simulating data sets 1) where widespread ranges are rare or absent in extant species, and 2) 

where the evolution of areas are not tied to cladogenetic events. 

Transitions between endemic areas in GeoSSE and GeoHiSSE are modelled as a two-step 

process. First, an endemic lineage disperses and becomes widespread and then it can either 

undergo cladogenesis, which generates two endemic sister lineages (one in area  0  and another in 

1 ), or a local extinction in one of the areas reduces the range to endemic again. If extant 

widespread lineages are rare or absent, the information to infer cladogenetic and dispersion 

events between endemic ranges become limited, possibly leading to issues with parameter 

estimates and model adequacy. We first simulated datasets with widespread lineages as being 

rarely observed at the tips by generating data and trees under a GeoSSE model with speciation 

rates of widespread lineages five times faster than endemics (see scenario E in Table S1). This 

produced data sets with an average of ~7%, out of 500, extant lineages occupying widespread 

areas (Figure S2A). However, parameter estimates across all simulation replicates showed that 

the low frequency of widespread extant lineages does not prevent our set of models from 

reaching meaningful estimates using model-averaging (Figure 4E).  
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Alternatively, range expansion could have been rare throughout the history of the group 

whereas jump dispersal events (i.e., direct transitions between endemic distributions) have 

played an important role. To simulate such a scenario we used a GeoSSE model, but we allowed 

lineages to disperse between endemic areas without becoming widespread first (scenario F). This 

scenario resulted in an average of only 4%, out of 500, extant species occupying widespread 

areas (Figure S2B). However, there is no evidence for a significant bias in parameter estimates 

for both area-dependent diversification rates or between-area speciation rates (Figure 4F). On the 

whole, our approach of model-averaging across a large set of candidate models does not appear 

sensitive to rare extant widespread areas. 

Finally, we explored the extreme possibility that the widespread range is completely 

absent both in extant distributions and in the evolutionary history of the group. In this scenario, 

changes in geographical distribution are the result of a) jump dispersal events between endemic 

areas or b) speciation events in one of the endemic ranges leading to one sister lineage occurring 

in the other area (see Magnuson-Ford and Otto, 2012). We relied on BiSSE-ness, the 

cladogenetic model for binary states (Magnuson-Ford and Otto, 2012), in order to simulate data 

sets that result in only two endemic areas observed at the tips (scenario G). When fit to our 

model set, the absence of widespread areas among the extant species produces estimates of the 

rates of between-area speciation ( s AB ) that are highly uncertain (Figure 4G). The 95% density 

interval for the model-averaged estimate of  s AB  across nodes spans the extreme wide interval 

between 4 and 58 units. These estimates are orders of magnitude higher than the rates of 

speciation associated with each of the endemic regions. In contrast, estimates for the relative 

difference in within-area net diversification rates associated with each endemic area did not show 

a strong bias (Figure 4G), suggesting that poor estimates for between-area speciation does not 

strongly bias our conclusions about range-dependent diversification rates. 

All previous scenarios assumed that cladogenetic events were important in the 

evolutionary history of the lineages. This is a very plausible element of the model ,  since the data 

is expected to describe geographical ranges. However, here we also considered the performance 

of the model when this is not the case, perhaps because the coarse subdivision of ranges required 

by GeoSSE is grossly inadequate for the study system. For this, we generated datasets with 
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transitions between areas restricted only to anagenetic dispersal events along the branches of the 

tree. We simulated trait-independent phylogenetic trees with two rates of diversification 

following Rabosky and Goldberg (2015). We then generated datasets using only a simple 

transition-based Markov model by restricting transitions between endemic areas to always pass 

through the widespread area (see the anagenetic GeoSSE model in Figure 3 of the main text, 

middle panel). The difference in within-area   rates of diversification is larger than observed in any 

other simulation scenario (Figure 4H). Moreover, the absence of cladogenetic events makes 

estimates for between-area speciation ( s AB ) uncertain, although raw values for the parameter are 

within the same order of magnitude of the true rates of diversification across the tree (grey lines 

in Figure 4H).  
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Section 3 

Performance of GeoSSE+extirpation models  -- The original GeoSSE model does not make a 

distinction between events of range reduction and extinction of endemic lineages. Range 

reduction happens when a widespread lineage ( 01 ) becomes locally extinct in one of the areas, 

leading to an endemic distribution area  0  (when extirpated from  1 ) or area  1  (when extirpated 

from  0 ). In contrast, the extinction of endemics result in the complete extinction of the lineage. 

The original parameterization of the GeoSSE model maps both events to a single extirpation rate 

parameter associated with the endemic area  0  (x 0 ) and  1  (x 1 ). Goldberg and colleagues (2011) do 

consider the expansion of GeoSSE into different, often more parameter rich, variants, but no 

work so far had explored the effect of separating rates of range reduction from the extinction of 

endemics. We performed a series of simulations to test whether we can properly estimate 

separate rates for range reduction ( d AB->A  and  d AB->B ) and extinction of endemic lineages ( x A  and 

x B ) using our expanded GeoSSE+extirpation model. We compared the parameter estimates 

between the original GeoSSE and the GeoSSE+extirpation model in the absence of hidden states. 

In order to estimate separate rates for range reduction and extinction of endemic lineages 

the model needs to be expanded to include one more rates for each endemic area. The 

GeoSSE+extirpation model has a rate of range reduction for each area (parameters x 0  and x 1 ) and 

a separate rate of extinction of endemics (parameters x* 0  and x* 1 ). The GeoSSE+extirpation 

model can be extended to include hidden states, which we refer as the GeoHiSSE+extirpation set 

of models. Like all other GeoHiSSE models, the rates of range reduction as well as extinction of 

endemics are associated with the hidden states. Thus, for a GeoHiSSE+extirpation model with 2 

hidden states we would have the parameters: x 0A , x 0B , x 1A , x 1B  for range reduction and x* 0A , x* 0B , 

x* 1A , x* 1B  for extinction of endemics. [Please see notes about model complexity and the need for 

more species in the phylogeny in the main text.] 

Here we test if it is possible to differentiate between rates of range reduction from the 

extinction of lineages in endemic areas using the GeoSSE+extirpation model. We simulated 

phylogenetic trees and data under four distinct scenarios (Scen ext_A to ext_D, see Table S3). 

For the first scenario we set range contraction and dispersion to be more frequent than extinction 

of endemic lineages (Scen ext_A). This scenario models the case in which events of dispersal 
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and range contraction occur at the same rate, but the extinction of endemic lineage are relatively 

rare. In other words, recent dispersers face a higher chance of being extirpated from the area than 

established lineages. For the second scenario we kept the same generating values used for ext_A, 

but we increased the rate of extinction of endemic lineages in area  0  (Scen ext_B). 

Diversification rates associated with area  1  are higher than in  0 , due to an increase in extinction 

in area  0 . The first and second scenario test the performance of our estimates for separate rates of 

range reduction and extinction of endemics as well as if such processes can carry a signal of 

area-dependent diversification. 

 

Table S3: Description of scenarios and parameter values used to simulate phylogenetic trees and range 
distributions under the GeoSSE+extirpation model. All simulations used models with a single rate 
category. Parameters in bold were modified from the original GeoSSE model. Here x 0  and x 1  are the rates 
of range reduction and x* 0  and x* 1  are the rates of extinction of endemic lineages associated with each of 
the areas. 
 

Scen 
Parameters Simulation 

stop criteria s 01 s 0 s 1 x 0 x 1 d 0 d 1 x* 0 x* 1 

ext_A 0.1 0.1 0.1 0.05 0.05 0.05 0.05 0.01 0.01 ntips=500 
ext_B 0.1 0.1 0.1 0.05 0.05 0.05 0.05 0.03 0.01 ntips=500 
ext_C 0.1 0.1 0.1 0.05 0.05 0.10 0.05 0.01 0.01 ntips=500 
ext_D 0.1 0.1 0.1 0.01 0.01 0.05 0.05 0.05 0.05 ntips=500 

 

 

In the third and fourth simulation scenarios we changed the processes described for 

simulations ext_A and ext_B. Scenario ext_C repeats the same generating values as simulation 

ext_A, but we increased the rate of dispersion from area  0  to the widespread region  01 . In this 

case, extinction of endemics is still rarer than dispersion, but dispersion events from area  0  are 

now twice as frequent as from area  1 . With this we can explore if there are important 

confounding factors among the anagenetic events (i.e., dispersion, range reduction, and 

extinction of endemics). Finally, scenario ext_D flips the relationship between range reduction 

and extinction of endemics assumed in the previous simulations. Now extinction rates of 

endemic lineages are higher than the rate with which widespread lineages become endemic. 

Scenarios ext_A to ext_C assume that recent dispersers are likely to lose part of their range 
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whereas scenario ext_D explores the case that lineages are much more prone to extinction when 

they become restrict to endemic distributions than to have their range contracted. 

We fitted a reduced model set with four models using Maximum Likelihood Estimate and 

estimated parameters by performing model averages using the Akaike weights for each of the 

models. Since the aim of these tests are to show the performance of the GeoSSE+extirpation 

models with respect to the original GeoSSE models, we decided not to include any instance of 

the GeoHiSSE or anagenetic versions of the GeoSSE model. Here we use a collection of 

area-independent and area-dependent models with and without separating range reduction from 

extinction of endemics (see Table 1 in main text): Model 1 (CID original GeoSSE), Model 2 

(CID original GeoSSE), Model 7 (CID GeoSSE+extirpation), and Model 8 (area-dependent 

GeoSSE+extirpation). 

In terms of model weight, results were similar across simulation scenarios ext_A to 

ext_D. Both area-independent models 1 and 3 showed higher Akaike weight across all 

simulation replicates (Figure S7). The different rates of extinction (Scen ext_B) or dispersion 

(Scen ext_C) associated with areas simulated in the data show no reflection in model weight 

when compared to other simulation scenarios (Scen ext_A or Scen ext_D). However, when we 

look to the parameter estimates for each of the models across the 100 replicates there is strong 

evidence that GeoSSE+extirpation models are able to correctly recover the generating parameters 

for the different scenarios (Figure S7). Parameter estimates across all simulations (Scen ext_A to 

Scen ext_D) show that we can adequately distinguish between rates of range reduction and rates 

of extinction of endemic lineages. However, these results are conditioned on a phylogeny with 

500 species and we strongly recommend performing similar tests if planning to use smaller trees. 
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Figure S8: Distribution of Akaike weights for the model set fitted to simulation scenarios ext_A to ext_D. 
Box plots in grey are area-independent models and in red are area-dependent models. See Table 1 (main 
text) for description of the models and Table S3 for parameter values used for the simulations. 
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Figure S9: Distribution of parameter values across 100 simulation replicates for each of the scenarios 
ext_A to ext_D. Here ‘AIDiv’ denotes area-independent models and ‘ADDiv’ denotes area-dependent 
models. Rows represent simulation scenarios whereas columns are different models. Columns 1 and 2 
show original GeoSSE models (7 parameters) and columns 3 and 4 are GeoSSE+extirpation models (9 
parameters). Parameters linked by ‘~’ were constrained to the same value during Maximum Likelihood 
estimation. The blue horizontal lines show the values of the parameters used to generated the data for 
each scenario (note that scale in y axes vary). 
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