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Innovate In This Space...
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SEPA One Approach:
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s High-Throughput Hazard Screening
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SEPA Promiscuous Chemical Response is the Rule
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SEPA Promiscuous Chemical Response is the Rule
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SEPA Beginning to Address Concerns
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High-throughput Genomics (HTTr)
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Connectivity Mapping Demonstrates
Multiple Pathway Matches
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* Differential gene
expression
observed with
reference
chemicals

* Putative targets
identified using
Connectivity
Mapping

e Large degree of
promiscuity of

" * predicted targets
i observed
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=P Putative target evaluating

=$ Promiscuous Target
Mapping

additional methods
for MIE prediction
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SEPA Pathway Potencies by BMD Analysis
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» Broad range of pathway level potency estimates and number of pathways
affected across chemicals.

Josh Harrill, NCCT, unpublished
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wEPA Framework for Integrating Hazard
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SEPA Functional genomics:
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Defining Relevancy

« Most chemicals have apparent polypharmacology—what
IS the critical/relevant MOA?
—Could use potency to define but this may not be linked to adversity
—Transcriptomics is high content but function is generally inferred

 Functional genomics allows for
bridging between genotype
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- Advent of CRISPR-Cas9 oOO e *

opens door for higher
throughput applications in

. Gilbert et al., Cell, 2014
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SEPA Environmental Application of
Functional Genomics
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« Trichloroethylene (TCE)
metabolite study in yeast TCE
mutants (n=4607) I

- Genome-wide profiling of yeast
mutants (n=4607) identified the
error-prone translesion

Mon-distorting DCVC

" RADS1 ™, induced DMA damage]l

synthesis (TLS) pathway Homologous e
conferring sensitivity to TCE R D
metabolite DCVC l l
- Results were confirmed in a Recombination repair of DCVC Bypass mechanism involing error
eukaryotic system using DT40 it resart of repication (doue Eiling at ies of DOVE damage a
strand breaks) the cost of fidelity (point mutations)

avian kidney cells

De la Rosa et al., Toxicological Sciences, 2017
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- Collaboration between University of Florida (Chris Vulpe) and USEPA
(NCCT, Keith Houck)

- Funded by USEPA SMARTI award to Keith Houck and Audrey Bone

- Goal of the project is to test the feasibility of using
CRISPR-Cas9 genome editing in human cells for
screening environmental chemicals in a functional
genomics toxicology format
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Computational Toxicology




lnlted States

Environmental Protectior
Agency

Use CRISPR-
Cas9 genome
editing
technology
with a

targeted, short
guide RNA
library (n=3675
genes) in X
cells
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Expose cells
to curated set

of ~10
chemicals

Experimental Design

Measure cell
viability and
identify genes
that conferred
sensitivity or
resistance

Evaluate
results in
context of
putative

NEERIS NS
of cytotoxicity
for each
chemical




SEPA
Chemical Selection | O ,
 Criteria 11 chemicals |
—Mix of uses o —Colchicine losan
(pharmaceutical, pesticide, —Triphenyltin chloride

consumer, industrial)

—Well-characterized —Triglycidyl isocyanurate

mechanisms of cytotoxicity ~ —CYtémbena

- Mitochondrial toxicity —Propargite

- DNA damage —QOcthilinone

- Oxidative stress —Triclosan

- Microtubule disruption —Tralopyril

« Proteosome inhibition —Dibutyltin dichloride

—Known cytotoxic In

Tox21/ToxCast assays —Malachite green

without metabolic —Bisphenol A glycidyl
activation methacrylate
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 Current approach
limited to identifying
genes that lead to
reduction in cell
viability

* Problems inherent to
CRISPR tech

—Unintended mutations
 “Pathway” analysis

Weaknesses

- Larger perspective-
same problems as
other HTT approaches

—Metabolic capacity
—Toxicokinetic integration

- BUT functional aspects
Increases confidence
In relevance of specific
genes to adverse
effects
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Aoy Functional Genomics into Environmental Risk
Assessment

« More proof-of-concept and pilot studies with well-
characterized chemicals

« Development of assay technology that facilitates expansion
of functional endpoints beyond cell viability

—In vivo assays In organisms suited to HTT such as C.
elegans or Danio rerio

—cell line engineering of pathway reporter lethality assays

- Dependent on continued integration of HTT into risk
assessment paradigms

National Center for
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SEPA Other Uses of Genome Editing Tools
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o Valldatlon of HTTr signatures

« Validation of AOPs

—What is the effect of knockdown/activation of MIE's/KE’s to the
adverse endpoint?

—Can this help with the development of quantitative AOP’s?

- Rapid generation of specific animal model MOAs
— Sensitivity/resistance to specific MOA'’s
—Modulation of critical ADME parameters

« Generation of sensitive population models in vivo and In
Vitro
—Single genetic mutation disease models
—Engineered ADME genetic variability

—SNP recapitulation of sensitive populations from GWAS-type
studies (complex)
—Validation of sensitivities identified through GWAS-type analysis

National Center for

Computational Toxicology 16
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