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Absence of Sign Problem in 1D Hubbard Model

In this section we show that there is no sign problem in QKMC simulation with a 1D Fermi

Hubbard model. We define a propagated state |α(p)〉 = |α↑(p)α↓(p)〉 along the imaginary-

time evolution of state in SSE.1 Index p means p operators have been applied on an initial

electron configuration |α(0)〉, i.e.,

|α(p)〉 ∼
p∏
i=1

Hbi |α(0)〉 (S1)

We also order the electrons in the state representation so that up-spin creation operators

precede the down-spin creation operators. When a diagonal operator, e.g., ni,σ = c†i,σci,σ

acts on the propagated state, there is a phase factor (−1)2N
i
↑ if σ =↑ or (−1)2N↑+2N i

↓ if σ =↓,

where N i
↑,↓ is the number of up- or down-spin electrons appearing on lattice site with site
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index j < i, and N↑ is total number of up-spin electrons in the system. In either case, the

factor −1 introduced by Fermi statistics always appear twice in the phase factor, leading to

a +1 phase factor. When an off-diagonal operator acts on the state, the same phase factors

are introduced if open boundary condition (OBC) is used. Consequently, there is no sign

problem in QKMC simulation for the 1D Fermi Hubbard model with OBC.

QKMC for Canonical System

QMC simulation with SSE method is usually carried out in grand canonical systems, where

total number of particles can fluctuate. However, if we want to calculate electric current

going from the left to the right across the interface in our system (see Fig. 1 in the main

text), we should perform QKMC in a canonical system, i.e., by setting NL + NR to a fixed

value. At half-filling for a 20-site system, for example, NL +NR = 20.

Diagonal update discussed in the main text keeps the total number of electrons fixed;

while off-diagonal update may change the electron number. Off-diagonal transitions that

change the total number of electrons in the system will then be rejected.

Solution to Detailed Balance Equation

As mentioned in the main text, there are infinite number of solutions2 to the detailed balance

equation such as:

Wi

Wi−1
=
p(Wi−1 → Wi)

p(Wi → Wi−1)
, (S2)

where Wi−1 (Wi) is the old(new) configuration for a specific bond operator in the directed

loop.

Here we explore two specific solutions: heat-bath (HB) and bounce-free (BF) or bounce-

minimization solutions.1 Suppose that for a specific bond with an old configuration weight

W1, i.e., Wi−1, it can exist up to 3 new possible configurations W2, W3, and W4, which are
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generated from the old configuration according to particle number conservation. Anyone

of the 3 configurations could be the new configuration Wi. All 4 configuration weights are

related by the following directed loop equation:



a11 a12 a13 a14

a12 a22 a23 a24

a13 a23 a33 a34

a14 a24 a34 a44
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W1

W2

W3

W4


, (S3)

where aij forms a real symmetric matrix as ensured by the detailed balance equation and is

given by:

aij = Wip(Wi → Wj). (S4)

The HB solution to the directed loop equation gives:

aij =
WiWj

W1 +W2 +W3 +W4

. (S5)

To obtain BF or bounce-minimization solutions, we first rank Wi’s from the biggest to the

smallest values: W1 > W2 > W3 > W4. The BF solution1 is given by:

a12 = (W1 +W2 −W3 −W4)/2,

a13 = (W1 −W2 +W3 −W4)/2,

a14 = W4,

a23 = (−W1 +W2 +W3 +W4)/2, (S6)

a24 = 0,

a34 = 0,

aii = 0, for i = 1, · · · , 4,
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if W1 < W2 +W3 +W4, or the bounce-minimization solution1 is given by:

a11 = W1 −W2 −W3 −W4,

a1i = Wi, for i = 2, · · · , 4, (S7)

aij = 0, for others,

if W1 > W2 +W3 +W4.

QKMC for 2-Site System

To check our new QKMC algorithm, we perform grand canonical QKMC simulations in the

equilibrium limit for a 2-site system. We first exactly diagonalize (ED) the 2-site system

and compare the exact results with QKMC simulations with HB or BF updates. QKMC

simulations were warmed up with 105 steps and data were collected over 16 × 105 QKMC

steps. See Fig. S1 for comparisons. From the figure we see that ED results are in excellent

agreement with the QKMC results, where two updating schemes (HB and BF) have been

tested. In measuring the average energy and particle density in QKMC simulations, we have

taken into account the time the system spends in one specific configuration, i.e., weighted

by the cumulative time τ discussed in the main text. Since different updating schemes,

HB and BF, have given consistent results, this means that the cumulative time τ is indeed

real time that the system spends in a specific configuration. This is in contrast to the

conventional QMC simulations with SSE, where the corresponding simulation time between

two configurations or updating steps does not have the meaning of real time.

Electronic Band Structure of α Quartz

In this section we describe in detail our calculation of α quartz band structure using Vienna

Ab initio Simulation Package (VASP) software package.3,4 First principle calculations have

S4



been performed within the framework of Density Functional Theory (DFT) to study the

band structure of α quartz. The Projector Augmented Wave (PAW) method has been

used,5,6 as implemented in VASP. The plane wave cutoff energy for our calculations is set to

400 eV, and the self-consistent electronic loop is converged to 10−5 eV. The Local Density

Approximation (LDA) exchange and correlation functional7 have been used to minimize the

total energy. The conjugate gradient algorithm has been used to relax the atomic positions

until forces on atoms are smaller than 1 meV/Å. In order to investigate the electronic

structure quantitatively, PBE0 exchange and correlation functional8 have been used in the

ultimate static calculation to correct the eigenlevel structure and the band gap in α quartz.

Figure S2 shows the band structure from our calculation. The indirect gap between

valence and conduction bands is around 9 eV in good agreement with other calculated9 and

experimental data.10

Hopping Integrals from MLWF

Since the electronic band structure was calculated in the previous section, we can proceed

to determine the MLWFs for the α quartz system. We first run VASP to generate input

files for Wannier90.11 The number of Bloch bands NB to be included in the Wannierization

process12,13 depends on the applied electric potential difference V . The applied electric

field induces holes in the valence bands. An equivalent picture to electron hopping with

negative hopping integral is hole hopping with positive hopping integral. This is due to the

electron-hole transformation c†iσ → hiσ and ci,σ → h†i,σ, where h†i,σ(hiσ) is the hole creation

(annihilation) operator. Therefore, the kinetic energy part of the Hamiltonian becomes

−tc†i,σci+1,σ = −thi,σh†i+1,σ = th†i+1,σhiσ. We should, therefore, look for positive hopping

integrals among MLWFs.

Table S1 lists NB together with V and the leading positive hopping integral t among

MLWFs. Note that in obtaining hopping integrals we assume rigid band approximation
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Table S1: Number of Bloch bands NB involved in the Wannierization process and leading
hopping integral t among MLWFs as a function of applied electric potential difference V .

V (eV) NB t (eV)
0.8 2 0.048
2.36 5 0.116
2.66 8 0.331

because the applied electric field does not change the band structure of α quartz.
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Figure S1: Comparison of energy (top panel) and particle number (bottom panel) per site
between ED calculation and QKMC simulations with HB or BF updating schemes for a 2-
site system with OBC. We have set T/U = 0.1, t/U = 1.0, and scanned a series of chemical
potential values µ/U = 0.0, 0.1, · · · , 1.0.
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Figure S2: Electronic band structure for α quartz. Fermi energy is located at 0 eV.
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