

Development and Use of a High Content Imaging-Based Phenotypic Profiling Assay for Chemical Bioactivity Screening

Joshua A. Harrill, USEPA National Center for Computational Toxicology (NCCT)

Office of Research and Development Full Name of Lab, Center, Office, Division or Staff goes here.

Disclaimer

The views expressed in this presentation are those of the author(s) and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency, nor does mention of trade names or products represent endorsement for use.

Outline

Background

- Computational Toxicology Strategic Vision
- Phenotypic Profiling via Cell Painting

Study Design & Methodology

- Objectives
- Experimental Design
- Reference Chemicals
- Laboratory Workflows
- Data Analysis Pipeline

• Results

- Building Phenotypic Profiles of Cell Morphology
- Comparison of Reference Chemical Profiles
 - To Scientific Literature
 - Within Cell Lines
 - Across Cell Lines

• Application

- In vitro bioactivity thresholds / PODs
- Bioactivity Exposure Ratio

Background

• ToxCast assays cover many genes and pathways, but do not provide complete coverage of biological space.

- USEPA Strategic Vision and Operational Roadmap:
- Tier 1 strategy must cast the broadest net possible for capturing hazards associated with chemical exposure.
- Form follows function → activation or inhibition of protein targets by chemicals may manifest as changes in cellular morphology.
- Certain types of **high content imaging (HCI)** provides a cost effective means for profiling the effects of chemicals and identifying thresholds for chemical bioactivity.

A strategic vision and operational road map for computational toxicology at the U.S. Environmental Protection Agency

High Content Imaging-Based Phenotypic Profiling

• A chemical screening method that measures a large variety of morphological features of individual cells in *in vitro* cultures.

vironmental Protection

- Successfully used for functional genomic studies and in the pharmaceutical industry for compound efficacy and toxicity screening.
- No requirement for *a priori* knowledge of molecular targets.
- May be used to identify bioactivity thresholds for "dirty chemicals" (i.e. chemicals that affect many cellular proteins or processes simultaneously at a given test concentration).

• Cell Painting (Bray et al., 2016, Nature Protocols): A cell morphology-based phenotypic profiling assay multiplexing six fluorescent "non-antibody" labels, imaged in five channels, to evaluate multiple cellular compartments and organelles.

Study Objectives

- 1. Develop a microfluidics-based laboratory workflow for cell plating, chemical exposures and fluorophore labeling based on the Cell Painting assay (Bray et al. 2016).
- 2. Develop image acquisition protocols, analysis workflows and a data processing pipeline for highlymultiplexed measurements of cellular morphology
- 3. Identify a small set of phenotypic reference chemicals and:
 - a. Screen in concentration-response mode in multiple cell types.
 - b. Evaluate reproducibility of observed phenotypes as compared to literature
 - c. Identify chemicals & test concentrations for use as reference chemical controls in screening applications.
- 4. Evaluate the applicability of the Cell Painting assay for:
 - a. Identification and/or grouping chemicals with similar biological effects
 - b. Derivation of *in vitro* bioactivity thresholds
 - c. Use in screening level risk assessments \rightarrow bioactivity exposure ratio (BER) approach.

Experimental Design

Parameter	Multiplier	No	tes
Cell Type(s)	6	U-2 OS ^a MCF-7 ^b A549 ^b HTB-9 ^b ARPE-19 HepG2	Bone Breast Lung Urinary bladder Retina Liver
Culture Condition	1	DMEM + 10	0% HI-FBS
Chemicals	16	14 phenotypic ref 2 negative cor	erence chemicals htrol chemicals
Time Points:	1	48 h	ours
Assay Formats:	2	Cell Pa HCI Cell Viabil	ainting ity & Apoptosis
Concentrations:	8	3.5 log ₁₀ units; se	emi log ₁₀ spacing
Biological Replicates:	3	-	-

^a Reference cell line (Bray et al. 2016).

^b Previously characterized using Cell Painting (Gustafdottir et al. 2013).

Reference Chemical Set

- Reference chemicals (n=14) with narrative descriptions of observed phenotypes were identified from Gustafdottir et al. 2013.
- Candidate negative control chemicals (n=2) with no anticipated effect on cell phenotype were included in the reference set.

Compound Name	Chemical Use	Expected Phenotype
Amperozide	Atypical antipsychotic	Toroid nuclei
Berberine Chloride	Tool Compound (Mitochondria complex I inhibitor)	Redistribution of mitochondria
Ca-074-Me	Tool Compound (Cathepsin B inhibitor)	Bright, abundant golgi staining
Etoposide	Chemotherapeutic	Large, flat nucleoli
Fenbendazole	Anthelmintic	Giant, multi-nucleated cells
Fluphenazine	Typical antipsychotic	Enhanced golgi staining and some cells with fused nucleoli
Latrunculin B	Tool compound (Actin polymerization inhibitor)	Actin breaks
Metoclopramide	Anti-nausea medication	Enhanced golgi staining and some cells with fused nucleoli
NPPD	Spy Dust	Redistribution of ER to one side of the nucleus
Oxibendazole	Anthelmintic	Large, multi-nucleated cells with fused nucleoli
Rapamycin	Macrolide antibiotic / antifungal	Reduced nucleolar size
Rotenone	Insecticide	Mitochondrial stressor
Saccharin	Artificial Sweetener	Negative Control
Sorbitol	Artificial Sweetener	Negative Control
Taxol	Chemotherapeutic (Microtubule Stabilizer)	Large, multi-nucleated cells with fused nucleoli
Tetrandrine	Antiinflammatory	Abundant ER

Gustafsdottir, et al. 2013

Fluorescent Labeling Scheme

Markar	Collular Component	Laboling Chomistry	Labeling Phase	Opera Phenix	
iviarker	Central Component	Labeling Chemistry		Excitation	Emission
Hoechst 33342	Nucleus	Bisbenzamide probe that binds to dsDNA		405	480

Laboratory Workflow

Image Acquisition

- Perkin Elmer Opera Phenix
- 20x Water Immersion Objective
- Confocal Mode, Single Z
- CellCarrier-384 Ultra Microplates

Image Analysis

• Perkin Elmer Harmony Software

Data Processing

- R Statistical Computing Environment
- BMDExpress 2.0

Image Analysis Workflow: *Nucleus and Cell Segmentation*

1. find nuclei

2. find cell outline

3. reject border objects

Image Analysis Workflow Define Cellular Compartments

cell

Morphological Profiling with Harmony Software

Х

Compartments:

- cell
- nuclei
- ring
- cytoplasm
- membrane

Channels (organelles):

- DNA
- RNA
- ER

Х

- Golgi + cytoskeleton + membrane
- mitochondria

Domains:

- shape / morphology
- intensity
- texture

	Cell	Nuclei	Ring	Cytoplasm	Membrane
"Shape"	Μ	Μ			
DNA	S, C, A R, P	S, C, A R, P, I, T			
RNA	S, C, A R, P	S, C, A R, P, I, T			
ER	S, C, A R, P		I, T	Ι, Τ	I
AGP	S, C, A R, P		I, T	Ι, Τ	Ι, Τ
Mito	S, C, A R, P		I, T	Ι, Τ	1

Features:M = basic morphology [5 features]M* = STAR morphology:Symmetry [80]Threshold Compactness [40]Axial [20]Radial [28]Profile [50, nuclei: 4]I = Intensity [9]T = Texture [14] (Haralick, Gabor & SER)

Morphological Heterogeneity Across Cell Lines

A States Morphological Heterogeneity Across Cell Line Panel

• Quantification of morphological features can distinguish different cell types.

Question:

 If the morphology of different cell lines is distinct, would response to a chemical treatment be similar or different across cell types?

**Excludes intensity domain

Data Analysis Pipeline

Part 1: Data Normalization and Summarization

Part 2: Concentration-Response Modeling

Berberine chloride Mito_Cells_Morph_STAR

Phenotypic Profiles for Reference Chemicals [U-2 OS]

- Unique phenotypic profiles observed across the reference chemical set.
- Some chemicals did not produce any effects.
- Effects on morphology observed at sub-cytotoxic concentrations.

Phenotypic Profiles Are Consistent with Previous Literature Studies Environmental Protection

Parameters with marked effects:

Agency

Channel	Compartment	Domain
Mito	Cytoplasm	Texture
Mito	Cytoplasm + Ring	Intensity: Maximum
Mito	Entire Cell	Compactness (of the bright spots)

Literature: redistribution of mitochondria

Compartment	Domain
Cytoplasm + Ring	Texture
Cytoplasm + Ring	Intensity: Maximum
Entire Cell	Profile (=distribution of intensity)
	Compartment Cytoplasm + Ring Cytoplasm + Ring Entire Cell

Literature: bright, abundant Golgi stain

Channel	Compartment	Domain
"Shape"	Entire Cell	Morphology: Area, Length, Width
DNA + RNA	Nuclei	Compactness (of the bright spots) Texture
ER + AGP	Cytoplasm + Ring	Intensity: Sum
all	Entire Cell	Morphology: intensity distribution

solvent control (0.5% DMSO)

solvent control (0.5% DMSO)

50 µm

solvent control (0.5% DMSO)

Berberine Chloride (10 μ M)

Ca-074-Me (1 µM)

Etoposide (1 µM)

DNA AGP

Visualizing Phenotypic Profiles

Tetrandrine

Comparing Phenotypic Profiles Across Cell Lines for a Chemical

• Some chemicals produce similar phenotypes across the cell line panel

Comparing Phenotypic Profiles Across Cell Lines for a Chemical

• At times, a particular cell type is more sensitive to a chemical or greater magnitude of effects is observed.

Clustering Based on Phenotypic Profiles

Comparison of Bioactivity Thresholds Across Cell Lines

U-2 OS

• Bioactivity estimates are strongly correlated across the cell line panel.

Bioactivity & Exposure Ratio Comparisons Using Reverse Dosimetry

vironmental Protection

- **Reverse dosimetry:** Conversion of a bioactivity value to an in vivo steady state concentration using high-throughput toxicokinetic (httk) modeling.
- Facilitates comparisons of biologically active in vitro concentrations to predicted human exposures and/or points-ofdeparture (PODs) from *in vivo* toxicology studies

A ates ental Protection Bioactivity & Exposure Ratio Comparisons Using Reverse Dosimetry

For Rotenone:

- POD_{HTTP} slightly more conservative than POD_{trad}.
- POD_{HTTP} less conservative than POD_{ToxCast}.
- POD_{HTTP} well above upper limit of predicted exposures (ExpoCast) in the U.S. population.

Summary & Future Directions

Summary:

- Developed a microfluidics-based laboratory workflow for cell plating, chemical screening and fluorescent labeling of cells to evaluation of organelle morphology.
- Developed a high-content image analysis workflow (Harmony) and data analysis pipeline (R & BMDExpress2.0).
- Demonstrated that phenotypic profiles of reference chemicals tested in five cancer cell lines are comparable to observed phenotypes from the scientific literature.
- Demonstrated strong correlation of bioactivity thresholds (i.e. potency) of reference chemicals across cell lines.
- Identified reference chemicals for use in high throughput screening mode.

Future Directions:

- Concentration-response screening of chemicals from the ToxCast library in multiple cell types.
- Continue evaluating the utility of bioactivity exposure ratio (BER) analysis using HTTP data in the context of screening level risk assessments.
- Conduct time-course studies and evaluate the utility of HTTP data for determining tipping points (i.e. the transition from an adaptive to an adverse response).

Acknowledgments

NCCT: Johanna Nyffeler Clinton Willis

Katie Paul-Friedman Rusty Thomas

National Toxicology Program: Scott Auerbach

BONUS SLIDES

of BMR I

toxicity) [fold

nitude (@ no 2 -D

12

10

8

8 4 -

-2

Comparing Phenotypic Profiles Across Chemicals [U-2 OS]

BNR

75

Т

₽

Etoposide - U2OS

