Nanoconfined heliconical structure of twist-bend nematic liquid crystal phase Supplementary information

Ra You,^a Wongi Park^a, Eric Carlson^b, Seong Ho Ryu^a, Min Jeong Shin^a, Edward Guzman^b, Hyungju Ahn^c, Tae Joo Shin^d, David M. Walba^b, Noel A. Clark^e and Dong Ki Yoon^{a,f*}

^a Graduate School of Nanoscience and Technology and KINC, KAIST, Daejeon 34141, Korea

^b Department of Chemistry and Soft Materials Research Center, University of Colorado, Boulder, Colorado 80309, United States

^c Pohang Accelerator Laboratory, POSTECH, Pohang, 37673, Korea

^d UNIST Central Research Facilities & School of Natural Science, UNIST, Ulsan, 44919, Korea

^e Department of Physics and Soft Materials Research Center, University of Colorado, Boulder, Colorado 80309, United States

^f Department of Chemistry, KAIST, Daejeon 34141, Korea

Prof. Dong Ki Yoon

Graduate School of Nanoscience and Technology, KAIST, Daejeon 305-701, Republic of Korea.

Department of Chemistry, KAIST, Daejeon 34141, Korea

Fax: +82 42 350 1110; Tel: +82 42 350 1116;

E-mail: nandk@kaist.ac.kr

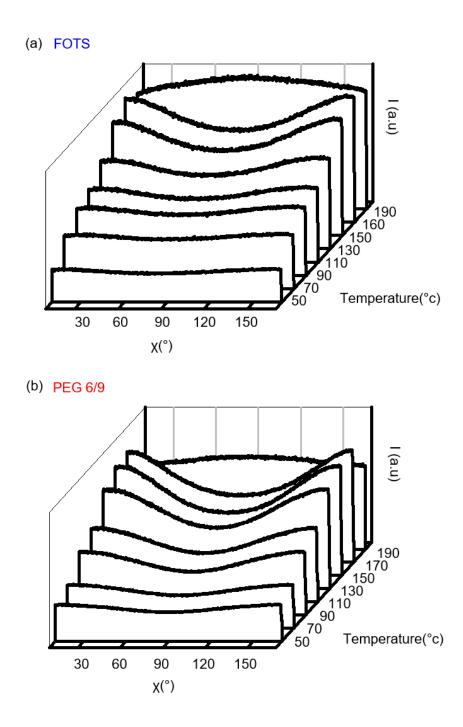


Figure S1. Azimuthal angle-varied intensities as a function of temperature at the wide-angle region at $q_2 = 0.52 \pm 0.02$ Å⁻¹ for the (a) FOTS- and (b) PEG-treated samples. The AAO pore is fixed at 100nm.

\

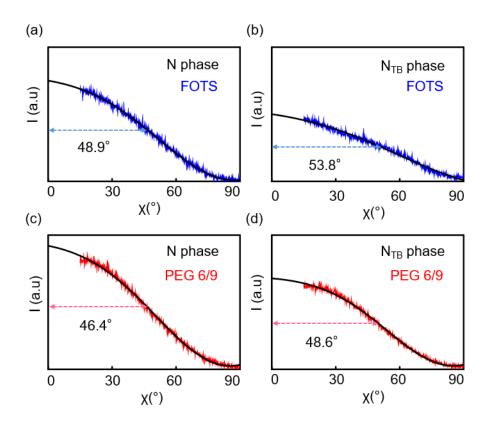


Figure S2. Gaussian fit curves of the wide-angle intensities at $q_1 = 1.42 \pm 0.01$ Å⁻¹ for the (a) FOTS- and (c) PEG-treated case at the N phase and for the (b) FOTS- and (d) PEG-treated case at the N_{TB} phase

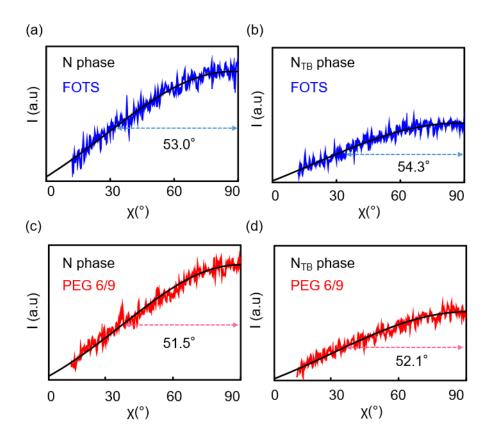


Figure S3. Gaussian fit curves of the wide-angle intensities at $q_2 = 0.52 \pm 0.02$ Å⁻¹ for the (a) FOTS- and (c) PEG-treated case at the N phase and for the (b) FOTS- and (d) PEG-treated case at the N_{TB} phase

(a) Intermolecular distance

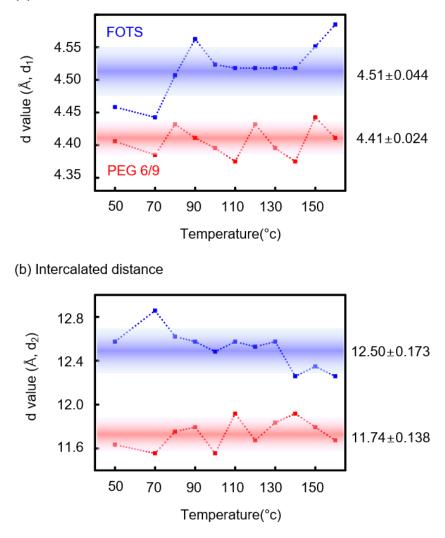


Figure S4. Calculated d values based on the 1D line-cut analysis with varying temperatures. The intermolecular and the intercalated distances are calculated in the wide-angle region at $\chi = 10^{\circ}$ (a) and in the small-angle region at $\chi = 90^{\circ}$ (b), respectively. The blue and red dots indicate d values of the FOTS-treated and PEG 6/9-treated samples, respectively. The coloured regions represent the normal distribution of d values.