## **Supporting Information**

Mechanistic Investigation on the Polymerization of Phenylacetylene by 2-Diphenylphosphinopyridine Rhodium(I) Catalysts: Understanding the Role of the Cocatalyst and Alkynyl Intermediates

Marta Angoy, M. Victoria Jiménez, F. Javier Modrego, Luis A. Oro, Vincenzo Passarelli, and Jesús J. Pérez-Torrente

Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea– ISQCH, Universidad de Zaragoza–CSIC, Facultad de Ciencias, C/ Pedro Cerbuna, 12, 50009 Zaragoza, Spain; and Centro Universitario de la Defensa, Ctra. Huesca s/n, ES–50090 Zaragoza, Spain

| 1 Selected NMR spectra of 2-diphenylphosphinopyridine rhodium(I) compounds.                         | S2  |
|-----------------------------------------------------------------------------------------------------|-----|
| 2 Reaction of $[Rh(diene)(Ph_2PPy)]_n^{n+}$ with <i>i</i> PrNH <sub>2</sub> .                       |     |
| 3 Reaction of $[Rh(cod)(Ph_2PPy)]^+$ (3) with PhC=CH in acetone or in THF.                          |     |
| 4 Reaction of $[Rh(cod)(Ph_2PPy)]^+$ (3) with PhC=CH in CH <sub>2</sub> Cl <sub>2</sub> : formation |     |
| of $[(cod)Rh(Ph_2PC_5H_4N-C=CHPh)]BF_4$ (13).                                                       | S17 |
| 5 Monitoring of the reaction of $[Rh(nbd)(iPrNH_2)(Ph_2PPy)]BF_4$ (7) with PhC=CH.                  |     |
| 6 Selected chromatograms and conformational plots for PPA samples.                                  |     |
| 7 DFT calculations.                                                                                 | S22 |

#### 1.- NMR spectra of 2-diphenylphosphinopyridine rhodium(I) compounds.



Figure S1. <sup>1</sup>H NMR spectra of compound [RhCl(nbd)(Ph<sub>2</sub>PPy)] (2) in CD<sub>2</sub>Cl<sub>2</sub> at 298K.



Figure S2.  ${}^{31}P{}^{1}H$  NMR spectra of compound [RhCl(nbd)(Ph<sub>2</sub>PPy)] (2) in CD<sub>2</sub>Cl<sub>2</sub> at 298K.



**Figure S3**. <sup>1</sup>H NMR spectrum of compound [Rh(cod)(Ph<sub>2</sub>PPy)][BF<sub>4</sub>] (**3**) (THF-*d*<sub>8</sub>, 273 K)

a)



Figure S4. <sup>31</sup>P{<sup>1</sup>H} NMR spectra of compound [Rh(cod)(Ph<sub>2</sub>PPy)][BF<sub>4</sub>] (3) in THF- $d_8$ : a) 273 K, b) 193 K.



Figure S5. <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H}-apt NMR spectra of compound  $[Rh(nbd)(\mu-Ph_2PPy)]_2[BF_4]_2$  (4) in CD<sub>2</sub>Cl<sub>2</sub> at 233K.

MAM-70



Figure S6. <sup>1</sup>H NMR spectra of compound  $[Rh(nbd){Ph_2(CH_2)_2Py}]BF_4$  (6) in CD<sub>2</sub>Cl<sub>2</sub> at 298K.



Figure S7. <sup>31</sup>P{<sup>1</sup>H} NMR spectra of compound  $[Rh(nbd){Ph_2(CH_2)_2Py}]BF_4$  (6) in CD<sub>2</sub>Cl<sub>2</sub> at 298K.



Figure S8.  ${}^{13}C{}^{1}H$ -apt NMR spectra of compound [Rh(nbd){Ph<sub>2</sub>(CH<sub>2</sub>)<sub>2</sub>Py}]BF<sub>4</sub> (6) in CD<sub>2</sub>Cl<sub>2</sub> at 298K.



**Figure S9**.  $^{1}$ H- $^{13}$ C-HSQC NMR spectra of compound [Rh(nbd){Ph<sub>2</sub>(CH<sub>2</sub>)<sub>2</sub>Py}]BF<sub>4</sub> (6) in CD<sub>2</sub>Cl<sub>2</sub> at 298K.



Figure S10. <sup>1</sup>H NMR spectrum of  $[Rh_2(cod)_2(\mu-Ph_2PPy)(\mu-C=C-Ph)]BF_4(10)$  in  $CD_2Cl_2$  at 298K.



Figure S11. Selected region of the <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of  $[Rh_2(cod)_2(\mu-Ph_2PPy)(\mu-C\equiv C-Ph)]BF_4$  (10) in  $CD_2Cl_2$  at 298K.



Figure S12. <sup>1</sup>H-<sup>1</sup>H-NOESY NMR spectrum of  $[Rh_2(cod)_2(\mu-Ph_2PPy)(\mu-C=C-Ph)]BF_4(10)$  in CD<sub>2</sub>Cl<sub>2</sub> at 298K.



**Figure S13**. Selected region of the <sup>1</sup>H-<sup>1</sup>H-NOESY NMR spectrum of  $[Rh_2(cod)_2(\mu-Ph_2PPy)(\mu-C=C-C_6H_5-t-Bu)]BF_4$  (11) in CD<sub>2</sub>Cl<sub>2</sub> at 298K.



Figure S14. <sup>31</sup>P{<sup>1</sup>H} NMR spectrum of compound  $[Rh(Ph_2PPy)_3][BF_4]$  (14) in CD<sub>2</sub>Cl<sub>2</sub> at 263 K.





Figure S15. <sup>31</sup>P{<sup>1</sup>H} NMR spectrum of compound  $[Rh(Ph_2PPy)_3][BF_4]$  (14) in CD<sub>2</sub>Cl<sub>2</sub> at 193 K.



Figure S16. <sup>1</sup>H NMR spectrum of [Rh(C=C-Ph)(cod)(Ph<sub>2</sub>PPy)] (15) (CD<sub>2</sub>Cl<sub>2</sub>, 220K) (\* impurities).



Figure S17. <sup>1</sup>H-<sup>1</sup>H-COSY NMR spectrum of [Rh(C=C-Ph)(cod)(Ph<sub>2</sub>PPy)] (15) (CD<sub>2</sub>Cl<sub>2</sub>, 220K).



Figure S18. a)  ${}^{13}C{}^{1}H$ -apt NMR spectrum of 15 in CD<sub>2</sub>Cl<sub>2</sub> at 220 K. b) selected C=C region.



Figure S19. <sup>1</sup>H-<sup>13</sup>C-HSQC NMR spectra of  $[Rh(C \equiv C-Ph)(cod)(Ph_2PPy)](15)$  in  $CD_2Cl_2$  at 220 K.

# 2.- Reaction of [Rh(diene)(Ph<sub>2</sub>PPy)]<sub>n</sub><sup>n+</sup> with *i*PrNH<sub>2</sub>.



**Figure S20**. <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H}-apt NMR spectra of compound  $[Rh(nbd)(iPrNH_2)(Ph_2PPy)][BF_4]$  (7) in CD<sub>2</sub>Cl<sub>2</sub> at 195 K.



**Figure S21**. <sup>1</sup>H NMR spectrum of  $[Rh(cod)(iPrNH_2)_2(Ph_2PPy)]^+$  (9) formed *in situ*,  $[^{i}PrNH_2]$ :[**3**] = 2.5 (CD<sub>2</sub>Cl<sub>2</sub>, 220 K).



**Figure S22**. <sup>31</sup>P{<sup>1</sup>H} NMR spectrum of  $[Rh(cod)(iPrNH_2)_2(Ph_2PPy)]^+$  (9) formed *in situ*,  $[^iPrNH_2]:[3] = 2.5$  (CD<sub>2</sub>Cl<sub>2</sub>, 220 K).

MAM-302-TDF [Rh(cod)PN(i-PrNH2)2), 243K



**Figure S23**. <sup>1</sup>H NMR spectrum of  $[Rh(cod)(iPrNH_2)_2(Ph_2PPy)]^+$  (9) formed *in situ*,  $[^iPrNH_2]$ :[**3**] = 2.5 (THF-*d*<sub>8</sub>, 243 K).



Figure S24. <sup>1</sup>H-<sup>1</sup>H COSY NMR spectrum of  $[Rh(cod)(iPrNH_2)_2(Ph_2PPy)]^+$  (9) *in situ*,  $[iPrNH_2]$ :[3] = 2.5 (THFd<sub>8</sub>, 243 K).

#### 3.- Reaction of [Rh(cod)(Ph<sub>2</sub>PPy)][BF<sub>4</sub>] (3) with PhC≡CH in THF-*d*<sub>8</sub>.



**Figure S25**. <sup>1</sup>H NMR spectrum of the reaction of **3** with PhC=CH (1:2.5) in THF- $d_8$  at 273 K.



**Figure S26**. <sup>31</sup>P{<sup>1</sup>H} NMR spectrum of the reaction of **3** with PhC=CH (1:2.5) (THF- $d_8$ , 273 K).



**Figure S27**. <sup>31</sup>P{<sup>1</sup>H} NMR spectrum of the **3** with PhC=CH (1:2.5) in THF- $d_8$  at 193 K.

4.- Reaction of  $[Rh(cod)(Ph_2PPy)]^+$  (3) PhC=CH in CH<sub>2</sub>Cl<sub>2</sub>: formation of  $[(cod)Rh(Ph_2PC_5H_4N-C=CHPh)]BF_4$  (13).



Figure S28. Resonances of 13 in the <sup>1</sup>H NMR spectrum of the 10/13 mixture in CD<sub>2</sub>Cl<sub>2</sub> at 213 K.



Figure S29. Resonances of 13 in the  ${}^{13}C{}^{1}H$ -apt NMR spectrum of the 10/13 mixture in CD<sub>2</sub>Cl<sub>2</sub> at 213 K.



**Figure S30**. Selected region of the  ${}^{1}\text{H}-{}^{15}\text{N}-\text{HMQC NMR}$  spectrum for **13** in CD<sub>2</sub>Cl<sub>2</sub> at 213 K.

#### 5.- Monitoring of the reaction of [Rh(nbd)(*i*PrNH<sub>2</sub>)(Ph<sub>2</sub>PPy)]BF<sub>4</sub> (7) with PhC=CH.



**Figure S31**. <sup>31</sup>P{<sup>1</sup>H} of the reaction of 7 (0.022 mmol, 0.044 M) with PA (0.11 mmol, 0.22 M) by in CD<sub>2</sub>Cl<sub>2</sub> at 195 K (t is the time at room temperature between spectra).

#### 6.- Characterization of PPA samples: selected chromatograms and conformation plots.



**Figure S32**. a) Light scattering (blue) and refractive index (red) chromatograms, MM (molar mass) vs elution volume plot for a PPA sample prepared using catalyst [RhCl(cod)(Ph<sub>2</sub>PPy)] (1) in THF. b) Log-log plot of the radius of gyration ( $r_g$ ) vs MM.



**Figure S33**. a) Light scattering (blue) and refractive index (red) chromatograms, MM (molar mass) vs elution volume plot for a PPA sample prepared using catalyst [RhCl(nbd)(Ph<sub>2</sub>PPy)] (**2**) in THF. b) Log-log plot of the radius of gyration ( $r_g$ ) vs MM.



**Figure 34.** a) Light scattering chromatograms for PPA samples prepared using catalysts  $[RhCl(nbd){Ph_2(CH_2)_2Py}]$  (5) (red) and  $[Rh(nbd){Ph_2P(CH_2)_2Py}][BF_4]$  (6) (blue) in THF. b) Log-log plot of the radius of gyration ( $r_g$ ) vs MM for the sample prepared with catalyst  $[RhCl(nbd){Ph_2(CH_2)_2Py}]$  (5).



**Figure S35**. a) Light scattering (blue) and refractive index (red) chromatograms, MM (molar mass) vs elution volume plot for a PPA sample prepared using catalyst  $[Rh(nbd){Ph_2P(CH_2)_2Py}][BF_4]$  (6) in THF. b) Log-log plot of the radius of gyration ( $r_g$ ) vs MM.



**Figure S36**. a) Light scattering (blue) and refractive index (red) chromatograms, MM (molar mass) vs elution volume plot for a PPA sample prepared in THF using: a)  $[Rh(nbd)(\mu-Ph_2PPy)]_2[BF_4]_2$  (4) + *i*PrNH<sub>2</sub>, and b)  $[Rh(nbd)(iPrNH_2)(Ph_2PPy)]BF_4$  (7).



**Figure S37**. a) Light scattering (blue) and refractive index (red) chromatograms, and MM (molar mass) vs elution volume plot for a PPA sample prepared using: a)  $[Rh(cod)(Ph_2PPy)][BF_4]$  (3) + *i*PrNH<sub>2</sub>, and b)  $[Rh(C=CPh)(cod)(Ph_2PPy)]$  (15).

### 7.- DFT calculations.

| Compound        | E (Hartree)  | G (Hartree)  |
|-----------------|--------------|--------------|
| comp3           | -1473,946973 | -1473,55531  |
| comp3_dimer     | -2947,893322 | -2947,07217  |
| comp4           | -2866,760676 | -2866,042813 |
| comp4_monomer   | -1433,3762   | -1433,033767 |
| comp13          | -1782,425403 | -1781,928647 |
| compA           | -1782,39875  | -1781,904294 |
| compB           | -1782,397789 | -1781,903075 |
| TS_b_c          | -1782,381049 | -1781,893859 |
| compC           | -1782,392764 | -1781,897724 |
| TS_c_d          | -1782,374933 | -1781,882224 |
| compD           | -1782,384944 | -1781,891898 |
| phenylacetylene | -308,4211262 | -308,34198   |

 Table S1. DFT Calculated energies (Hartree).