
exascaleproject.org

Typical Workflows, Definitions, and
Examples

ATPESC 2018

Jared O’Neal
Mathematics and Computer Science Division
Argonne National Laboratory

Q Center, St. Charles, IL (USA)
July 29 – August 10, 2018

2

License, citation, and acknowledgments

License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

• Requested citation: Jared O’Neal, Typical Workflows, Definitions, and Examples, tutorial, in Argonne
Training Program on Extreme-Scale Computing (ATPESC) 2018. DOI: 10.6084/m9.figshare.6970502.

Acknowledgements
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific

Computing Research (ASCR), and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort
of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration.

• This work was performed in part at the Argonne National Laboratory, which is managed by UChicago
Argonne, LLC for the U.S. Department of Energy under Contract No. DE-AC02-06CH11357

• Anshu Dubey, Klaus Weide, Saurabh Chawdhary, and Carlo Graziani

• Iulian Grindeanu

https://creativecommons.org/licenses/by-sa/4.0

3

Goals

Development teams would like to use version control to
collaborate productively and ensure correct code
• Understand challenges related to parallel code development via distributed version

control

• Understand extra dimensions of distributed version control & how to use them
– Local vs. remote repositories
– Branches
– Issues, Pull Requests, & Code Reviews (next talk)

• Exposure to workflows of different complexity

• What to think about when evaluating different workflows

• Motivate continuous integration

4

Distributed Version Control System (DVCS)

Two developers collaborating via Git
• Local copies of master branch synched to origin
• Each develops on local copy of master branch
• All copies of master immediately diverge
• How to integrate work on origin?

master

Alice’s Local Repository

master
Bob’s Local Repository

A B C

master
Main Remote Repository (origin)

D F G IA B C

E H JA B C

X
= commit
= commit ID

= branch

5

DVCS Race Condition

Integration of independent work occurs when
local repos interact with remote repo
• Alice pushes her local commits to remote

repo first
• No integration conflicts
• No risk
• Alice’s local repo identical to remote repo

master

Alice’s Local Repository

master
Bob’s Local Repository

master
Main Remote Repository (origin)

E H JA B C

X
= commit
= commit ID

= branch

D F G IA B C

D F G IA B C

6

Integration Conflicts Happen

Bob’s push to remote repo is rejected
• Alice updated code in commit D
• Bob updated same code in commit E
• Alice and Bob need to study conflict and decide

on resolution at pull (time-consuming)
• Possibility of introducing bug on master branch

(risky)

master

Alice’s Local Repository

master
Bob’s Local Repository

E H JA B C

D F G IA B C

loops.cpp (commit C) loops.cpp (commit D) loops.cpp (commit E)

7

Our First Workflow

This process of collaborating via Git is called the Centralized Workflow
• See Atlassian/BitBucket for more information
• “Simple” to learn and “easy” to use
• Leverages local vs. remote repo dimension

– Integration in local repo when local repos interact with remote repo

• What if you have many team members?
• What if developers only push once a month?
• What if team members works on different parts of the code?
• Working directly on master

https://www.atlassian.com/git/tutorials/comparing-workflows

8

Branches
Branches are independent lines of development
• Use branches to protect master branch
• Feature branches

– Organize a new feature as a sequence of related
commits in a branch

• Branches are usually combined or merged
• Develop on a branch, test on the branch, and

merge into master
• Integration occurs at merge commits

FeatureA
master

Fast-Forward

master

No Merge

A B C
D E

A B C D E

FeatureA

master
Divergence Merge Commit

A C

B D
FeatureA

master
A C

B D

E

9

Control Branch Complexity

Workflow policy is needed
– Descriptive names or linked to issue tracking system
– Where do branches start and end?
– Can multiple people work on one branch?

stuff
master

b

a

10

Feature Branches

Extend Centralized Workflow

• Remote repo has commits A & B

• Bob pulls remote to synchronize local repo to remote

• Bob creates local feature branch based on commit B

• Commit C pushed to remote repo

• Alice pulls remote to synchronize local repo to remote

• Alice creates local feature branch based on commit C

• Both develop independently on local feature branches

master

Alice’s Local Repository

master

Bob’s Local Repository

master
Main Remote Repository (origin)

E H J

D F G I
A B C

A B C

Issue151

A B

add_solver_A

11

Feature Branch Divergence

Alice integrates first without issue
• Alice does fast-forward merge to local master
• Alice deletes local feature branch
• Alice pushes master to remote
• Meanwhile, Bob pulls master from remote and

finds Alice’s changes
• Merge conflict between commits D and E

master

Alice’s Local Repository

master

Bob’s Local Repository

master
Main Remote Repository (origin)

E H J

D F G IA B C

Issue151

D F G IA B C

D F G IA B C

12

Feature Race Condition

Integration occurs on Bob’s local repo

• Bob laments not having fast-forward merge

• Bob rebases local feature branch to latest commit on master
– E based off of commit B
– E’ based off of Alice’s commit I
– E’ is E integrated with commits C, D, F, G, I

• Merge conflict resolved by Bob & Alice on Bob’s local branch
when converting commit E into E’

• Can test on feature branch and merge easily and cleanly

master

Alice’s Local Repository

master

Bob’s Local Repository

master
Main Remote Repository (origin)

E’ H’ J’

D F G IA B C

Issue151

D F G IA C

D F G IA B C

B

E H J

13

Feature Branches Summary
• Multiple, parallel lines of development possible on single local repo

• Easily maintain local master up-to-date and useable

• Integration with rebase on local repo is safe and can be aborted

• Testing before updating local and remote master branches

• Rebase is advanced Git command
– Rebase can cause complications and should be used carefully.

• Hide actual workflow
– History in repo is not represent actual development history
– Less communication
– Fewer back-ups using remote repo

• Does it scale with team size? What if team integrates frequently?

• Commits on master can be broken

• See Atlassian/BitBucket for a richer Feature Branch Workflow

https://git-scm.com/book/en/v2/Git-Branching-Rebasing
https://www.atlassian.com/git/tutorials/comparing-workflows

14

More Branches
Branches with infinite lifetime
• Base off of master branch
• Exist in all copies of a repository
• Each provides a distinct environment

– Development vs. pre-production

For this example,
• All feature branches start and end

on master
• Merge into development before

merging into master
• No integration happening

Issue151

development

master

add_solver_A

15

Challenges

Issue151

development

master

add_solver_A

Multiple feature branches developed in parallel
• All commits in master are in development
• Merge conflicts first exposed on development
• Set workflow so that infinite branches don’t diverge

16

Current FLASH5 Workflow

Test-driven workflow
• Feature branches start and end with master
• All feature branches are merged into development for integration

& manual testing
• All feature branches are then merged into staged for full,

automated testing

dev2

development

master

staged

dev1

17

More Branch Rules
Is staged really necessary?
• Contains only changes intended for master
• No integration means cleaner branch
• Allows for extra stage of testing with more tests
• Extra buffer for protecting master branch

dev2

development

master

staged

dev1

Wild West/Integration

Clean-ish/Full Testing

Correct

18

Branch Rules

Why base feature branches off master?
• Start from correct, verified commit
• Clean and simple to learn/enforce
• Isolate master from integration environment

development

master

staged

bad_idea good_idea

19

Merge Conflicts
How are merge conflicts resolved in FLASH5 Workflow?
• Merge conflict with master means merge conflict with staged and development
• We want to avoid conflict resolution when merging into master
• Directly on feature branch if resolution is there
• One idea is to merge master into feature branch

dev2

development

master

staged

dev1

20

Git Flow
• Full-featured workflow
• Increased complexity
• Designed for SW with official releases
• Feature branches based off of develop
• Git extensions to enforce policy
• How are develop and master

synchronized?
• Where do merge conflicts occur and how

are they resolved?

https://github.com/nvie/gitflow

21

More Workflows

• GitHub Flow (Scott Chacon)
– No structured release schedule
– Continuous deployment & continuous integration allows for simpler workflow

• GitLab Flow

http://scottchacon.com/2011/08/31/github-flow.html
https://docs.gitlab.com/ee/workflow/gitlab_flow.html

exascaleproject.org

Conclusions
Version control is an amazing tool

• Parallel and distributed working requires coordination and rules to be
productive and produce correct code

• Appropriately chosen workflows can ensure quality results and help
debugging/verification while helping productivity

Adopt what is good for your team

• Consider team culture and project challenges

• Assess what is and isn’t feasible/acceptable

• Start with simplest and add complexity where and when necessary

23

What do we want from a workflow?

Develop a clear set of polices that
• results in correct code on a particular branch (usually

master),
• ensures that a team can develop in parallel and

communicate well,
• minimizes difficulties associated with parallel and distributed

work, and
• minimizes overhead associated with learning, following, and

enforcing policies.

