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Abstract. These notes give an elementary and formal 2-categorical construction of the bicategory

of anafunctors, starting from a 2-category equipped with a family of covering maps that are fully
faithful.

1. Introduction

Anafunctors were introduced by Makkai [Mak96] as new 1-arrows in the 2-category Cat to talk
about category theory in the absence of the axiom of choice. The aim was to make functorial those
constructions that are only defined by some universal property, rather than by some specified operation.
One also recovers the characterisation of equivalences of categories as essentially surjective, fully faith-
ful 1-arrows. The construction by Bartels [Bar06] of the analogous bicategory Catana(S, J), whose
1-arrows are anafunctors, starting from the 2-category Cat(S) of internal categories was extended
in [Rob12] to variable full sub-2-categories Cat′(S) ↪→ Cat(S). The canonical inclusion 2-functor
Cat′(S) ↪→ Cat′ana(S, J) was there shown to be a 2-categorical localisation in the sense of Pronk
[Pro96] at the fully faithful functors which are locally weakly split in the given pretopology J .

In these notes I show that given a 2-cateory K equipped with a strict subcanonical singleton
pretopology J whose elements are fully faithful arrows, one can construct an analogue KJ of the
bicategory Cat′ana(S, J). The 1-arrows of KJ are formal 2-categorical versions of anafunctors, here
dubbed J-fractions. The construction of KJ is elementary in the sense of only needing the first-order
theory of 2-categories, and the construction is Choice-free. The original 2-category K is a wide and
locally full sub-bicategory of KJ and the inclusion 2-functor AJ : K ↪→ KJ is a bicategorical localisation;
this result uses Pronk’s comparison theorem from [Pro96], but it should be possible to prove directly
using the construction given here.

The following quote from [Sim06] should be kept in mind when reading the elementary calculations
in these notes, as no such details have fully appeared in the literature, let alone at the level of generality
here:

Nonetheless, it is interesting to note the prevalence of formulations leaving “to the
reader” parts of the proofs of details of the localization constructions. . . . Another
interesting reference is Pronk’s paper on localization of 2-categories [21]1, pointed out
to me by I. Moerdijk. This paper constructs the localization of a 2-category by a
subset of 1-morphisms satisfying a generalization of the right fraction condition. . . .
the full set of details for the coherence relations on the level of 2-cells is still too much,
so the paper ends with:
[21 , p. 302:] “It is left to the reader to verify that the above defined isomorphisms a,

l and r are natural in their arguments and satisfy the identity coherence axioms.”

One pleasant feature of the current approach, at least for the author, is that one could take the
opposite 2-category everywhere in the current notes and everything will still work fine, so one could
also localise suitable 2-categories using cospans, rather than spans, for instance 2-categories whose
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objects are more algebraic in nature, rather than geometric, like Hopf algebroids. It is not clear
that for alternative presentations of the localisation, say one using of left-principal bibundles, such an
approach would still work, or what should play the rôle of the 1-arrows when one is working with a
general 2-category and not a 2-category of structured or internal groupoids.

2. Preliminaries

We refer to [Lei98], or the original [Bén67], for background on bicategories.

Definition 2.1. If P is a property of functors, then we say that a 1-arrow f : x → y in a 2-category
K is representably P if for all objects z of K we have that f∗ : K(z,x)→ K(z, y) has property P.

The most important case for the present paper is the property ‘fully faithful’, and we will abbreviate
‘representably fully faithful’ to ff, and will denote by ff the class of ff 1-arrows in a 2-category. Note
however that Definition 2.1 can be rewritten as a first-order property of a 1-arrow in a 2-category.

Definition 2.2. A 1-arrow f : x → y in a 2-category is ff if for all g,h : w → x and ã : f ◦ g ⇒ f ◦ h
there is a unique a : g ⇒ h such that ã = 1f ◦ a.

It is easy to see that any equivalence in a 2-category is ff. More generally, if f has a pseudo-retract,
in the sense that there is an arrow g : y → x such that g◦f ' idx, then f ∈ ff. Note that this definition
and these simple examples work fine in any bicategory as well, as does the following lemma.

Lemma 2.3. If f : y → z ∈ ff and g : x→ y is any other arrow then g ∈ ff if and only if f ◦ g ∈ ff. If
h : y → z is another arrow that is isomorphic to f in K(y, z) then h ∈ ff. Moreover, if f is isomorphic
to f ′ : y′ → z′ (in the arrow 2-category) f ′ ∈ ff.

The following lemma will be a major workhorse in the construction below.

Lemma 2.4. Let u→ a be an ff 1-arrow in a 2-category K. Then for any 1-arrow f : b→ a and any
two lifts k, l : b→ u, there is a unique 2-arrow k ⇒ l covering the identity 2-arrow on f .

The proof of this lemma follows almost immediately from the definition of ff.

Example 2.5. Given a commutative triangle

u
φ

//

  

v

~~
x

with v → x ff, there is the equality

u×x u

pr1

""

pr2

;; u
φ
// v�� = u×x u

φ×φ
// v ×x v

pr1

""

pr2

<< v��

In particular, if φ = idu, there is an invertible 2-arrow pr1 ⇒ pr2 : u×x u→ u.

Example 2.6. A more complicated example is

u×x u

pr2

..

pr1

��
u×x u

∆×idu // u×x u×x u

pr12
11

pr23 --

u

u×x x

pr1

00

pr2

JJ

�


��

= u×x u

pr1

""

pr2

;; u��
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The structure of a site on a 2-category is not a common notion so we need to specify what we mean.
There are at least two different ways to describe this in the 1-categorical case, namely using sieves and
using pretopologies, and it is not clear a priori that they generalise to the same thing for 2-categories.
Our definition will be as follows, as this paper only deals with unary sites.

Definition 2.7. A singleton strict pretopology on a 2-category K is a class J of 1-arrows which contains
all identity arrows, is closed under composition and the strict pullback an element of J exists and is
again in J. We will assume that specified strict pullbacks are given—rather than merely assuming they
exist—and that the pullback of an identity 1-arrow is again an identity 1-arrow.

Since this is the same thing as a singleton pretopology on the 1-category underlying the 2-category,
we refrain from placing the prefix ‘2-’ in the name. If one merely asks for existence of pullbacks, then
one may use a global axiom of choice to make the pullback of a cover an operation.

Example 2.8. Let K be a 2-category which admits specified strict pullbacks. Then ff is a singleton
strict pretopology.

This is in some sense a degenerate example. The following is more of interest.

Example 2.9. Let S be a finitely complete category with specified limits and J0 a singleton pretopology
on S. Then we have the 2-categories Cat(S) and Gpd(S) of internal categories and groupoids. Let J
denote the class of internal functors either of those 2-categories whose object component is an arrow
in J0. Then J is a singleton strict pretopology on both Cat(S) and Gpd(S).

In addition, we need to consider a 2-categorical version of subcanonicity, and here we cannot avoid
involving the 2-arrows. This makes the notion essentially 2-categorical, and not just a structure on
the underlying 1-category as is the case for definition 2.7.

Definition 2.10. A singleton strict pretopology J is called a totally strict subcanonical singleton
pretopology if for every j : u→ x in J, and every object y

j∗ : K(x, y)→ StrDesc(u, y)

is a fully faithful functor.

Here StrDesc(u, y) (strict descent data with values in y) is the equaliser of K(u, y) ⇒ K(u[2], y),
where the two arrows are induced by the projections. This can be described as the subcategory of
K(u, y) with objects those 1-arrows f : u → y in K whose precompositions with the two projections
u ×x u → u are equal, and as arrows those 2-arrows a : f ⇒ g in K whose whiskerings with the two
projections are equal.

Unpacking this definition, we have the following elementary definition.

Definition 2.11. An arrow p : u → x in a 2-category is strictly 2-regular if for every pair of arrows
f , g : x→ y and every 2-arrow ã : f ◦ p⇒ g ◦ p : u→ y satisfying

(1) u×x u
pr1 // u

f◦p
��

g◦p
>>
yã�� = u×x u

pr2 // u

f◦p
��

g◦p
>>
yã��

there is a unique 2-arrow a : f ⇒ g : x→ y such that

u

f◦p
��

g◦p
>>
yã�� = u

p
// x

f

��

g

>>
ya��

We can swap out the condition for on a when p ∈ ff, using Lemma 2.4, which is ultimately the case
we are interested in, by the following lemma.
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Lemma 2.12. Given a 1-arrow j ∈ ff in a 2-category K, it is strictly 2-regular if and only if
j∗ : K(x, y)→ K(u, y) is fully faithful. Or, in elementary terms, an ff 1-arrow is strictly 2-regular pre-
cisely when the condition in Definition 2.11 holds for any 2-arrow ã : f ⇒ g, not just those satsifying
the condition (1).

Proof. If condition that j∗ : K(x, y) → K(u, y) is fully faithful holds, then for a 2-arrow ã as in
Definition 2.11, we can forget the fact that it satisfies equation (1), and still get the unique descended
2-arrow. Conversely, assuming Definition 2.11 holds for j : u → x and j ∈ ff, consider an arbitrary
2-arrow ã : f ◦ j ⇒ g ◦ j : u → y. Recall from Lemma 2.4 that there is a canonical 2-arrow pr1 ⇒
pr2 : u×xu→ u such that right whiskering this with j gives the identity 2-arrow on u×xu→ x. Then:

u×x u
pr1 // u

f◦j
��

g◦j

>>
yã�� =

x
f

��
u×x u pr2

//

j◦pr1
22

u

j

??

g◦j
44 y

ã
��

= u×x u

pr1

""

pr2

;; u

f◦j
��

g◦j

>>
yã����

=
u×x u

pr1 //

j◦pr2 ,,

u
j

��

f◦j
** y

x

g

??
ã
��

= u×x u
pr2 // u

f◦j
��

g◦j

>>
yã�� .

Hence as we are assuming j is strictly 2-regular, there is a unique 2-arrow a : f ⇒ g that is the descent
of ã along j, as required. �

The main object of study of this paper are 2-categories K with a choice of totally strict subcanonical
singleton pretopology J, which we shall call strict subcanonical unary 2-sites. We shall just refer to
these as 2-sites for brevity. In fact we only work with those 2-sites for which J ⊂ ff: our constructions
rely on this property.

The next example partly recovers the examples that were used in [Rob12, §8]; variants on this
definition will give all examples from loc. cit.

Example 2.13. Continuing example 2.9, let J̃ff = J̃ ∩ ff for a site (S, J) with J subcanonical. Then

Cat(S) and Gpd(S) are strict subcanonical unary 2-sites taking J̃ff for our pretopology.

3. The bicategory of J-fractions

We are aiming to localise a 2-category, and in time-honoured tradition we shall call the arrows in
the localised 2-category fractions. Fractions are defined relative to a strict pretopology.

Definition 3.1. Let K be a 2-category and J a totally strict subcanonical singleton pretopology on

K. A J-fraction is a span x
j←− u f−→ y in K where j ∈ J, to be denoted (j, f).

For example, given any 1-arrow f : x→ y in K, we have the fraction (idx, f), where x covers itself
by the identity arrow. In particular, we have for any object a the identity fraction, which is (idx, idx)



THE ELEMENTARY CONSTRUCTION OF FORMAL ANAFUNCTORS 5

Definition 3.2. A map of J-fractions (j, f)⇒ (k, g) is a diagram of the form

x u×a voo

f◦pr1

##

g◦pr2

99
y ,��

There are certain maps of fractions which are easier to describe and to compose, and the coherence
maps of the bicategory we are going to define all turn out to be examples, so we shall spend some time
detailing these.

Definition 3.3. A renaming map r from the fraction (j, f) to the fraction (k, g) is a map of spans in
a 2-category of the form:

u
j

��

f

��
r

��

x y

v
k

__

g

??
ar

��

We can compose renaming maps and so get a category KR
J (x, y) with objects the fractions from x to

y and arrows the renaming maps.

As we shall see, we will also have a category with objects the J-fractions and arrows the maps of
fractions, and a functor invcluding KR

J (x, y) into this latter category. For now we will be content with
giving the definition of the arrow component of this functor, without proving functoriality; namely, a
renaming map r : (u, f)→ (v, g) is sent to the map ι(r) of fractions,

(2)

u

r

��

f

��
x v ×x uoo

pr1

;;

pr2
##

y

v

g

??
ar

����
.

where the 2-arrow on the left is the canonical lift of the identity 2-arrow on the 1-arrow u×x v → x in
the diagram

u×x v
r×idv //

..

v ×x v

pr1

""

pr2

;; v

j

��
x

��

using Lemma 2.4.

Definition 3.4. The identity map 1: (j, f)→ (j, f) on a J-fraction x
j←− u f−→ y is given by ι(idu).

The (vertical) composition of maps of J-fractions proceeds as follows. Given

t1 : (j1, f1)→ (j2, f2)

t2 : (j2, f2)→ (j3, f3)
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where x
ji←− ui

fi−→ b, consider the 2-arrow t1 ⊕ t2 filling the diagram

(3)

u1 ×x u2
//

  

u1

f1

��
u1 ×x u2 ×x u3

??

��

u2 f2 // y

u2 ×x u3

??

// u3

f3

??

t1
��

t2

�

,

Which we shall call the precomposition of t1 and t2. We need to show that this 2-arrow descends along

the arrow u1 ×x u2 ×x u3
pr13−−−→ u1 ×a u3 ∈ J. But pr13 is strictly 2-regular, and the source and target

of t1 ⊕ t2 factor as u1 ×x u2 ×x u3
pr13−−−→ u1 ×x u3 → ui

fi−→ y for i = 1 and i = 3 respectively, hence we
can apply Lemma 2.12 to t1 ⊕ t2. Thus t1 ⊕ t2 descends uniquely, and we call this descended 2-arrow
t1 + t2 (note that + is not a commutative operation!), and it is a map of J-fractions (u1, f1)→ (u3, f3).

Remark 3.5. If u1 ×x u2 ×x u3 → u1 ×x u3 has a section, then the vertical composition t1 + t2 is the
whiskering of t1 ⊕ t2 on the left with this section.

Proposition 3.6. We have a category KJ(x, y) with objects the J-fractions from x to y and arrows
the maps of J-fractions.

Proof. We first show that 1(j,f) is the identity arrow for x
j←− u f−→ y. Consider the map of J-fractions

x u×x voo

f◦pr1

""

g◦pr2

;; yt�� .

Then 1(j,f) ⊕ t looks like

(4)

u×x u pr1

��pr2 ..u×x u×x v

pr12

;;

pr23 ##

u
f
// y

u×x v

<<

g

@@

�


	�

and we want to show that

u×x u×x v
pr13 // u×x v

f

""

g

;; yt��

is equal to (4), since then the 2-arrow in (4) which descends to be 1(j,f) + t, actually descends to be t.
Note that by Lemma 2.4 we have

u×x u pr1

��pr2 ..u×x u×x v

pr12

;;

pr23 ##

u

u×x v

<<

�


= u×x u×x v

pr13

��

pr23

??
u×x v

pr1 // u�� .



THE ELEMENTARY CONSTRUCTION OF FORMAL ANAFUNCTORS 7

Hence (4) is equal to

(5) u×x u×x v

pr13

��

pr23

??
u×x v

f̃

""

g̃

;; yt���� .

But note that we can decompose this into the vertical composition of t whiskered on the left by pr13

and the canonical 2-arrow whiskered on the right by g̃. This latter 2-arrow is

u×x u×x v

pr13

��

pr23

??
u×x v

pr2 // v
g
// y��

which is the identity 2-arrow on pr3 : u×x u×x v → v whiskered on the right with g. Thus (5) is equal
to the desired 2-arrow, and 1(j,f) is a left identity for vertical composition. A symmetric argument
will show that it is also a right identity.

We now need to show composition is associative. Consider the diagram

u12u12u12
//

!!

u1u1u1

f1

��

u123u123u123

""

<<

u2u2u2 f2

!!
u1234

;;

##

u23u23u23

==

!!

yyy

u234

<<

##

u3u3u3
f3

==

u34
//

==

u4

f4

OO

t1

��

t2

��

t3

��

We will show that the composite

u234
// u14

f1

��

f4

??
ya

��

is equal to (3) for both a = (t1 + t2) + t3 and a = t1 + (t2 + t3). First consider (t1 + t2) + t3:

u1234
// u14

��

??
y(t1+t2)+t3

��
= u1234

// u134
// u14

��

??
y(t1+t2)+t3

��
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=

u1

��

u13

==

!!
u1234

// u134

;;

##

u3
// y

u34

==

!!
u4

GG

t1+t2

��

t3

��

=

u1u1u1

��

u123u123u123
// u13u13u13

==

!!
u1234

//

;;

u134

""

<<

u3u3u3
// yyy

u34

==

!!
u4

GG

t1+t2

��

t3

��

ommitting some of the labels on the 1-arrows for clarity. Now the whiskered 2-arrow in the subdiagram
on the bold symbols above is equal to the composite 2-arrow in the subdiagram of (3) on the bold
symbols, hence the whole diagram equals (3). A symmetric argument shows that t1+(t2+t3)◦1u1234→u14

is also equal to (3). By uniqueness of descent, composition of maps of J-spans is associative, and
KJ(x, y) is a category. �

3.1. Defining the bicategory KJ. Now we want to show that KJ(x, y) is the hom-category of a
bicategory, so we need a composition functor. Composing 1-arrows is easy:

Definition 3.7. The composition of J-fractions is the composite span

u×y v

{{ ""
u

�� ##

v

{{ ��
x y z

where recall we are assuming we have specified pullbacks of 1-arrows in J, so this is well-defined.

We shall define the composition in the bicategory KJ by defining left and right whiskering functors
and proving the interchange law as outlined in [Mak96, pp 126-127]2 for the case where K = Cat
and J is the class of fully faithful, surjective-on-objects functors. Let t be a map of fractions from

x← u
f−→ y to x← v

g−→ y.

2Makkai says, helpfully, “Next, we need to verify that thus we have defined functors. . . we leave the task to the

reader.” [ibid. page 127]
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Definition 3.8. The right whiskering of t by the J-fraction y
l←− w h−→ z is given by

w ×y,f u

f̃

��
x u×x voo w ×y,f (u×x v)×g,y woo

>>

��

w
h // z

v ×g,y w

g̃

@@
ρ(w,h)t

��

where the 2-arrow ρ(w,h)t : pr1 ⇒ pr4 is the unique lift through l : w → y of

u
f

��
w ×y,f (u×x v)×g,y w // u×x v

@@

��

y .

v

g

??
t

��

Proposition 3.9. Right whiskering with y ← w
h−→ z is a functor KJ(x, y)→ KJ(x, z).

Proof. First, let us show right whiskering preserves identity 2-arrows. That is, the horizontal compo-
sition of a pair of identity 2-arrows is the identity 2-arrow of the composition of the 1-arrows. Let

x
j←− u

f−→ y be a pair of fraction and consider the right whiskering of the map id(u,f) by (w,h). This
is the map of fractions given by

(6) x w ×y u[2] ×y woo

pr1

��

pr4

BB w
h // z��

where the 2-arrow is the unique lift of

w ×y u[2] ×y w // u[2]

pr1

��

pr2

?? u
f
// y ,��

the unlabelled maps being the obvious projections. But we have the equality

w ×y u[2] ×y w

pr1

��

pr4

BB w�� = w ×y u[2] ×y w

pr12

��

pr34

@@
u×x y

f̃
// w��

hence (6) is

x w ×y u[2] ×y woo

pr12

��

pr34

??��
u×y w

h◦f̃
// z = idx←u×xw→z .

Thus whiskering is unital.
Now to prove that right whiskering preserves composition we will again use uniqueness of descent,

and prove equal a pair of 2-arrows with 0-source a cover of the 0-source of the 2-arrows we are interested

in. Without loss of generality, we can right whisker by the fraction y ← w
idw−−→ w, as the component

of the fraction pointing the ‘correct’ way plays no role in what is to follow.
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w ×y u12 ×y w

''

pr1

,,

��

w ×y u123 ×y w

��

p

��

<<

��

w ×y u2 ×y w // w

��

w ×y u23 ×y w

77

pr3

22

��

u12
//

&&

u1

f1

!!
u123

55

))

""

u2 f2 // y

w ×y u13 ×y w

,,

pr3

BB

pr1

44

u23

88

// u3

f3

>>

u13
((
66 ya1+a2��

ρ(w,id)a1
��

ρ(w,id)a2
��

a1��

a2
�
(∗) �&

Figure 1. Right whiskering is functorial

Consider the composable pair of maps of fractions

x u1 ×x u2
oo

f̃1

��

f̃2

>>
a1�� y and x u2 ×x u3

oo

f̃2

��

f̃3

>>
a2�� y .

Let u123 := u1 ×x u2 ×x u3 and similarly for u12, u23 and consider the diagram

u12

!!

// u1

f1

��
u123

<<

""

u2
f2 // y w ×y woo

pr1

##

pr2

;;�� w

u23

==

// u3

f3

??

a1
��

a2
��

.

We need to prove equal the pair of 2-cells (ρ(w,id)a1) + (ρ(w,id)a2) and ρ(w,id)(a1 + a2) between the two

1-cells (w ×y u1)×x (u3 ×y w) ' w ×y u13 ×y w
pri−→ w, for i = 1, 3.

In Figure 1 the sub-diagram consisting of just the solid arrows together with the 2-arrows between
them 2-commutes, so the precomposition (ρ(w,id)a1) ⊕ (ρ(w,id)a2) is given by the top layer of the
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diagram, namely

w ×y u12 ×y w

''

pr1

++
w ×y u123 ×y w

<<

��

w ×y u2 ×y w // w

w ×y u23 ×y w

77

pr3

33

ρ(w,id)a1
��

ρ(w,id)a2��

and (ρ(w,id)a1)+(ρ(w,id)a2) is given by the unique descent of this 2-arrow along p. The 2-arrow marked
(∗) is the whiskering ρ(w,id)(a1 +a2), and forms a 2-commuting diagram with a1 +a2 and the 1-arrows
w ×y u13 ×y w → u13 and w → y. The 2-cell

w ×y u123 ×y w // w ×y u13 ×y w
��

AAw(∗)
��

in Figure 1 is, by uniqueness of lifts through p and w → y (both in J) equal to (ρ(w,id)a1)⊕ (ρ(w,id)a2).
Thus the descent of (ρ(w,id)a1) ⊕ (ρ(w,id)a2) along p is just ρ(w,id)(a1 + a2), which is what we needed
to prove. �

The definition of the left whiskering is slightly more complicated, as it is such that it doesn’t permit
us to ignore half of the span as we can for right whiskering. What we shall do is define left whiskering

by a general J-span x← ju
f−→ y in two cases, using the factorisation (j, f) = (idu, f) ◦ (j, idu).

3.1.1. Case I: left whiskering by (idu, f). Let a be a map of fractions from y ← v1
g−→ z to y ← v2

h−→ z,

and f : u → y an arrow in K. The whiskered 2-arrow will be a morphism of fractions from u
pr1←−−

u×y v1
g◦pr2−−−→ z to u

pr1←−− u×y v2
h◦pr2−−−→ z, and so the desired 2-arrow in K will be of the form(

u×y v12
g◦pr2−−−→ z

)
⇒
(
u×y v12

h◦pr3−−−→ z

)
,

where v12 := v1 ×y v2.

Definition 3.10. The left whiskering of the map a by u
idu←−− u f−→ y is given by the 2-arrow λI(idu,f)a,

defined as

u×y v12
// v12

&&
88 za �� .

3.1.2. Case II: left whiskering by (u, idu). Let V12 := v1 ×x v2, and similarly, Vij... := vi ×x vj ×x . . ..
There is a canonical map v12 → V12 (and similarly vij... → Vij...). Notice also that there is a trivial

factorisation of pri : v12 → vi as v12 → V12
pri−−→ vi.

Definition 3.11. The left whiskering of the map a by x
j←− u

idu−−→ u is given by the 2-arrow λII(j,idu)a

in K defined via unique descent along v12 ×x V12 → V12 by the equation

v12 ×x V12

pr2 // V12

g◦pr1

!!

h◦pr2

== zλII
(j,idu)a

��
=

V12

g◦pr1

  
v12 ×x V12

pr2

22

pr2
,,

// v12

==

!!

z

V12

h◦pr2

>>


�
a

��
��

.
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That this definition works uses Lemma 2.12. Left whiskering by an arbitrary fraction x
j←− u

f−→ y
will then be the composite of the two (putative) functors given by cases I and II.

Proposition 3.12. Left whiskering with x
j←− u f−→ y is a functor KJ(y, z)→ KJ(x, z).

The proof that left whiskering preserves (vertical) composition will be deferred to appendix A, as
it is a sizable calculation.

Proof. (Left whiskering is unital) We want to do the whiskering

x u
j

oo
f
// y v ×y voo

��

BB v
g
// za�� .

Note that without loss of generality we can assume g = idv, the general case follows exactly the same
argument merely with g right whiskered onto all the 2-cells involved. We treat case I and case II of
the definition of left whiskering separately.

Case I. Note that v12 in this case is v ×y v. The left whiskering of the identity map on y ← v
id−→ v

has 2-cell component

u×y (v ×y v) // v ×y v
��

BB va��

but u×y (v ×y v) ' (u×y v)×u (u×y v), and by Lemma 2.4 this is equal to

(u×y v)×u (u×y v)
��

??
u×y v // va

��

and this is the identity map on the composite u← u×y v → v, as required.

Case II. Again, in this case, v12 = v ×u v, which for now will be denoted v[2] and V12 = v ×x v. Recall
that the 2-cell component of the whiskered identity map will be the unique 2-cell λ := λII(j,idu)a

in the diagram

v[2] ×x (v ×x v) // v ×x v

pr1

��

pr2

CCvλ

��
=

v ×x v
pr1

!!
v[2] ×x (v ×x v)

22

,,

// v[2]

;;

##

v

v ×x v
pr2

==

��

��
��

,

which exists by descent along the J-cover v[2] ×x (v ×x v)→ v ×x v. However, by Lemma 2.4
the canonical 2-arrow pr1 ⇒ pr2 : v ×x v → v fits into such an equation of 2-arrows, and
this is none other than the 2-cell component of the identity 2-arrow on the composite fraction

x← v
idv−−→ v.

Putting case I and case II together, we have that left whiskering λ(j,f) : KJ(y, z)→ KJ(x, z) preserves
identity maps. �

With Propositions 3.12 and 3.9 we can, by virtue of [Lan71, Proposition II.3.1], define a composition
functor

KJ(x, y)×KJ(y, z)→ KJ(x, z).

In order for this to be the composition functor for a bicategory we just need to now show that it is
coherently associative and unital. In fact, by virtue of Definition 2.7, this composition is strictly unital,
since the composition of any fraction with the identity fraction of its source or target is unchanged.
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Definition 3.13. The associator for the 3-tuple of fractions

u

~~   

v

~~   

w

}} !!
x1 x2 x3 x4

is the map of J-fractions ι(auvw) where auvw is the renaming map associated to the canonical isomor-
phism

(u×x2
v)×x3

w ' u×x2
(v ×x3

w)

over x1, and the appropriate identity 2-arrow.

We can thus check that the associator satisfies the necessary coherence diagrams in the bicategory
of fractions and renaming maps, since it will then hold in the bicategory of fractions and maps of
fractions. In fact, since the renaming map in question is the associator for products in the strict slice
K/x1 (i.e. strict pullbacks in K), it satisfies coherence by the universal property of pullbacks.

Remark 3.14. If we do not assume that pullbacks of identity arrows are again identity arrows, then
we do get nontrivial unitors, but they are, like the associator, renaming maps, and one can check they
are coherent.

We have thus proved:

Proposition 3.15. There is a bicategory KJ with the same objects as K, fractions as 1-arrows and
maps of fractions as 2-arrows.

We now define an identity-on-objects strict 2-functor AJ : K → KJ as follows. For a 1-arrow

f : x → y of K, let AJ(f) be the fraction x
idx←−− x

f−→ y. Given a 2-arrow a : f ⇒ g : x → y in K, let
AJ(a) be the map of fractions

x x
idxoo

f

��

g

>>
ya�� ,

where, recall, x×x x = x by assumption. To check that AJ is a strict 2-functor, we need to check first
that it is functorial for vertical composition of 2-arrows. In the definition of vertical composition of
2-cells, the diagram (3) in the case of maps of fractions in the image of AJ collapses as all objects ui
and their fibre products reduce to x, with all arrows between them identity arrows. The descended
2-arrow is then just the vertical composite in K, and so AJ preserves vertical composition. It is also
simple to show that AJ preserves identity 2-arrows.

Secondly, we need to show that AJ is functorial for horizontal compsition. Identity 1-arrows are
preserved strictly, as is composition of 1-arrows, so it is just a matter of checking that horizontal
composition of 2-cells is preserved. Since horizontal composition is defined via left and right whiskering,
we need to check that whiskering a map of fractions in the image of AJ by a fraction in the image of

AJ is of the same form. The right whiskering of AJ(a : f1 ⇒ f2) where f1, f2 : x → y by y
idy←−− y

g−→ z
involves a 2-cell ρ(idy ,g)a (see Definition 3.8). Since our fractions are in the image of AJ, the diagram
again collapses so that all appearances of u ×x v are equal to x, and w = y, so that ρ(idy ,g)a = a,
and the final result has the 2-cell component the right whiskering of a by g. The left whiskering we
need is case I, so we consider Definition 3.10. Consider the map of fractions AJ(a : g1 ⇒ g2) where

g1, g2 : y → z and whisker it by x
idx←−− x

f−→ y. Now in the definition of the 2-cell λI(idx,f)a, we have

v12 = v1 = v2 = y, the maps between them are identity maps, u = x, and u ×y v12 → v12 is just f .
Thus the whiskered map of fractions is again in the image of AJ, and we have proved that AJ is a strict
2-functor.

Lemma 3.16. The 2-functor AJ is locally fully faithful, that is, K(x, y) → KJ(x, y) is fully faithful
for all objects x and y of K.
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Proof. A map of J-spans (idx, f)→ (idx, g) is precisely the same data as a 2-arrow f ⇒ g in K. �

Definition 3.17. Given J, a 1-arrow in q : x→ y in K is J-locally split if there is an arrow u→ y in
J and a diagram of the form

x

q

��
u

u
//

s

??

y
��

with the 2-arrow invertible. A 1-arrow in K is a weak equivalence if it is ff and J-locally split. Denote
the class of weak equivalences by WJ.

Clearly J ⊂ WJ as we are assuming all arrows in J are ff, and every arrow in J is trivially J-locally
split.

Proposition 3.18. Let f be a 1-arrow of K. Then AJ(f) an equivalence if and only if f ∈WJ.

Proof. Let f : x→ y be a 1-arrow in K such that (idx, f) is an equivalence in KJ, i.e. there is a J-span

y
j←− u g−→ x such that

1. (idx, f) ◦ (j, g)
∼−→ (idy, idy)

2. (idx, idx)
∼−→ (j, g) ◦ (idx, f)

Point 1 implies that we have an isomorphism of J-spans

u
j

��

fg

��
y u

j

��

y

y

' ��

The right hand half of this diagram means that f is J-locally split. The second point implies that
(idx, f) is a ff arrow in the bicategory KJ, by the existence of the pseudo-retract (j, g) to (idx, f). Since
AJ is locally fully faithful it reflects ff 1-arrows, hence f is an ff arrow in K. �

For a number of diverse examples of weak equivalences in practice, see [Rob12, §8].

3.2. KJ as a localisation. Given a 2-category (or bicategory) B with a class W of 1-arrows, we say

that a 2-functor Q : B → B̃ is a localisation of B at W if it sends the 1-arrows in W to equivalences

in B̃ and is universal with this property. This latter means that for any bicategory A precomposition
with Q,

Q∗ : Bicat(B̃,A)→ BicatW (B,A),

is an equivalence of hom-bicategories, with BicatW meaning the full sub-bicategory on those 2-functors
sending arrows in W to equivalences.

Theorem 3.19. A strict 2-site (K, J) admits a bicategory of fractions for WJ, and the inclusion
2-functor AJ : K → KJ is a localisation at the class WJ of weak equivalences.

Proof. That (K, J) admits a bicategory of fractions for WJ is [Rob16, Theorem 6]. The proof that AJ

is a localisation proceeds via Pronk’s comparison theorem [Pro96, Proposition 24], the conditions of
which imply that the canonical 2-functor B[W−1]→ A is an equivalence of bicategories. Here B[W−1]
is the bicategory of fractions constructed by Pronk.

Let us show the conditions in [Pro96, Proposition 24] hold. To begin with, the 2-functor AJ sends
weak equivalences to equivalences by Proposition 3.18.

EF1 AJ is the identity on objects, and hence surjective on objects.
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EF2 This is equivalent to showing that for any J-fraction x
j←− u

f−→ y there are 1-arrows w, g in K
such that w is in WJ and

(j, f)
∼⇒ AJ(g) ◦AJ(w)

where AJ(w) is some pseudoinverse for AJ(w). We can take w = j and g = f , since by the proof
of Proposition 3.18, (j, idu) is a pseudoinverse for (idu, j), and the composite span of (j, idu) and
(idu, f) is just (j, f).

EF3 This holds by Lemma 3.16.

Thus AJ is a localisation of K at WJ. �

As a last remark, one would like to know if the localisation of K at the weak equivalences is locally
essentially small. This can be assured by the following result, where we have used the condition WISC
from [Rob12], which states that every object x of K has a set of covers that are weakly initial in the
subcategory of K/x on the J-covers.

Proposition 3.20. If the locally essentially small strict 2-site (K, J) satisfies WISC, then KJ is locally
essentially small, and hence so is any localisation of K at WJ.

Notice that local essential smallness in not automatic, as there are well-pointed toposes with a
natural numbers object, otherwise very nice categories, for which the 2-category of internal categories
fails the hypothesis of Proposition 3.20. For example the toposes of material sets in models of ZF as
given by Gitik (see [vdBM14]) and Karagila [Kar14], or the well-pointed topos of structural sets in
[Rob15].

Finally, note that nothing in the above relies on K being a (2,1)-category, namely a 2-category
with only invertible 2-arrows. This is usually assumed for results subsumed by Theorem 3.19, but is
unnecessary in the framework presented here.

Appendix A. Proof that left whiskering in KJ preserves vertical composition

The definition of left whiskering in KJ is slightly more complicated, as it is such that it doesn’t
permit us to ignore half of the span as we can for right whiskering. Revall that we define left whiskering

by a general J-fraction x
j←− u f−→ y in two cases, using the factorisation (j, f) = (idu, f) ◦ (j, idu).

A.0.1. Case I: left whiskering by (idu, f). Recall the definition of case I of left whiskering.

Definition A.1. The left whiskering of a : (j, g)→ (k,h) by (idu, f) is given by the 2-arrow λI(idu,f)a,

defined as

u×y v12
// v12

&&
88 za �� .

Proposition A.2. Left whisking by (idu, f) preserves composition.

Proof. In the following, let λI(−) = λI(id,f)(−)

u×y v123

��

u×y v13
&&
88 zλI(a1+a2)

��
=

u×y v123

��

u×y v13

��
v13

&&
88 za1+a2

��
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=

u×y v123

��
v123

��
v13

&&
88 za1+a2

��

=

u×y v123

��

v12

!!

// v1

  
v123

99

%%

v2
// z

v23

==

// v3

>>

a1

�

a2
	�

=

u×y v12

��

//

%%

u×y v1

""
u×y v123

��

88

u×y v2

��

// z

v12

&&
v123

77

''

v2
// z

v23
//

88

v3

;;

λIa1

�

a2
��

=

u×y v12
//

%%

u×y v1

""
u×y v123

88

&&

u×y v2
// z

u×y v23

99

// u×y v2

<<

λIa1

�

λIa2
��



THE ELEMENTARY CONSTRUCTION OF FORMAL ANAFUNCTORS 17

=

u×y v123

��

u×y v13
&&
88 zλIa1+λIa2

��

By uniqueness of descent, λI(a1 + a2) = λIa1 + λIa2.
�

A.0.2. Case II: left whiskering by (j, idu). Recall the notations V12 := v1×x v2, Vij... := vi×x vj×x . . ..
and the canonical maps vij... → Vij....

Definition A.3. The left whiskering of a : (j, g)→ (k,h) by (j, id) is given by the 2-arrow λII(j,id)a in

K defined via unique descent by the equation

v12 ×x V12

pr2 // V12

!!

== zλ(j,id)a

��
=

V12

  
v12 ×x V12

pr2

22

pr2
,,

// v12

==

!!

z

V12

>>


�
a

��
��

.

Proposition A.4. Left whiskering by (j, idu) preserves composition.

Proof. In the following, let λII(−) := λII(j,idu)(−)

v123 ×x V123

��

v13 ×x V13

��

V13
$$
:: zλII(a1+a2)

��

=

v123 ×x V123

��

V13

  
v13 ×x V13

//

22

,,

v13

==

!!

z

V13

>>
a1+a2

��

��

��
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=

V123

��

v123 ×x V123

22

,,

// v123

��

<<

""

V123





V13

!!
v13

;;

##

z

V13

AA
a1+a2

��

��

��

=

V123

  
v123 ×x V123

22

,,

// v123

==

""

z

V123

>>
a1⊕a2

��

��

��

=

V123
// V12

��

v12

==

!!
v123 ×x V123

AA

//

��

v123

OO

��

""

<<

v2
// z

v23

!!

==

V123
// V23

@@

��


�

a1


�

a2

	�
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=

V123
// V12

��

v12v12v12

==

// V12V12V12

  
v123 ×x V123v123 ×x V123v123 ×x V123

AA

//

��

v123v123v123

OO

��

""

<<

v2v2v2
// z

v23v23v23

!!

// V23V23V23

>>

V123
// V23

??

��


�

a1 ��

a2 ��

=

V12

��

v12 ×x V12v12 ×x V12v12 ×x V12

22

//

,,

v12v12v12

==

!!

V12V12V12

  
v123 ×x V123v123 ×x V123v123 ×x V123

??

��

v2v2v2
// z

V23V23V23

>>

v23 ×x V23v23 ×x V23v23 ×x V23

22

//

,,

v23v23v23

==

!!

V23

DD

��

��

��

��

a1

��

a2

��

(where the subdiagrams on the bold symbols are equal)

=

v12 ×x V12
// V12

  

// v1

��
v123 ×x V123

77

''

v2
// z

v23 ×x V23
// V23

>>

// v3

??

λIIa1

��

λIIa2 
�

=

v123 ×x V123

��

V12
//

  

v1

��
V123

99

%%

v2
// z

V23

>>

// v3

??

λIIa1

��

λIIa2 
�
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=

v123 ×x V123

��

V123

��

V13
&&
88 zλIIa1+λIIa2

��

By uniqueness of descent, we have λII(a1 + a2) = λIIa1 + λIIa2, so left whiskering preserves
composition. �
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