Supporting Information

Small Molecules Simultaneously Inhibiting p53-MurineDouble Minute 2 (MDM2) Interaction and HistoneDeacetylases (HDACs): Discovery of Novel Multi-targetingAntitumor Agents
Shipeng He, ${ }^{\dagger}$ Guoqiang Dong, ${ }^{\star}$ Shanchao Wu, ${ }^{\dagger}$ Kun Fang, ${ }^{\dagger}$ Zhenyuan Miao, ${ }^{*}{ }^{\star}$ Wei Wang, ${ }^{*+\uparrow,}$ Chunquan Sheng ${ }^{* *}$
Table of Contents
Table S1. Water Solubility of the Selected Compounds. S2
Figure S1. The chiral separation of racemic 14d S2
Figure S2. The configuration of enantiomers of $14 d$ could be identified by the comparison of optical rotation to that of $14 \mathrm{~d}-1$ and $14 \mathrm{~d}-2$ S3
Figure S3. Schematic depiction of the interactions between compound 14 d enantiomers with MDM2 and HDAC1 S3
Scheme S1. Synthesis of Intermediate 5 S4
Scheme S2. Synthesis of Intermediate 6 S4
Chemical Synthesis and Structural Characterization of Intermediates S5
Molecular Docking S12
Pharmacokinetic Studies. S12
Solubility Assay S13
Spectral data S14
References S26

Table S1. Water Solubility of the Selected Compounds $(\mu \mathrm{M})$.

Compound	$\mathbf{1 1 c}$	$\mathbf{1 1 d}$	$\mathbf{1 2 c}$	$\mathbf{1 2 d}$	$\mathbf{1 3}$	$\mathbf{1 4 c}$	$\mathbf{1 4 d}$	$\mathbf{1 5 a}$	$\mathbf{1 6 b}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Solubility	10	10	26	20	73	90	93	91	18	>100	94	83

(B) mAD $_{\text {ma }}$ A, Sig=254,4 Ref=550, 100 (HSPIHSP000036.D)

Figure S1. The chiral separation of racemic 14d. (A) The purity result of compound 14d. (B) The enantiomers were separated by high performance liquid chromatography
(HPLC) using hexane/2-propanol (hexane: 2-propanol $=85: 15$) as the mobile phase with a flow rate of $0.8 \mathrm{~mL} / \mathrm{min}$ on a Daicel Chiralpak AD-H column.

Compound	Specific rotation
Nutlin-3a	$[\alpha]_{D}^{25}=-172\left(\mathrm{c}=0.20\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
Nutlin-3b	$[\alpha]_{\mathrm{D}}^{25}=164\left(\mathrm{c}=0.20\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

Specific rotation	Compound
$[\alpha]_{D}^{25}=-328\left(\mathrm{c}=0.10\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$	$\mathbf{1 4 d - 2}$
$[\alpha]_{\mathrm{D}}^{25}=354\left(\mathrm{c}=0.10\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$	$\mathbf{1 4 d - 1}$

Nutlin-3a
(-)-Nutlin-3

Nutlin-3b
(+)-Nutlin-3

Figure S2. The configuration of enantiomers of $\mathbf{1 4 d}$ could be identified by the comparison of optical rotation to that of $\mathbf{1 4 d} \mathbf{- 1}$ and $\mathbf{1 4 d} \mathbf{- 2}$.

(B)

(D)

GLU
103

Figure S3. Schematic depiction of the interactions between compound 14d
enantiomers with MDM2 and HDAC1. (A) The interactions between compound $14 \mathrm{~d}-2$ and MDM2; (B) The interactions between compound 14d-2 and HDAC1; (C) The interactions between compound $14 \mathrm{~d}-1$ and MDM2; (D) The interactions between compound 14d-2 and HDAC1.

Scheme S1. Synthesis of Intermediate $5^{\text {a }}$

${ }^{\text {a }}$ Scheme S1. Reagents and Conditions: (a) Br_{2} (1.0 eq) $, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 0.5 \mathrm{~h}$, yield 95%;
(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}(1.0 \mathrm{eq}), \mathrm{KTB}, \mathrm{THF}, 7{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 95 \%$; (c) Mg (1.1 eq), $\mathrm{I}_{2}, \mathrm{CO}_{2}, \mathrm{THF}$,
$78^{\circ} \mathrm{C}, 5 \mathrm{~h}$; (d) HCl (3.0 eq), 2 h.

Scheme S2. Synthesis of Intermediate $6^{\text {a }}$

${ }^{\text {a }}$ Scheme S2. Reagents and Conditions: (a) $\mathrm{CH}_{3} \mathrm{COONH}_{4}(7.0 \mathrm{eq}), 200^{\circ} \mathrm{C}, 5 \mathrm{~h}$, yield 86%; (b) con. $\mathrm{H}_{2} \mathrm{SO}_{4}, 160^{\circ} \mathrm{C}, 3 \mathrm{~h}, 34 \%$;

Chemical Synthesis and Structural Characterization of Compounds 5-6 and

 Intermediates.General. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AVANCE300 and AVANCE600 spectrometer (Bruker Company, Germany), using TMS as an internal standard and DMSO- d_{6} as solvents. Chemical shift are given in $\mathrm{ppm}(\delta)$. The mass spectra were recorded on an Esquire 3000 LC-MS mass spectrometer. TLC analysis was carried out on silica gel plates GF254 (Qingdao Haiyang Chemical, China). Silica gel column chromatography was performed with Silica gel 60 G (Qingdao Haiyang Chemical, China). Unless otherwise noted, all materials were obtained from commercial suppliers and used without further purification. Chemical names were created using ChemDraw Ultra 10.0 software.

2-Bromo-5-tert-butylphenol (25). To a 500 mL round bottom three necked flask, dichloromethane (100 mL) was added followed by 3-tert-butylphenol $24(9.0 \mathrm{~g}, 60.0$ $\mathrm{mmol})$, then a solution of bromine ($3.13 \mathrm{~mL}, 61.0 \mathrm{mmol}$) in dichloromethane (50 mL) was added over 30 min at $0{ }^{\circ} \mathrm{C}$. After the addition was complete, TLC analysis indicated a complete reaction. The reaction was then quenched with 50 mL of 1% NaHSO_{3} aqueous solution while stirring. After 10 min , the organic layer became clear and was separated from the aqueous layer, the organic layer was washed once with water (200 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated at $30^{\circ} \mathrm{C}$ to afford 2-bromo-5-tert-butylphenol $\mathbf{2 5}$ ($13.5 \mathrm{~g}, 98 \%$ yield) as a colorless oil, which was used directly in the next step.

1-Bromo-2-ethoxy-4-tert-butylbenzene (26). To a solution of 3-tert-butylphenol 25
$(10.3 \mathrm{~g}, 44.9 \mathrm{mmol})$ in THF (50 mL) was added potassium tert-butoxide $(5.04 \mathrm{~g}, 45.0$ mmol) followed by iodoethane ($7.3 \mathrm{~g}, 46.0 \mathrm{mmol}$). The mixture was heated to reflux for 3 h . TLC analysis indicated complete reaction. The resulting solution was cooled to room temperature and solvent was removed by rotary evaporation at $40{ }^{\circ} \mathrm{C}$. The residues was dissolvent in EtOAc (150 mL) and washed with water ($50 \mathrm{~mL} \times 2$) and saturated NaCl solution (50 mL), then the organic phase was concentrated at $30^{\circ} \mathrm{C}$ to afford 1-bromo-2-ethoxy-4-tert-butylbenzene $\mathbf{2 6}$ (11.2 g, 97\% yield) as a colorless oil, which was directly used in the next step. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta: 1.29$ (s, 9H), $1.37(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 4.14(\mathrm{dd}, \mathrm{J}=7.8,3.06 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=7.98,1 \mathrm{H})$, $7.06(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, \mathrm{~J}=8.02 \mathrm{~Hz}, 1 \mathrm{H})$.

4-tert-Butyl-2-ethoxy-benzoic Acid (5). A dry, 500 mL , three necked, round bottomed flask, equipped with a magnetic stirrer, thermometer, and a reflux condenser, was charged under nitrogen with magnesium $(2.16 \mathrm{~g}, 88.8 \mathrm{mmol})$ and THF (160 mL). Compound 26 ($2.0 \mathrm{~g}, 7.8 \mathrm{mmol}$) was added, followed by a few crystals of iodine. Upon heating to $40^{\circ} \mathrm{C}$, the reaction initiated, and then additional $26(18.0 \mathrm{~g}, 70.0 \mathrm{mmol})$ was added dropwise to the solution with a gentle stirring. The resulting mixture was heated to reflux for 4 h . After the reaction was complete, the reaction mixture was cooled to $-20{ }^{\circ} \mathrm{C}$ and the carbon dioxide was bubbled into the reaction mixture until the absorption of gas was complete. TLC analysis indicated complete reaction. The reaction mixture was allowed to warm to room temperature and was stirred overnight. Then $1 \mathrm{M} \mathrm{HCl}(160 \mathrm{~mL}, 160 \mathrm{mmol})$ was added, and the mixture was extracted with EtOAc (100 mL $\times 3$). The combined organic layer was washed with brine, dried over
anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to give crude product as an orange solid. This crude material was purified by silica gel column to give compound 5 ($1.48 \mathrm{~g}, 85.6 \%$ yield) as an off-white solid. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta: 1.31(\mathrm{~s}, 9 \mathrm{H}), 1.33(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.12(\mathrm{dd}, \mathrm{J}=7.0,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.02$ $(\mathrm{dd}, \mathrm{J}=7.92,1.53 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, \mathrm{~J}=7.92 \mathrm{~Hz}, 1 \mathrm{H}), 12.34(\mathrm{~s}, 1 \mathrm{H})$.
(1R,2S)-1,2-bis(4-chlorophenyl)ethane-1,2-diamine (6). A mixture of 27 (14.0 g, 100 mmol) and $\mathrm{CH}_{3} \mathrm{COONH}_{4}(56 \mathrm{~g}, 714 \mathrm{mmol})$ was heated to $200^{\circ} \mathrm{C}$ in 500 mL round bottom flask, then the reaction mixture was stirred at this temperature for 5 h . After reaction was complete, the cooled white residue was washed with water. The suspension was filtered by suction and the residue cake was washed with 10% n-hexane in ethyl acetate, then filtered again and dried to afford 28 (43 g, 80\%) as a white solid. Compound $28(20 \mathrm{~g}, 37 \mathrm{mmol})$ was added slowly to the $70 \% \mathrm{H}_{2} \mathrm{SO}_{4}(20$ mL) under stirring in the 100 mL round bottom flask, the reaction mixture was then heated to $160{ }^{\circ} \mathrm{C}$ and the temperature was maintained for 4 h . then, the reaction mixture was poured into a large quantity of ice/water and the resulting slurry was extracted with EtOAc $(20 \mathrm{~mL} \times 3)$ to remove the impurities and separated, the aqueous layer was adjusted $\mathrm{pH}=11$ under stirring by NaOH solution $(2 \mathrm{~N})$. The aqueous phase was further extracted with EtOAc ($50 \mathrm{~mL} \times 3$), and the combined organic extract was dried and evaporated to give $6(3.8 \mathrm{~g}, 36.6 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO- d_{6}) $\delta: 7.28(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 1.74(\mathrm{~s}$, 4H).
-1H-imidazole-1-carboxamido)hexanoate (10b). ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 300 \mathrm{MHz}$) δ : $1.10-1.25(\mathrm{~m}, 7 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}), 1.33-1.40(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{~m}, 2 \mathrm{H}), 2.65-2.78(\mathrm{~m}, 2 \mathrm{H})$, $3.58(\mathrm{~s}, 3 \mathrm{H}), 4.05-4.09(\mathrm{~m}, 1 \mathrm{H}), 4.09-4.15(\mathrm{~m}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 6.23(\mathrm{~s}$, $1 \mathrm{H}), 7.02-7.11(\mathrm{~m}, 4 \mathrm{H}), 7.13-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.43(\mathrm{~d}, J=6.28 \mathrm{~Hz}, 1 \mathrm{H})$.

Methyl-7-(2-(4-(tert-butyl)-2-ethoxyphenyl)-4,5-bis(4-chlorophenyl)-4,5-dihydro - $\mathbf{1 H}$-imidazole-1-carboxamido)heptanoate (10c). ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 300 \mathrm{MHz}$) δ : 0.88-0.98 (m, 4H), 1.03-1.28 (m, 7H), $1.34(\mathrm{~s}, 9 \mathrm{H}), 1.45-1.52(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{t}, J=7.27$ $\mathrm{Hz}, 2 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 4.06-4.10(\mathrm{~m}, 1 \mathrm{H}), 4.22-4.31(\mathrm{~m}, 1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H})$, $6.02(\mathrm{~s}, 1 \mathrm{H}), 7.01-7.32(\mathrm{~m}, 10 \mathrm{H}), 7.42(\mathrm{~d}, J=7.77 \mathrm{~Hz}, 1 \mathrm{H})$.

Methyl-8-(2-(4-(tert-butyl)-2-ethoxyphenyl)-4,5-bis(4-chlorophenyl)-4,5-dihydro -1H-imidazole-1-carboxamido)octanoate (10d). ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 300 \mathrm{MHz}\right) \delta$: $0.90-1.33(\mathrm{~m}, 9 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}), 1.42-1.54(\mathrm{~m}, 4 \mathrm{H}), 2.13(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{t}, J=7.70 \mathrm{~Hz}$, $2 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 4.08-4.12(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.27(\mathrm{~m}, 1 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H})$, $6.01(\mathrm{~s}, 1 \mathrm{H}), 7.01-7.16(\mathrm{~m}, 6 \mathrm{H}), 7.16-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.41(\mathrm{~d}, J=6.68 \mathrm{~Hz}, 1 \mathrm{H})$.

Methyl-4-((2-(4-(tert-butyl)-2-ethoxyphenyl)-4,5-bis(4-chlorophenyl)-4,5-dihydr

 o-1H-imidazole-1-carboxamido)methyl)benzoate (18). ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 600$ $\mathrm{MHz}) \delta: 1.28(\mathrm{t}, J=6.69 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.92-4.08(\mathrm{~m}, 2 \mathrm{H}), 4.16$ (dd, $J=9.68 \mathrm{~Hz}, 6.56 \mathrm{~Hz}, 2 \mathrm{H}), 5.67(\mathrm{~d}, J=10.08 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=10.08 \mathrm{~Hz}, 1 \mathrm{H})$, $6.81(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.53 \mathrm{~Hz}, 2 \mathrm{H}), 6.94-7.08(\mathrm{~m}, 4 \mathrm{H}), 7.10-7.19(\mathrm{~m}, 6 \mathrm{H}), 7.36(\mathrm{~d}, J$ $=8.21 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.72 \mathrm{~Hz}, 2 \mathrm{H})$.Ethyl2-(4-(2-(4-(tert-butyl)-2-ethoxyphenyl)-4,5-bis(4-chlorophenyl)-4,5-dihydro - $\mathbf{1 H}$-imidazole-1-carbonyl)piperazin-1-yl)acetate (20a). ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 300$

MHz) $\delta: 1.23(\mathrm{t}, J=8.32 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{t}, J=6.74 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}), 1.91(\mathrm{~s}, 4 \mathrm{H})$, $2.95(\mathrm{~s}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 4 \mathrm{H}), 3.19(\mathrm{~s}, 1 \mathrm{H}), 3.95-4.14(\mathrm{~m}, 4 \mathrm{H}), 5.53(\mathrm{~d}, J=9.78 \mathrm{~Hz}, 1 \mathrm{H})$, $5.67(\mathrm{~d}, J=9.78 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=7.93 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.19 \mathrm{~Hz}, 2 \mathrm{H})$, 7.05-7.14 (m, 4H), 7.16 (d, $J=8.19 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=7.93 \mathrm{~Hz}, 1 \mathrm{H})$.

Methyl-5-(4-(2-(4-(Tert-butyl)-2-ethoxyphenyl)-4,5-bis(4-chlorophenyl)-4,5-dihy dro-1H-imidazole-1-carbonyl)piperazin-1-yl)pentanoate (20b). ${ }^{1} \mathrm{H} \quad$ NMR (DMSO- $\left.d_{6}, 300 \mathrm{MHz}\right) \delta: 1.10-1.25(\mathrm{~m}, 4 \mathrm{H}), 1.31(\mathrm{t}, J=6.68 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H})$, $1.62-1.89(\mathrm{~m}, 4 \mathrm{H}), 1.92(\mathrm{t}, J=8.12 \mathrm{~Hz}, 2 \mathrm{H}), 2.11(\mathrm{t}, J=7.74 \mathrm{~Hz}, 2 \mathrm{H}), 2.92-3.12(\mathrm{~m}$, $4 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 4.01-4.16(\mathrm{~m}, 2 \mathrm{H}), 5.52(\mathrm{~d}, J=9.98 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~d}, J=9.98 \mathrm{~Hz}$, $1 \mathrm{H}), 6.95(\mathrm{t}, J=7.92 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{t}, J=8.22 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.15(\mathrm{t}, J$ $=8.22 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=7.72 \mathrm{~Hz}, 1 \mathrm{H})$.

Methyl-6-(4-(2-(4-(tert-butyl)-2-ethoxyphenyl)-4,5-bis(4-chlorophenyl)-4,5-dihy dro-1H-imidazole-1-carbonyl)piperazin-1-yl)hexanoate (20c). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, $300 \mathrm{MHz}) \delta: 1.12-1.26(\mathrm{~m}, 4 \mathrm{H}), 1.30(\mathrm{t}, J=6.98 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}), 1.41(\mathrm{t}, J=$ $6.86 \mathrm{~Hz}, 2 \mathrm{H}), 1.50-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.87(\mathrm{t}, J=7.72 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{t}, J=7.16 \mathrm{~Hz}, 2 \mathrm{H})$, $2.86(\mathrm{~s}, 4 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 4.01-4.20(\mathrm{~m}, 2 \mathrm{H}), 5.52(\mathrm{~d}, J=9.98 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~d}, J=$ $9.92 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-7.04(\mathrm{~m}, 6 \mathrm{H}), 7.05-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.52(\mathrm{~d}, J=7.55 \mathrm{~Hz}, 1 \mathrm{H})$.

Ethyl-7-(4-(2-(4-(Tert-butyl)-2-ethoxyphenyl)-4,5-bis(4-chlorophenyl)-4,5-dihyd ro-1 \boldsymbol{H}-imidazole-1-carbonyl)piperazin-1-yl)heptanoate (20d). ${ }^{1} \mathrm{H}$ NMR (DMSO-d6, $300 \mathrm{MHz}) \delta: 1.10-1.18(\mathrm{~m}, 6 \mathrm{H}), 1.21(\mathrm{t}, J=4.12 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=5.69 \mathrm{~Hz}, 3 \mathrm{H})$, $1.31(\mathrm{~s}, 9 \mathrm{H}), 1.38-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.80(\mathrm{~m}, 4 \mathrm{H}), 1.97(\mathrm{t}, J=6.92 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{t}, J=$ $7.26 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{~s}, 4 \mathrm{H}), 3.95-4.10(\mathrm{~m}, 4 \mathrm{H}), 5.49(\mathrm{~d}, J=10.12 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=$
$10.12 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.04 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.25 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=7.78$ $\mathrm{Hz}, 4 \mathrm{H}), 7.13(\mathrm{~d}, J=8.36 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=7.93 \mathrm{~Hz}, 1 \mathrm{H})$.

Methyl-8-(4-(2-(4-(tert-butyl)-2-ethoxyphenyl)-4,5-bis(4-chlorophenyl)-4,5-dihy dro-1H-imidazole-1-carbonyl)piperazin-1-yl)octanoate (20e). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, $300 \mathrm{MHz}) \delta: 1.18-1.35(\mathrm{~m}, 6 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.48(\mathrm{t}, J=6.53 \mathrm{~Hz}, 3 \mathrm{H}), 1.48-1.64(\mathrm{~m}$, 2H), 1.73-1.93 (m, 4H), $2.09(\mathrm{t}, J=6.98 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{t}, J=7.51 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{~s}$, $2 \mathrm{H}), 3.11(\mathrm{~m}, 4 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 4.14-4.22(\mathrm{~m}, 2 \mathrm{H}), 5.57(\mathrm{~d}, J=9.97 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~d}, J$ $=9.97 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.12(\mathrm{~m}, 4 \mathrm{H}), 7.12-7.20(\mathrm{~m}, 6 \mathrm{H}), 7.59(\mathrm{~d}, J=7.86 \mathrm{~Hz}, 1 \mathrm{H})$.
(E)-Methyl-3-(4-(1-((4S,5R)-2-(4-(tert-butyl)-2-ethoxyphenyl)-4,5-bis(4-chloroph enyl)-4,5-dihydro-1 H -imidazole-1-carbonyl)piperidine-4-carboxamido)phenyl)acr ylate (21a). ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 300 \mathrm{MHz}\right) \delta: 0.81-0.96(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.35(\mathrm{~m}, 12 \mathrm{H})$, $1.51(\mathrm{~d}, J=11.84 \mathrm{~Hz}, 2 \mathrm{H}), 2.19-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{t}, J=5.92 \mathrm{~Hz}, 1 \mathrm{H}) 2.52(\mathrm{t}, J=$ $12.92 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=13.46 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=12.92 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$, 4.06-4.15 (m, 2H), $5.54(\mathrm{~d}, J=9.69 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~d}, J=9.69 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=$ $16.16 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.80 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{t}, J=9.76 \mathrm{~Hz}, 3 \mathrm{H}), 7.08(\mathrm{~d}, J=7.80$ $\mathrm{Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=7.80 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=7.56 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=7.80 \mathrm{~Hz}$, $1 \mathrm{H}), 7.56(\mathrm{~d}, J=5.61 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.53 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=8.53 \mathrm{~Hz}, 2 \mathrm{H})$, 9.92 ($\mathrm{s}, 1 \mathrm{H})$.

Ethyl-2-(4-(2-(4-(tert-butyl)-2-ethoxyphenyl)-4,5-bis(4-chlorophenyl)-4,5-dihydr o-1H-imidazole-1-carbonyl)piperazin-1-yl)pyrimidine-5-carboxylate (21b). ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 300 \mathrm{MHz}\right) \delta: 1.11-1.23(\mathrm{~m}, 12 \mathrm{H}), 1.23-1.35(\mathrm{~m}, 3 \mathrm{H}), 1.28-1.36(\mathrm{~m}$, 4H), 3.09 (s, 4H), 4.11 (dd, $J=14.08 \mathrm{~Hz}, 7.04 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{dd}, J=14.08 \mathrm{~Hz}, 7.04$
$\mathrm{Hz}, 2 \mathrm{H}), 5.56(\mathrm{~d}, J=9.36 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~d}, J=9.36 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-7.03(\mathrm{~m}, 3 \mathrm{H})$, 7.02-7.13 (m, 5H), $7.18(\mathrm{~d}, J=7.83 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=7.83 \mathrm{~Hz}, 1 \mathrm{H}), 8.75(\mathrm{~s}, 2 \mathrm{H})$.

Ethyl-2-((1-(2-(4-(tert-butyl)-2-ethoxyphenyl)-4,5-bis(4-chlorophenyl)-4,5-dihyd ro-1H-imidazole-1-carbonyl)piperidin-4-yl)amino)pyrimidine-5-carboxylate (22a). ${ }^{1} \mathrm{HNMR}\left(\mathrm{DMSO}-d_{6}, 300 \mathrm{MHz}\right) \delta: 0.83-0.92(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.38(\mathrm{~m}, 15 \mathrm{H}), 1.56-1.60$ $(\mathrm{m}, 2 \mathrm{H}), 2.49(\mathrm{t}, J=10.38 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.64(\mathrm{~m}, 3 \mathrm{H}), 4.11(\mathrm{dd}, J=$ $13.98 \mathrm{~Hz}, 6.66 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{~m}, 2 \mathrm{H}), 5.54(\mathrm{~d}, J=9.99 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~d}, J=9.99 \mathrm{~Hz}$, $1 \mathrm{H}), 6.97(\mathrm{~d}, J=7.90 \mathrm{~Hz}, 2 \mathrm{H}), 7.02-7.09(\mathrm{~m}, 4 \mathrm{H}), 7.11(\mathrm{~d}, J=7.90 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J$ $=7.90 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.11 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{~s}, 2 \mathrm{H})$.

Methyl-4-((4-(2-(4-(tert-butyl)-2-ethoxyphenyl)-4,5-bis(4-chlorophenyl)-4,5-dihy dro-1H-imidazole-1-carbonyl)piperazin-1-yl)methyl)benzoate (22b). ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 300 \mathrm{MHz}\right) \delta: 1.29(\mathrm{t}, J=6.67 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.77(\mathrm{~s}, 4 \mathrm{H}), 3.02(\mathrm{~s}$, 4H), $3.18(\mathrm{dd}, J=9.05 \mathrm{~Hz} 2 \mathrm{H}), 3.83(\mathrm{~m}, 3 \mathrm{H}), 4.07(\mathrm{dd}, J=13.74 \mathrm{~Hz}, 6.04 \mathrm{~Hz}, 2 \mathrm{H})$, $5.51(\mathrm{~d}, J=9.99 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~d}, J=9.99 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-7.05(\mathrm{~m}, 4 \mathrm{H}), 7.06-7.18(\mathrm{~m}$, $6 \mathrm{H}), 7.30(\mathrm{~d}, J=7.91 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.33 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=7.91 \mathrm{~Hz}, 2 \mathrm{H})$.

Methyl-1-(2-(4-(tert-butyl)-2-ethoxyphenyl)-4,5-bis(4-chlorophenyl)-4,5-dihydro -1 \boldsymbol{H}-imidazole-1-carbonyl)piperidine-4-carboxylate (23). ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 300$ $\mathrm{MHz}) \delta: 0.81-0.87(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.42(\mathrm{~m}, 5 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}), 1.51-1.82(\mathrm{~m}, 1 \mathrm{H})$, 2.22-2.36 (m, 2H), $3.59(\mathrm{~d}, J=10.11 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~d}, J=10.11 \mathrm{~Hz}, 1 \mathrm{H})$, 4.05-4.16 (m, 2H), $5.57(\mathrm{~d}, J=7.68 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=7.68 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-7.20(\mathrm{~m}$, $10 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H})$.

Molecular Docking. The crystal structure of MDM2 was obtained from protein database bank (PDB ID: 4IPF ${ }^{1}$) and prepared for docking using the protein preparation tool in Discovery Studio 3.0. ${ }^{2}$ During this process, the ligands and waters were removed and hydrogens were added to the structure. Staged minimization was performed with default setting. The docking studies were carried out using GOLD 5.0. Binding site was defined as whole residues within a $10 \AA$ radius subset encompassing the ligand. Conformations were generated by genetic algorithm and scored using GoldScore as fitness function. The best conformation was chosen to analyse the ligand-protein interaction. The image representing the best pose was prepared using PyMol. Docking analysis of HDAC1 (4BKX) ${ }^{3}$ with compounds was performed as described above.

Pharmacokinetic Studies. Male SD rats (6-8 weeks old, body weight 180-220 g) were obtained from Shanghai Sippr-BK laboratory animal Co. Ltd., China. Three animals were administered a single $2 \mathrm{mg} / \mathrm{kg}$ dose as an IV bolus via the tail vein or a single 20 $\mathrm{mg} / \mathrm{kg}$ PO dose by gavage. Both the IV and PO dose was administered as a solution in 5% DMSO $+10 \%$ Solutol $+85 \%$ Saline. After administration of compound $\mathbf{1 4 d}(\mathrm{n}=3$ per time point), 0.25 mL of blood was collected via Jugular vein puncture and put on the ice (heparin prevents clotting). Pharmacokinetic time points were $0.083,0.25,0.5$, $1,2,4,6,8$ and 24 hours post-dose. Blood samples were transferred to microcentrifuge tubes and centrifuged ($8000 \mathrm{r} / \mathrm{min}, 6 \mathrm{~min}$ at $2-8^{\circ} \mathrm{C}$). The separated plasma was stored at approximately $-80{ }^{\circ} \mathrm{C}$ until thawed for LC-MS/MS. Data acquisition: Analyst version 1.5.1. Pharmacokinetic data analysis was performed on mean plasma
concentration-time data and pharmacokinetic parameters were calculated using WinNonlin version 5.2.

Solubility Assay. A 10 mM stocks solution of drug in DMSO were diluted into universal phosphate buffer to a maximum concentration of $100 \mu \mathrm{M}$. The 1% DMSO buffered drug solutions were incubated with gentle shaking over a period of 24 h and then were filtered through a 96 well Millipore Multi-Screen plate. Standards were prepared at $100 \mu \mathrm{M}$ in DMSO. Compound solubility was determined by the ratio of the UV signal at the maximum absorption peak versus to that of the corresponding $100 \mu \mathrm{M}$ standard. ${ }^{4}$

Spectral data

Copies of the NMRs for representative compounds

Compound 11c

Compound 11d

Compound 12c

数据文件：C：\CHEM32\1\DATA\HSP\HSP000170．D
样品名称：hsp－42

信号 1：DAD1 A，Sig＝254，4 Ref＝360，100

	保留时间 ［min］	类型	峰宽 [min]	$\begin{gathered} \text { 峰面积 } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％
1	16.435	VB	0.3467	935.36615	40.30850	1.3604
2	22.478	BB	1.8891	6.58496 e 4	413.23520	95.7696
3	28.703		0.8650	1973.42285	28.11074	2.8701
总量				6.87584 e 4	481.65443	

\qquad
＊＊＊报告结束＊＊＊

Compound 13

Compound 14c

Compound 14d

$\begin{array}{r} \text { hsp-147-91-dnation } \\ 0 \end{array}$		$\stackrel{F}{\infty}$				$\stackrel{\ddot{ே}}{\stackrel{\circ}{6}}$		$\stackrel{\stackrel{\circ}{ \pm}}{\stackrel{\circ}{\square}}$	

Qualitative Analysis Report

Data Filename	H4--POS.d	Sample Name	
Sample Type	Sample	Position	P1-D3
Instrument Name	Instrument 1	User Name	
Acq Method TEST-POS-WL.m	Acquired Time	11/2/2017 10:39:35 AM IRM Calibration Status Comment	Success

User Spectra

m/z	z	Abund		Formula		Ion		
338.3417		669853.9						
361.666	2	2044955.4						
362.1675	2	950832.1						
362.6652	2	1549624.1						
363.1662	2	641174.1						
363.6655	2	349502.9						
722.3244	1	1444457.6		C39 H50 Cl2 N5	04	(M+H)+		
723.3274	1	629625.4		C39 H50 Cl2 N5	O4	(M+H)+		
724.3229	1	1042737.1		C39 H50 Cl2 N5	O4	$(\mathrm{M}+\mathrm{H})+$		
725.3253	1	421272.3		C 39 H 50 Cl 2 N 5	04	(M+H)+		
Formula Calculator Element Limits								
Element	Min		Max					
C		3	200					
H		0	400					
0		4	18					
N		5	18					
Cl		0	2					
Formula Calculator Results								
Formula			Best	Mass	Tgt Mass	Diff (ppm)	Ion Species	Score
C39 H49 Cl2 N5 O4			TRUE	721.3172	721.3162	-1.41	C39 H50 Cl2 N5 O4	98.38

[^0]数据文件：C：\CHEM32\1\DATA\HSP\HSP000005．D
样品名称：hsp－4

面积百分比报告				
排序	：	信号		
乘积因子	：	1.0000		
稀释因子	：	1.0000		
样品量	：	1.00000	［ng／ul］	（校正中没有使用）

信号 1：DAD1 D，Sig＝230，16 $\operatorname{Ref}=360,100$

峰	保留时间 ［min］	类型	峰宽 ［min］	$\begin{gathered} \text { 峰面积 } \\ \text { [mAU*s] } \end{gathered}$	$\begin{aligned} & \text { 峰高 } \\ & \text { [mAU] } \end{aligned}$	峰面积 \％
1	19.190	MM	0.4099	1013.83295	41.22291	0.5709
2	24.893	MM	0.9128	1076.04395	19.64720	0.6059
3	30.213	MM	3.0818	1.75509 e 5	949.16327	98.8233
总量	：			1.77598 e 5	1010.03338	

[^1]

Qualitative Analysis Report

User Spectra

数据文件：C：\CHEM32\1\DATA\HSP\HSP000166．D
样品名称：hsp－31

信号 1：DAD1 A，Sig＝254，4 Ref＝360，100

峰 \＃	保留时间 ［min］	类型	峰宽 [min]	峰面积 $\left[\mathrm{mAU}{ }^{\star} \mathrm{s}\right]$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％
1	19.363		0.2593	145.27344	8.17676	0.4549
2	20.571		0.9693	3.14860 e 4	486.36862	98.5867
3	31.679		0.6167	306.11264	5.90583	0.9585
总量				3.19374 e 4	500.45121	

\qquad
＊＊＊报告结束＊＊＊

[^2]
References

1. Tovar, C.; Graves, B.; Packman, K.; Filipovic, Z.; Higgins, B.; Xia, M.; Tardell, C.; Garrido, R.; Lee, E.; Kolinsky, K.; To, K.-H.; Linn, M.; Podlaski, F.; Wovkulich, P.; Vu, B.; Vassilev, L. T. MDM2 small-molecule antagonist RG7112 activates p53 signaling and regresses human tumors in preclinical cancer models. Cancer Res. 2013, 73, 2587-2597.
2. Colombano, G.; Travelli, C.; Galli, U.; Caldarelli, A.; Chini, M. G.; Canonico, P. L.; Sorba, G.; Bifulco, G.; Tron, G. C.; Genazzani, A. A. A novel potent nicotinamide phosphoribosyltransferase inhibitor synthesized via click chemistry. J. Med. Chem. 2010, 53, 616-623.
3. Millard, C. J.; Watson, P. J.; Celardo, I.; Gordiyenko, Y.; Cowley, S. M.; Robinson, C. V.; Fairall, L.; Schwabe, J. W. R. Class I HDACs share a common mechanism of regulation by inositol phosphates. Mol. Cell 2013, 51, 57-67.
4. Zheng, X.; Bauer, P.; Baumeister, T.; Buckmelter, A. J.; Caligiuri, M.; Clodfelter, K. H.; Han, B.; Ho, Y.-C.; Kley, N.; Lin, J.; Reynolds, D. J.; Sharma, G.; Smith, C. C.; Wang, Z.; Dragovich, P. S.; Oh, A.; Wang, W.; Zak, M.; Gunzner-Toste, J.; Zhao, G.; Yuen, P.-w.; Bair, K. W. Structure-Based identification of ureas as novel nicotinamide phosphoribosyltransferase (nampt) inhibitors. J. Med. Chem. 2013, 56, 4921-4937.

[^0]: --- End Of Report -

[^1]:

[^2]: 仪 ${ }^{[\cdots}$ Create PDF files without this message by purchasing novaPDF printer（http：／／www．novapdf．com）

