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Chemical Regulation in the United States

• Park et al. (2012): At least 3221 chemicals in pooled human 
blood samples, many appear to be exogenous

• A tapestry of laws covers the chemicals people are exposed to 
in the United States (Breyer, 2009)

• Different testing requirements exist for food additives, 
pharmaceuticals, and pesticide active ingredients (NRC, 2007)

• Most other chemicals, ranging from industrial waste to dyes to 
packing materials, are covered by the Toxic Substances Control 
Act (TSCA) and regulated by EPA

• TSCA was updated in June, 2016 and new approach 
methodologies (NAMs) are being considered prioritize these 
existing and new chemicals for testing

November 29, 2014
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• National Research Council (1983) identified chemical 
risk as a function of both inherent hazard and exposure

• To address thousands of chemicals, we need to use 
NAMs to prioritize those chemicals most worthy of 
additional study

• High throughput risk prioritization needs:
1. high throughput hazard characterization (Dix et 

al., 2007, Collins et al., 2008)
2. high throughput exposure forecasts (Wambaugh 

et al., 2013, 2014)
3. high throughput toxicokinetics (i.e., dose-

response relationship) linking hazard and 
exposure

Potential 
Exposure Rate

mg/kg BW/day

Potential 
Hazard from in 

vitro with 
Reverse 

Toxicokinetics

Lower
Risk

Medium 
Risk

Higher
Risk

Chemical Risk = Hazard + Exposure

Rotroff et al. (2010)
Wetmore et al. (2012, 2014, 2015)
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Rotroff et al. (2010) 35 chemicals
Wetmore et al. (2012) +204 chemicals 
Wetmore et al. (2015) +163 chemicals
Wambaugh et al. (in prep.) + ~300 chemicals

• Most chemicals do not have TK data – we use in vitro HTTK methods adapted from pharma to fill gaps

• In drug development, HTTK methods allow IVIVE to estimate therapeutic doses for clinical studies –
predicted concentrations are typically on the order of values measured in clinical trials (Wang, 2010)

High-Throughput Toxicokinetics (HTTK) for
In Vitro-In Vivo Extrapolation (IVIVE)
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Open Source Tools and Data for HTTK

R package “httk”
• Open source, transparent, and peer-

reviewed tools and data for high 
throughput toxicokinetics (httk)

• Available publicly for free statistical 
software R

• Allows in vitro-in vivo extrapolation 
(IVIVE) and physiologically-base 
toxicokinetics (PBTK)

https://CRAN.R-project.org/package=httk

https://cran.r-project.org/package=httk
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Chemicals Monitored by CDC NHANES

ToxCast + HTTK can estimate doses needed to cause bioactivity

High Throughput Risk Prioritization

Ring et al. (2017)
Exposure intake 
rates  can be 
Inferred from 
biomarkers
(Wambaugh et al., 2014)
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National Health and Nutrition Examination Survey (NHANES) is an ongoing survey 
that covers ~10,000 people every two years

Most NHANES chemicals do not have traditional PK models (Strope et al., 2018)

10

10-3

10-7



Office of Research and Development7 of 28

Variability

Different crayons 
have different 
colors, and none 
of them are the 
“average” color
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Variability

Different crayons 
have different 

colors, and none 
of them are the 
“average” color



Office of Research and Development9 of 28

Population simulator for HTTK

Correlated Monte Carlo 
sampling of physiological 
model parameters built 
into R “httk” package 
(Pearce et al., 2017):

Sample NHANES biometrics 
for actual individuals:

Sex
Race/ethnicity
Age
Height
Weight
Serum creatinine

Ring et al. (2017)
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Population simulator for HTTK

Correlated Monte Carlo 
sampling of physiological 
model parameters built 
into R “httk” package 
(Pearce et al., 2017):

Sample NHANES biometrics 
for actual individuals:

Sex
Race/ethnicity
Age
Height
Weight
Serum creatinine

Regression equations from literature 
(McNally et al., 2014)

(+ residual marginal variability) 

(Similar approach used in SimCYP [Jamei et al. 2009], GastroPlus, 
PopGen [McNally et al. 2014], P3M [Price et al. 2003], physB [Bosgra et al. 2012], etc.)

Ring et al. (2017)
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Population simulator for HTTK

Predict physiological 
quantities

Tissue masses
Tissue blood flows
GFR (kidney function)
Hepatocellularity

Correlated Monte Carlo 
sampling of physiological 
model parameters built 
into R “httk” package 
(Pearce et al., 2017):

Sample NHANES biometrics 
for actual individuals:

Sex
Race/ethnicity
Age
Height
Weight
Serum creatinine

Regression equations from literature 
(McNally et al., 2014)

(+ residual marginal variability) 

(Similar approach used in SimCYP [Jamei et al. 2009], GastroPlus, 
PopGen [McNally et al. 2014], P3M [Price et al. 2003], physB [Bosgra et al. 2012], etc.)

Ring et al. (2017)
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Life-stage and Demographic Specific Predictions
Change in Activity : Exposure Ratio

• We use HTTK to 
calculate margin 
between bioactivity and 
exposure for specific 
populations

Potential Exposure 
Rate

mg/kg BW/day

Potential hazard from in 
vitro

converted to dose by  
HTTK

Lower
Risk

Medium Risk Higher
Risk

Ring et al. (2017)
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Using in vivo Data to Evaluate RTK

Wambaugh et al. 
(2015)

• When we compare the Css predicted from in 
vitro HTTK with in vivo Css values determined 
from the literature we find limited correlation 
(R2 ~0.34)

• The dashed line indicates the identity (perfect 
predictor) line: 
• Over-predict for 65
• Under-predict for 22

• The white lines indicate the discrepancy 
between measured and predicted values (the 
residual)



Office of Research and Development14 of 28

Toxicokinetic Triage

 Through comparison to in vivo data, a cross-
validated (random forest) predictor of success or 
failure of HTTK has been constructed

 Add categories for chemicals that do not reach 
steady-state or for which plasma binding assay fails

 All chemicals can be placed into one of seven 
confidence categories

 Plurality of chemicals end up in the “on the order” 
bin (within a factor of 3.2x) which is consistent 
with Wang (2010)

Wambaugh et al. 
(2015)
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New Data for Evaluation

Absorption

Distribution

Metabolism

Excretion

Clearance

Uncertainty

Standardized 
Statistical Analysis

45 chemicals

•Determine 1- vs. 
2-compartment  

•Estimate Vd, kelim

•If oral data then 
also estimate Fbio, 
kgutabs

New in vivo
toxicokinetics on 26 
non-pharmaceutical 

chemicals

•Standardized design
•Oral and iv dosing (N=3-4)
•Conc. vs. time
•20 chemicals at EPA
•8 chemicals at RTI
•2 overlap chemicals

Literature TK Data on 19 
Chemicals

Wambaugh et al., (2015)

In Silico Fbio
From GastroPlus

Lucakova et al. (2009)

HTTK Volume of 
Distribution

Pearce et al. (2017b)

HTTK Total Clearance
Pearce et al. (2017a)

Toxicokinetic Triage
Wambaugh et al. (2015)
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Impact of Oral Bioavailability

16

100% Bioavailability Assumed
We evaluate HTTK by comparing predictions with 
observations for as many chemicals as possible
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Impact of Oral Bioavailability

17Greg Honda (NCCT) made a SOT2018 presentation on using Caco2 in vitro data to 
predict absorption for ~300 ToxCast chemicals

In Vivo Measured Bioavailability Used100% Bioavailability Assumed
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In Vivo TK Database

18

 EPA is developing a public database of concentration vs. 
time data for building, calibrating, and evaluating TK 
models

 Curation and development ongoing, but to date 
includes:

• 175 analytes (EPA, National Toxicology Program, literature)
• Routes: Intravenous, dermal, oral, sub-cutaneous, and 

inhalation exposure
• Species: dog, frog, human, monkey, mouse, rabbit, rat
• Media: plasma, as well as adipose, bile, blood, brain, 

digestive tract, exhaled air, heart, kidney, liver, lung, 
muscle, pancreas, serum, skin, spleen, testes, thymus, 
urine

• Multiple studies per chemical

Risa Sayre and Chris Grulke

 Database will be made available through web interface and through the “httk” R package

 Standardized, open source curve fitting software invivoPKfit used to calibrate models to all data:
 https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit

https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit
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Uncertainty

Until I open the 
box, I don’t know 
what colors I 
have...

…especially if my 
five-year-old has 
been around.
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Analytical Chemistry is an HTTK Bottleneck

Figure from Chantel Nicolas

• Need to develop a chemical-specific method for quantitating amount of chemical in vitro
• This is very different from HTS where same readout (e.g., bioluminescence) can be used 

for most chemicals

• In Wetmore et al. (2012), the rapid equilibrium dialysis (RED) assay (Waters et al. 2008) failed 
for fraction unbound in plasma (fup) 38% of the chemicals.

fup

fup
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The HTTK in vitro assays need to measure differences in chemical concentration

• Area of the internal standard (ITSD) at a known, fixed concentration 
fluctuates with time

• Find a peak that corresponds to chemical of interest, and then follow 
the ratio R of the chemical peak to the ITSD
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New HTTK Measurements and
Uncertainty Analysis
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The HTTK in vitro assays need to measure differences in chemical concentration

• Area of the internal standard (ITSD) at a known, fixed concentration 
fluctuates with time

• Find a peak that corresponds to chemical of interest, and then follow 
the ratio R of the chemical peak to the ITSD

• For new measurements HTTK (>200 compounds to data) performed by 
Cyprotex, we have modified RED protocol to use a titration of plasma 
protein (10%, 30%, 100%) of physiological concentration

• Keeps chemical concentration in the same range

• Analyzed data in Bayesian framework that included a model for 
analytical chemistry

• Bayesian approach gives a credible interval (range of values that 
would be consistent with the data) – quantitative uncertainty
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Results of Bayesian Analysis for PPB

• Previous method allowed 
values above and below 
zero, those observations 
now increase 
measurement error 
estimate

• Medians from Bayesian 
analysis correlate with 
point estimates from 
previous method

• Larger values track with 
each other better 
(Wetmore et al.. 2012) 
average LOD was ~1%)
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Results for Plasma Protein Titration

• Analysis of rapid equilibrium 
dialysis performed at 100%, 
30%, and 10% of physiologic 
protein concentration

• Seven chemicals that had no 
measurement at 100% 
concentration now have a 
value

• Generally correlate, 
especially for higher Fup’s
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Estimate of Protein Binding Affinity

A major benefit of three protein 
titration protocol is that you get an 
estimate of binding affinity for each 
chemical (some are very uncertain)

Binding Affinity (µM)
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Relative Contribution of Uncertainty and Variability
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Relative Contribution of Uncertainty and Variability

Four chemicals where uncertainty in HTTK data changes ratio of activity to exposure 
enough to cause overlap
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• HTTK allows dosimetric adjustment of high-throughput screening (HTS) data across thousands of chemicals. 

• Assessments of the impact of uncertainty and variability on these TK values and subsequent predictions are 
needed to guide data interpretation and provide overall confidence in the new approach methodologies 

• New, chemical-specific in vitro experiments have been conducted by Cyprotex, using a revised protocol for 
measuring protein binding

• Bayesian methods were developed to provide chemical-specific uncertainty estimates for two in vitro TK 
parameters: plasma protein binding (fup) and intrinsic hepatic clearance (Clint), 

• Overall, variability contributed more significantly to Css estimations of the 95th percentile

• All EPA HTTK data and models are made publically available upon publication through the R “httk” package 
(Pearce et al., 2017)

Conclusions

The views expressed in this presentation are those of the author 
and do not necessarily reflect the views or policies of the U.S. EPA
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