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e Chemical Regulation in the United States

Agency

Park et al. (2012): At least 3221 chemicals in pooled human
blood samples, many appear to be exogenous

A tapestry of laws covers the chemicals people are exposed to
in the United States (Breyer, 2009)

Different testing requirements exist for food additives,
pharmaceuticals, and pesticide active ingredients (NRC, 2007)

Most other chemicals, ranging from industrial waste to dyes to
packing materials, are covered by the Toxic Substances Control
Act (TSCA) and regulated by EPA

TSCA was updated in June, 2016 and new approach
methodologies (NAMs) are being considered prioritize these
existing and new chemicals for testing
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Chemical Risk = Hazard + Exposure

Environmental Protection
Agency

» National Research Council (1983) identified chemical
risk as a function of both inherent hazard and exposure

» To address thousands of chemicals, we need to use
NAMs to prioritize those chemicals most worthy of
additional study

 High throughput risk prioritization needs:

1. high throughput hazard characterization (Dix et
al., 2007, Collins et al., 2008)

2. high throughput exposure forecasts (Wambaugh
et al., 2013, 2014)

3. high throughput toxicokinetics (i.e., dose-
response relationship) linking hazard and
exposure
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Rotroff et al. (2010)

Wetmore et al. (2012, 2014, 2015)
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0
Steady-state Concentration (uM) = in vitro AC50

Rotroff et al. (2010) 35 chemicals

Wetmore et al. (2012) +204 chemicals
Wetmore et al. (2015) +163 chemicals
Wambaugh et al. (in prep.) + ~300 chemicals

* Most chemicals do not have TK data — we use in vitro HTTK methods adapted from pharma to fill gaps

* In drug development, HTTK methods allow IVIVE to estimate therapeutic doses for clinical studies —
predicted concentrations are typically on the order of values measured in clinical trials (Wang, 2010)
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SEPA Open Source Tools and Data for HTTK
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Boney e Proecton https://CRAN.R-project.org/package=httk
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;-; RTP Home Page X '\ 2 ScholarCne Manuscripts X R CRAN - Package httk X '\ G plos comp bio journal ¢ X ' [ (2) Linkedin x [ OP-TOXS180022 19.21- X R R:High-Throughput Toxi X
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2 Apps :-;- DSStox (&) Confluence I: JESEE -4 EHP a Battelle Box € ORD Travel Request V An Intuitive Approac. [ Article Request
httk: High-Throughput Toxicokinetics

Functions and data tables for simulation and statistical analysis of chemical toxicokineties ("TK") using data obtained from relatively high throughput, in vitro studies. Both physiologically-based ("PBTK") and empirical
(c.g.. one compartment) "TK" models can be parameterized for several hundred chemicals and multiple species. These models are solved efficiently, often using compiled (C-based) code. A Monte Carlo sampler is
included for simulating biological variability and measurement limitations. Functions are also provided for exporting "PBTK" models to "SBML" and "JARNAC" for use with other simulation software. These functions
and data provide a set of tools for in vitro-in vivo extrapolation ("IVIVE") of high throughput screening data (e.g.. ToxCast) to real-world exposures via reverse dosimetry (also known as "RTK").

Version: 1.8

Depends: R(=2.10)

Imports: deSolve, msm, data.table, survey. mvinorm, trunenorm, stats, utils

Suggests: ggplot2, knitr, rmarkdown, Rrsp. GGally, gplots, scales, EnvStats, MASS. RColorBrewer, TeachingDemos, classInt, ks, reshape2. gdata, viridis, CensRegMod. gmodels, colorspace
Published: 2018-01-23

Author: John Wambaugh. Robert Pearce, Caroline Ring, Jimena Davis, Nisha Sipes. and R. Woodrow Setzer

Maintainer: John Wambaugh <wambaugh john at epa.gov=> a1 n
License: GPL-3 p a ‘ a g e

NeedsCompilation: yes
Citation: httk citation info

CRAN checks: httk results

reviewed tools and data for high
Refercnce manal: bt pdf throughput toxicokinetics (httk)

Vignettes: Creating Partition Coefficient Evaluation Plots

Age disribmions * Available publicly for free statistical

Global sensitivity analysis

Global sensitivity analysis plotting

Height and weight spline fits and residuals SOftwa re R

Hematoerit spline fits and residuals

Plotting Css95 . . . . .
Serum creatinine spline fits and residuals i AI I OWS In VI tro-ln VI VO eXt ra p O I at I O n
Generating subpopulations

Evaluating HTTK models for subpopulations ( IV I V E ) a n d p hys i O I Og i Ca I Iy_ b a S e

Generating Figure 2

crm toxicokinetics (PBTK)

Mueidss  NEWS * Open source, transparent, and peer-
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High Throughput Risk Prioritization

ToxCast + HTTK can estimate doses needed to cause bioactivity
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Ring et al. (2017)
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Chemicals Monitored by CDC NHANES
National Health and Nutrition Examination Survey (NHANES) is an ongoing survey
that covers ~10,000 people every two years

Most NHANES chemicals do not have traditional PK models (Strope et al., 2018)

Exposure intake
rates can be
Inferred from
biomarkers
(Wambaugh etal., 2014)
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Differenm
Brilliant
Colors

Different crayons
have different
colors, and none
of them are the
“average” color
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SEPA Variability

Differenm
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Different crayons
have different
colors, and none
of them are the
“average” color
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Population simulator for HTTK

Environmental Protection
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Correlated Monte Carlo (H. ;]anes

sampling of physiological s ot ik Sston e
model parameters built
into R “httk” package
(Pearce et al., 2017):

Sample NHANES biometrics
for actual individuals:

Sex
Race/ethnicity
Age

Height

Weight

Serum creatinine
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Population simulator for HTTK

Environmental Protection

Agency
Correlated Monte Carlo (. anes

sampling of physiological s ot ik Sston e
model parameters built
into R “httk” package
(Pearce et al., 2017):

Sample NHANES biometrics
for actual individuals:

Sex —

Race/ethnicity

Age Regression equations from literature
Height (McNally et al., 2014)
Weight

. (+ residual marginal variability)
Serum creatinine

(Similar approach used in SIMCYP [Jamei et al. 2009], GastroPlus,
PopGen [McNally et al. 2014], P3M [Price et al. 2003], physB [Bosgra et al. 2012], etc.)

10 Il Office of Research and Development .
Ring et al. (2017)
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Correlated Monte Carlo
sampling of physiological
model parameters built
into R “httk” package
(Pearce et al., 2017):

Sample NHANES biometrics
for actual individuals:

Sex
Race/ethnicity
Age

Height

Weight

Serum creatinine

kNP Office of Research and Development

Population simulator for HTTK

).V

(s

National Health and Nutrition Examination Survey

—

Regression equations from literature
(McNally et al., 2014)
(+ residual marginal variability)

(Similar approach used in SIMCYP [Jamei et al. 2009], GastroPlus,

Predict physiological
guantities

Tissue masses

Tissue blood flows
GFR (kidney function)
Hepatocellularity

PopGen [McNally et al. 2014], P3M [Price et al. 2003], physB [Bosgra et al. 2012], etc.)

Ring et al. (2017)
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* We use HTTK to
calculate margin
between bioactivity and
exposure for specific
populations

mg/kg BW/day

Potential hazard from in
vitro

converted to dose by
HTTK

Potential Exposure
Rate

Lower
Risk
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Life-stage and Demographic Specific Predictions

Count
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Change in Activity : Exposure Ratio

24-d

Naphthalene
Triclosan
Methyiparaben
Fenitrothion
Malathion
Permethrin
Dimethoate
Di-n-octyl phthalate
Chiorethoxyfos
Pirimiphos-mettyl
Diethylphthalate
Parathion
Chlarpyrifos—methyl
Diphenylenemethane
Fenthian

Phorate
Methidathion
Coumaphos
Dibutylphthalate
Ethion

Bisphenol-a
Lindane
Phosphonothioic acid
Phosmet
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|
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Carbofuran

Propylparaben

Dicrotophos

Diazinon

Pentachlorophenol (=2.4-d)
2-pherylphenal

Disulfoton

Atrazrine
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Dimethy phthalate

Carharyl
Acephate
Butylparaben
Pyrene

Paraben
Carbosulfan
Diethyltaluamide
p-tert-Octylphenol
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Metalachlor
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Ring et al. (2017)
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Using in vivo Data to Evaluate RTK
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When we compare the C_, predicted from in
vitro HTTK with in vivo C_ values determined
from the literature we find limited correlation
(R?~0.34)

The dashed line indicates the identity (perfect
predictor) line:

* Over-predict for 65

* Under-predict for 22

The white lines indicate the discrepancy
between measured and predicted values (the
residual)

fup L
Predicted.Css .
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Elimination Rate | ®
BSEP Substrate | ®
BCRPIC 50 | ®
logK ow | @
PFC |
OCT1_pIC50 |e
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0 20 50

Importance of
Descriptors

Wambaugh et al.
(2015)
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Toxicokinetic Triage
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=  Through comparison to in vivo data, a cross-
validated (random forest) predictor of success or
failure of HTTK has been constructed

= Add categories for chemicals that do not reach
steady-state or for which plasma binding assay fails

= All chemicals can be placed into one of seven
confidence categories

= Plurality of chemicals end up in the “on the order”
bin (within a factor of 3.2x) which is consistent
with Wang (2010)

¥ I Office of Research and Development

150

100

66

MNumber of HTTK Chemicals

140

Wambaugh et al.
(2015)

80
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New Data for Evaluation
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New in vivo
toxicokinetics on 26
non-pharmaceutical

chemicals

Standardized
Statistical Analysis
45 chemicals

In Silico F,, Absorption

From GastroPlus
Lucakova et al. (2009)

Distribution _ _
eDetermine 1- vs. eStandardized design

2-compartment « *Oral and iv dosing (N=3-4)
eConc. vs. time

*20 chemicals at EPA

*8 chemicals at RTI

2 overlap chemicals

HTTK Volume of

Distribution
Pearce et al. (2017b) e Clearance BN

\
Metabolism

*Estimate V, k

elim

*|f oral data then
also estimate F,,,

Pearce et al. (2017a)

HTTK Total Clearance

————— — — — — — — — — —

Literature TK Data on 19

Chemicals
Wambaugh et al., (2015)

Toxicokinetic Triage
Wambaugh et al. (2015)
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VR Impact of Oral Bioavailability

ok 100% Bioavailability Assumed S

We evaluate HTTK by comparing predictions with
observations for as many chemicals as possible
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Route Chemical
4 po # Pharmaceutical
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= EPAis developing a public database of concentration vs.
time data for building, calibrating, and evaluating TK
models

= Curation and development ongoing, but to date
includes:
e 175 analytes (EPA, National Toxicology Program, literature)

* Routes: Intravenous, dermal, oral, sub-cutaneous, and
inhalation exposure

e Species: dog, frog, human, monkey, mouse, rabbit, rat

e Media: plasma, as well as adipose, bile, blood, brain,
digestive tract, exhaled air, heart, kidney, liver, lung,
muscle, pancreas, serum, skin, spleen, testes, thymus,
urine

e Multiple studies per chemical

Concentration (ug/mL)

104
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10°

10°

107

107

10

10*

Tagg

nelw L ST
N
i
10 2 ?
Time (hr)

= Database will be made available through web interface and through the “httk” R package

= Standardized, open source curve fitting software invivoPKfit used to calibrate models to all data:

= https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit

(k¥ B Office of Research and Development
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Risa Sayre and Chris Grulke


https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit
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Until | open the
box, | don’t know
what colors |
have...

...especially if my

five-year-old has
been around.
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SEPA Analytical Chemistry is an HTTK Bottleneck
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Need to develop a chemical-specific method for quantitating amount of chemical in vitro
e This is very different from HTS where same readout (e.g., bioluminescence) can be used

for most chemicals

In Wetmore et al. (2012), the rapid equilibrium dialysis (RED) assay (Waters et al. 2008) failed
for fraction unbound in plasma (f,;) 38% of the chemicals.

1. Aliquots drawn after RED equilibration 2. Chemical isolated for further analysis 3. fup‘ determined from response ratios*

Aliquot (Plasma-

Aliquot Drawn Aliquot :
il gide i
Add Plasma & A:dd PBS v Analyte Peak Area Blank Peak
. MeOH Solution & MeO Ratio (PBS Side) ™  Area Ratio
3 & Phosphate Buffer i - up
% E Solution Isolate Chemical Isolate Chemical _ Blank Peak
o2 Area Ratio
LC-MC/MS & LC-MC/MS &
Chemical HPLC Analysis HPLC Analysis

20 Il Office of Research and Development . .
Figure from Chantel Nicolas
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The HTTK in vitro assays need to measure differences in chemical concentration

Internal Standard Chemical Peak * Area of the internal standard (ITSD) at a known, fixed concentration
fluctuates with time

Q | Q

O O

~ _§ e Find a peak that corresponds to chemical of interest, and then follow
2 = the ratio R of the chemical peak to the ITSD

ks ks

< <

Time Time
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New HTTK Measurements and

Uncertainty Analysis

The HTTK in vitro assays need to measure differences in chemical concentration

Internal Standard Chemical Peak

Abundance
Abundance

Time Time

Internal Standard Chemical Peak

Abundance
Abundance

Time Time

ry X 3 Office of Research and Development

Area of the internal standard (ITSD) at a known, fixed concentration
fluctuates with time

Find a peak that corresponds to chemical of interest, and then follow
the ratio R of the chemical peak to the ITSD

For new measurements HTTK (>200 compounds to data) performed by
Cyprotex, we have modified RED protocol to use a titration of plasma
protein (10%, 30%, 100%) of physiological concentration

* Keeps chemical concentration in the same range

Analyzed data in Bayesian framework that included a model for
analytical chemistry

e Bayesian approach gives a credible interval (range of values that
would be consistent with the data) — quantitative uncertainty
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F., Bayesian Analysis (Single Conc.)
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Results of Bayesian Analysis for PPB
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Fup Point Estimate (Traditional Analysis)

Point Estimate > 0 = FALSE *~ TRUE

* Previous method allowed
values above and below
zero, those observations
now increase
measurement error
estimate

* Medians from Bayesian
analysis correlate with
point estimates from
previous method

e Larger values track with
each other better
(Wetmore et al.. 2012)
average LOD was ~1%)
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F., Bayesian Analysis (Three Conc.)

Results for Plasma Protein Titration

10 77

10 7

10 107 1'
Fup Bayesian Analysis (Single Conc.)

TopSuccess * FALSE » TRUE

e Analysis of rapid equilibrium
dialysis performed at 100%,
30%, and 10% of physiologic
protein concentration

e Seven chemicals that had no
measurement at 100%
concentration now have a
value

* Generally correlate,
especially for higher F s
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307 A major benefit of three protein

titration protocol is that you get an
estimate of binding affinity for each

= chemical (some are very uncertain)
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N Relative Contribution of Uncertainty and Variability
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N Relative Contribution of Uncertainty and Variability
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Uncertainy and Variability = Population Variability

Four chemicals where uncertainty in HTTK data changes ratio of activity to exposure

Office of Research and Development enough to cause overlap
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e HTTK allows dosimetric adjustment of high-throughput screening (HTS) data across thousands of chemicals.

* Assessments of the impact of uncertainty and variability on these TK values and subsequent predictions are
needed to guide data interpretation and provide overall confidence in the new approach methodologies

* New, chemical-specific in vitro experiments have been conducted by Cyprotex, using a revised protocol for
measuring protein binding

e Bayesian methods were developed to provide chemical-specific uncertainty estimates for two in vitro TK
parameters: plasma protein binding (f,;) and intrinsic hepatic clearance (Cl,,),

 Overall, variability contributed more significantly to C., estimations of the 95 percentile

 All EPA HTTK data and models are made publically available upon publication through the R “httk” package
(Pearce et al., 2017)

The views expressed in this presentation are those of the author
p2: X1t Il Office of Research and Development and do not necessarily reflect the views or policies of the U.S. EPA
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