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EPA Office of Research and Development

• The Office of Research and Development (ORD) is 
the scientific research arm of EPA

• 558 peer-reviewed journal articles in 2016

• Research is conducted by ORD’s three national 
laboratories, four national centers, and two offices

• Includes National Center for Computational 
Toxicology and National Exposure Research 
Laboratory 

• 14 facilities across the country

• Six research programs
• Includes Chemical Safety for Sustainability

• Research conducted by a combination of Federal 
scientists; contract researchers; and postdoctoral, 
graduate student, and post-baccalaureate trainees

ORD Facility in
Research Triangle Park, NC
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Chemical Regulation in the United States

• Park et al. (2012): At least 3221 chemical signatures in 
pooled human blood samples, many appear to be 
exogenous

• A tapestry of laws covers the chemicals people are 
exposed to in the United States (Breyer, 2009)

• Different testing requirements exist for food 
additives, pharmaceuticals, and pesticide active 
ingredients (NRC, 2007)

November 29, 2014
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Chemical Regulation in the United States

• Most other chemicals, ranging from industrial waste 
to dyes to packing materials, are covered by the 
Toxic Substances Control Act (TSCA)

• Thousands of chemicals on the market were 
either “grandfathered” in or were allowed 
without experimental assessment of hazard, 
toxicokinetics, or exposure

• Thousands of new chemical use submissions are 
made to the EPA every year

• TSCA was updated in June, 2016 to allow evaluation 
of these and other chemicals

• Methods are being developed to prioritize these 
existing and new chemicals for testing November 29, 2014
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• National Research Council (1983) identified 
chemical risk as a function of both inherent 
hazard and exposure

• To address thousands of chemicals, we need to 
use “high throughput methods” to prioritize  
chemicals for additional study

• High throughput risk prioritization needs:
1. high throughput hazard characterization 

(from HTT project)
2. high throughput exposure forecasts
3. high throughput toxicokinetics (i.e., 

dosimetry) linking hazard and exposure

Potential 
Exposure 

Rate

mg/kg BW/day

Potential 
Hazard from 
in vitro with 

Reverse 
Toxicokinetics

Lower
Risk

Medium 
Risk

Higher
Risk

Chemical Risk = 
Hazard + Exposure
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Risk Assessment in the 21st Century

January 5, 2017

“Translation of high-throughput data into risk-
based rankings is an important application of 
exposure data for chemical priority-setting. 
Recent advances in high-throughput toxicity 
assessment, notably the ToxCast and Tox21 
programs (see Chapter 1), and in high-
throughput computational exposure 
assessment (Wambaugh et al. 2013, 2014) 
have enabled first-tier risk-based rankings of 
chemicals on the basis of margins of 
exposure…”

“…The committee sees the potential for the 
application of computational exposure 
science to be highly valuable and credible for 
comparison and priority-setting among 
chemicals in a risk-based context.”
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Three Components for Chemical Risk

Toxicokinetics Exposure

Hazard

Risk
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High-Throughput Risk Prioritization

Toxicokinetics Exposure

Hazard

High throughput 
screening (HTS) for in 
vitro bioactivity 
potentially allows 
characterization of 
thousands of 
chemicals for which 
no other testing has 
occurred

Risk
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High-throughput Screening

Kaewkhaw et al. (2016)

Hertzberg and Pope (2000):
• “New technologies in high-throughput screening have significantly increased 

throughput and reduced assay volumes”

• “Key advances over the past few years include new fluorescence methods, 
detection platforms and liquid-handling technologies.”
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Toxicity Testing in the 21st Century

 We might estimate concentrations causing relevant 
bioactivity in vitro using high throughput screening (HTS)

 Tox21:  Examining >8,000 chemicals using ~50 assays 
intended to identify interactions with biological pathways 
(Schmidt, 2009)

 ToxCast: For a subset (>2000) of Tox21 chemicals ran >1100 
additional assays (Kavlock et al., 2012)

 Most assays conducted in dose-response format (identify 50% 
activity concentration – AC50 – and efficacy if data described 
by a Hill function, Filer et al., 2016)

 All data is public: http://comptox.epa.gov/dashboard/
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CERAPP: Collaborative Estrogen 
Receptor Activity Prediction Project

 ToxCast can only test those compounds 
that can be obtained, are soluble, and 
are not volatile: There is a need for 
predictive models

 CERAPP combined multiple models 
developed in collaboration with 17 
groups in the United States and Europe 
to predict estrogen receptor (ER) activity 

 Mostly used a common training set of 
1,677 chemicals tested by ToxCast to 
make predictions for 32,464 chemical 
structures

Mansouri et al., (2016)

 Predictions were evaluated on a set of 7,522 chemicals curated from the literature

 A consensus model was built by weighting models based on their evaluated accuracies



Office of Research and Development12 of 46

Toxicokinetics

Toxicokinetics Exposure

Hazard

Risk

Toxicokinetics (TK) 
describes the Absorption, 
Distribution, Metabolism, 
and Excretion (ADME) of 
a chemical by the body

TK relates external 
exposures to internal 
tissue concentrations of 
chemical
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Most Chemicals Do Not Have 
Toxicokinetic data
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Traditional in vivo TK
Chemicals with High
Throughput TK

Wetmore et al. (2012) use in vitro methods adapted from pharma to fill gaps
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Figure from Barbara Wetmore

Rotroff et al. (2010) 35 chemicals
Wetmore et al. (2012) +204 chemicals 
Wetmore et al. (2015) +163 chemicals

High-Throughput Toxicokinetics (HTTK)
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Measurements require chemical-
specific methods for concentration

• In drug development, HTTK methods estimate therapeutic doses for clinical studies –
predicted concentrations are typically on the order of values measured in clinical trials 
(Wang, 2010)
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Open Source Tools and Data for 
HTTK

 “httk” R Package for in vitro-in vivo extrapolation 
and PBTK

 553 chemicals to date
 100’s of additional chemicals being studied
 Pearce et al. (2017) provides documentation and 

examples
 Built-in vignettes provide further examples of how 

to use many functions

https://CRAN.R-project.org/package=httk
Can access this from the R GUI: 

“Packages” then “Install Packages”

https://cran.r-project.org/package=httk
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Building Confidence in HTTK
We collected new data for 26 chemicals more commonly 
associated with non-therapeutic and/or unintentional exposure

Minimal design – six animals per study (3 dosed per oral / 3 iv)

Wambaugh et al. (Tox. Sci., just accepted)
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Wambaugh et al. 
(2015)

• When we compare the Css predicted 
from in vitro HTTK with in vivo Css
values determined from the 
literature we find limited correlation 
(R2 ~0.34)

• The dashed line indicates the 
identity (perfect predictor) line: 

• Over-predict for 65
• Under-predict for 22

• The white lines indicate the 
discrepancy between measured and 
predicted values (the residual)

Evaluating Predictions of Steady-State 
Plasma Concentration (Css)
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Predicting Error in HTTK Predictions

 For most compounds in the environment 
there will be no clinical trials 

 Uncertainty must be well characterized
 We compare to in vivo data to get 

empirical estimates of HTTK 
uncertainty

 Any approximations, omissions, or 
mistakes should work to increase the 
estimated uncertainty when evaluated 
systematically across chemicals

 Through comparison to in vivo data, a 
cross-validated (Random Forest, Breiman, 
2001) predictor of success or failure of 
HTTK has been constructed

 We also have categories for chemicals 
that do not reach steady-state or for 
which plasma binding assay fails

Error in Css

Wambaugh et al., 2015
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Statistical Evaluation of HTTK

19

100% Bioavailability Assumed
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Statistical Evaluation of HTTK

20

In Vivo Measured Bioavailability Used100% Bioavailability Assumed
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New Exposure Data and Models

Toxicokinetics Exposure

Hazard

High-Throughput
Risk 

Prioritization

High throughput 
screening + in vitro-
in vivo extrapolation 
(IVIVE) can predict a 
dose (mg/kg bw/day) 
that might be 
adverse

High throughput 
models exist to make 

predictions of 
exposure via specific, 
important pathways 

such as residential 
product use, diet, and 

environmental fate 
and transport

Need methods to forecast 
exposure for thousands of 

chemicals (Wetmore et al., 2015)
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information we need?

Limited Available Data for 
Exposure Estimation

Most chemicals lack public exposure-related data beyond production volume (Egeghy et al., 2012)
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What Do We Know About 
Exposure?

Centers for Disease Control and Prevention (CDC) National Health and Nutrition 
Examination Survey (NHANES) provides an important tool for monitoring public health

Large, ongoing CDC survey of US population: demographic, body measures, medical 
exam, biomonitoring (health and exposure), …

Designed to be representative of US population according to census data

Data sets publicly available (http://www.cdc.gov/nchs/nhanes.htm)

Includes measurements of:

• Body weight
• Height
• Chemical analysis of blood and urine

http://www.cdc.gov/nchs/nhanes/nhanes_questionnaires.htm
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Indoor Air, Dust, Surfaces

Consumer
Products and 

Durable Goods

Food

Near-Field
Direct

Near-Field 
Indirect

Human
Ecological

Flora and Fauna

Dietary Far-Field

Direct Use
(e.g., surface cleaner)

Residential Use
(e.g. ,flooring)

RECEPTOR

MEDIA

EXPOSURE 
(MEDIA + RECEPTOR)

Ecological

Chemical Manufacturing and Processing

Environmental 
Release

USE and RELEASE
Other Industry

Occupational

Occupational 
Use

Waste

Drinking 
Water

Outdoor Air, Soil, Surface 
and Ground Water

Forecasting Exposure is a 
Systems Problem

Figure from Kristin Isaacs

• Exposure event unobservable: Can try to predict exposure by characterizing pathway
• Some pathways have much higher average exposures: In home “Near field” sources 

significant (Wallace, et al., 1987)
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Consensus Exposure Predictions 
with the SEEM Framework

• Different exposure models incorporate knowledge, assumptions, and data (Macleod, et al., 2010)

• We incorporate multiple models (including SHEDS-HT, ExpoDat) into consensus predictions for 
1000s of chemicals within the Systematic Empirical Evaluation of Models (SEEM) framework

• Evaluation is similar to a sensitivity analysis: What models are working? What data are most 
needed? 

Integrating Multiple Models
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R2 ≈ 0.14

First Generation SEEM

Wambaugh et al., 2013
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R2 ≈ 0.5

Second Generation SEEM

Wambaugh et al, 2014
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Wambaugh et al. (2014)

• Five descriptors explain 
roughly 50% of the 
chemical-to-chemical 
variability in median 
NHANES exposure rates

• Same five predictors work 
for all NHANES 
demographic groups 
analyzed – stratified by 
age, sex, and body-mass 
index

• Chemical use identifies 
relevant pathways

• Some pathways have much 
higher average exposures 
(Wallace et al., 1987)

Heuristics of Exposure
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Chemical Use: Chemicals and Products Database

Broad “index” 
of chemical 
uses

MSDS 
Data

Measured 
Data

Ingredient 
Lists 

CPCat

Occurrence data

Occurrence and quantitative chemical 
composition

Measurement of chemicals in 
consumer products

CPDat Functional 
Use Data

Slide from Kristin Isaacs

The roles 
chemicals 
play in 
products
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Collaboration on High Throughput 
Exposure Predictions

Jon Arnot, Deborah H. Bennett, Peter P. Egeghy, Peter Fantke, Lei Huang, Kristin K. Isaacs, Olivier Jolliet, Hyeong-
Moo Shin, Katherine A. Phillips, Caroline Ring, R. Woodrow Setzer, John F. Wambaugh, Johnny Westgate

Predictor Reference(s)
Chemicals 
Predicted Pathways

EPA Inventory Update Reporting and Chemical 
Data Reporting (CDR) (2015)

US EPA (2018) 7856 All

Stockholm Convention of Banned Persistent 
Organic Pollutants (2017)

Lallas (2001) 248 Far-Field Industrial and Pesticide

EPA Pesticide Reregistration Eligibility Documents 
(REDs) Exposure Assessments (Through 2015)

Wetmore et al. (2012, 2015) 239 Far-Field Pesticide

United Nations Environment Program and Society 
for Environmental Toxicology and Chemistry 
toxicity model (USETox) Industrial Scenario (2.0)

Fantke et al. (2011, 2012, 2016) 940 Dietary

USETox Pesticide Scenario (2.0) Rosenbaum et al. (2008) 8167 Far-Field Industrial

Risk Assessment IDentification And Ranking 
(RAIDAR) Far-Field (2.02)

Arnot et al. (2008) 8167 Far-Field Pesticide

EPA Stochastic Human Exposure Dose Simulator 
High Throughput (SHEDS-HT) Near-Field Direct 
(2017)

Isaacs (2017) 7511 Far-Field Industrial and Pesticide

SHEDS-HT Near-field Indirect (2017) Isaacs (2017) 1119 Residential (Near-Field)

Fugacity-based INdoor Exposure (FINE) (2017) Bennett et al. (2004), Shin et al. 
(2012)

645 Residential

RAIDAR-ICE Near-Field (0.803) Arnot et al., (2014), Zhang et al. 
(2014) 

1221 Residential

USETox Residential Scenario (2.0) Jolliet et al. (2015), Huang et al. 
(2016,2017)

615 Residential

USETox Dietary Scenario (2.0) Jolliet et al. (2015), Huang et al. 
(2016), Ernstoff et al. (2017)

8167 Residential
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“In particular, the 
assumption that 
100% of [quantity 
emitted, applied, or 
ingested] is being 
applied to each 
individual use 
scenario is a very 
conservative 
assumption for many 
compound / use 
scenario pairs.”

Knowledge of Exposure Pathways Limits 
High Throughput Exposure Models
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Forecasting Exposure is a 
Systems Problem

Figure from Kristin Isaacs

• Exposure event unobservable: Can try to predict exposure by characterizing pathway
• Some pathways have much higher average exposures: In home “Near field” sources 

significant (Wallace, et al., 1987)
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Predicting Pathways
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Sources of Positives Sources of Negatives
Dietary 24 2523 8865 27 32 73 FDA CEDI, ExpoCast, CPDat (Food, 

Food Additive, Food Contact), 
NHANES Curation

Pharmapendium, CPDat (non-
food), NHANES Curation

Near-Field 49 1622 567 27 25 73 CPDat (consumer_use, 
building_material), ExpoCast, 
NHANES Curation

CPDat (Agricultural, Industrial), 
FDA CEDI, NHANES Curation

Far-Field 
Pesticide

94 1480 6522 20 36 80 REDs, Swiss Pesticides, Stockholm 
Convention, CPDat (Pesticide), 
NHANES Curation

Pharmapendium, Industrial 
Positives, NHANES Curation

Far Field 
Industrial

42 5089 2913 19 17 81 CDR HPV, USGS Water 
Occurrence, NORNAN PFAS, 
Stockholm Convention, CPDat 
(Industrial, Industrial_Fluid), 
NHANES Curation

Pharmapendium, Pesticide 
Positives, NHANES Curation

We use the method of Random Forests to relate chemical structure and properties to exposure pathway
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Pathway-Based Consensus Modeling

Intake Rate (mg/kg BW/day) Inferred from 
NHANES Serum and Urine
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High Throughput Exposure 
Prediction
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Exposure-Based Priority Setting

Toxicokinetics Exposure

Hazard

High-Throughput
Risk 

Prioritization
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Chemicals Monitored by CDC NHANES

ToxCast + HTTK can estimate doses 
needed to cause bioactivity

High Throughput Risk Prioritization

Potential 
Exposure 

Rate

mg/kg BW/day

Potential 
Hazard 

from in vitro
with 

Reverse 
Toxicokineti

cs

Lower
Risk

Medium 
Risk

Higher
Risk

Ring et al. (2017)

Exposure intake rates  
can be Inferred from 
biomarkers
(Wambaugh et al., 2014)
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National Health and Nutrition Examination Survey (NHANES) is 
an ongoing survey that covers ~10,000 people every two years
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Life-stage and Demographic Specific 
Predictions

• Can calculate 
margin between 
bioactivity and 
exposure for 
specific 
populations

Change in Activity:Exposure Ratio

Ring et al. (2017)

Change in Risk Relative to 
Total Population
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The Problem of Mixtures

Toxicokinetics Exposure

Hazard

High-Throughput
Risk 

Prioritization
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The Structure of Chemical Exposure
• For n chemicals 2n combinations are possible

• However, not all are observed

• Diamond (1975): Not all finch species present 
on all islands of Caribbean

• Tornero-Velez et al. (2012): Not all chemical 
combinations present at all sites

Tornero-Velez et al. (2012)

finch species

chemical species
Distribution of mixtures
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Kapraun et al. (2017) EHP

• We will focus on “Sub-sample B” PAHs, Phenols, Pesticides, and Phthalates

• Targeted analytical chemistry used to quantitate concentration of specific chemicals in 
urine 

• Samples must be divided up for each chemical tested
• NHANES cohort divided up to allow enough sample for testing all chemicals
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Co-Occurrence of 
Chemicals in Individuals

The number of chemicals (out of 37) “present” in individuals depends upon where you set the limit 

Ideally we would use 
some sort of chemical 
toxicity informed point of 
departure but don’t have 
that for all chemicals

Kapraun et al. (2017)
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Identifying Prevalent Mixtures

• Kapraun et al. (2017) 
used frequent itemset
mining (FIM, Borgelt, 
2012) to identify 
combinations of items 
(chemicals) that co-occur 
together within CDC 
NHANES samples from 
same individual

• Used total population 
median concentration as 
threshold for “presence”

• Identified a few dozen 
mixtures present in >30% 
of U.S. population

Kapraun et al. (2017)
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Demographic-Specific 
Prevalence of Combinations

29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  9   8   7   6   5   4   3   2   1

Phthalates PAHs PhenolsPesticides

Kapraun et al. (2017)
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A Testable Number of 
Combinations

While high throughput screening (HTS) allows thousands of tests, there are millions 
of hypothetical combinations

“Exposure based priority setting” (NAS, 2017) allows 
identification of most important mixtures to test

Kapraun et al. (2017)



Office of Research and Development46 of 46

• We would like to know more about the risk posed by 
thousands of chemicals in the environment – which 
ones should we start with?

• Using in vitro methods originally developed for 
pharmaceuticals, we can make useful predictions of 
hazard and TK for large numbers of chemicals

• Exposure data is also key to risk-based prioritization
– Consensus modeling provides one path forward, 

but only as good as available data (at best)

• All of these methods are uncertain, but if that 
uncertainty can be quantified, we can make 
informed decisions

– Safety factors in one form or another date back 
at least to the third century B.C. engineer Philo of 
Byzantium

Potential 
Exposure 

Rate

mg/kg BW/day

Potential 
Hazard from 
in vitro with 

Reverse 
Toxicokinetics

Lower
Risk

Medium 
Risk

Higher
Risk

Conclusions
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