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e The Office of Research and Development (ORD) is
the scientific research arm of EPA
* 558 peer-reviewed journal articles in 2016

e Research is conducted by ORD’s three national
laboratories, four national centers, and two offices
* Includes National Center for Computational
Toxicology and National Exposure Research
Laboratory

e 14 facilities across the country

e Six research programs
* Includes Chemical Safety for Sustainability

Credit: the Research Triangle Foundaiz

e Research conducted by a combination of Federal
scientists; contract researchers; and postdoctoral,
graduate student, and post-baccalaureate trainees

m Office of Research and Development

ORD Facility in
Research Triangle Park, NC



wEPA Chemical Regulation in the United States
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e Park et al. (2012): At least 3221 chemical signatures in reaSNEADOGAPHONE

pooled human blood samples, many appear to be N S t t
exogenous ew CIen Is

WRRNLY Vewartar 5. Oscarvtr S, 20

We've made
* A tapestry of laws covers the chemicals people are 150,000 new chemicals

exposed to in the United States (Breyer, 2009) ' H
* Different testing requirements exist for food '

We touch them,
we wear them, we eat them

But which ones should
we worry about?

SPECIAL REPORT, page 34

additives, pharmaceuticals, and pesticide active
ingredients (NRC, 2007)

I'HF_ GOOD FIGHT ~ CHAMBER OFSECRETS lSITALNE i
viclence The greatest ever ificial worm could
:Jsowmcm of exrty hur mbones bel"mmgl.alamma]

November 29, 2014
Office of Research and Development



wEPA Chemical Regulation in the United States
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e Most other chemicals, ranging from industrial waste

to dyes to packing materials, are covered by the mhﬁé‘ﬁsﬂﬁ?ﬁﬁﬂfﬁ'}*ﬁm j
Toxic Substances Control Act (TSCA) NEWSCIE“tISt

e Thousands of chemicals on the market were - OS%E’VE ﬂ}‘Elllde -
either “grandfathered” in or were allowed 150, new cnemicals

without experimental assessment of hazard,
toxicokinetics, or exposure

We touch them,

e Thousands of new chemical use submissions are we wear them, we eat them
made to the EPA every year But which ones should
we worry about?
* TSCA was updated in June, 2016 to allow evaluation

The ficial worm could
is also virtuous of exrty hur \mbones bel" st digitad animal

Of these and Other Chemicals NEG(;OUFIGHT CHJ\MBERCIFEECRETS lSITALNE |I|II|||I|I

* Methods are being developed to prioritize these
existing and new chemicals for testing November 29, 2014
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wEPA Chemical Risk =
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Hazard + Exposure

 National Research Council (1983) identified mg/kg BW/day

chemical risk as a function of both inherent
hazard and exposure

* To address thousands of chemicals, we need to Potential
use “high throughput methods” to prioritize Hazard from
chemicals for additional study in vitro with

Reverse
 High throughput risk prioritization needs: Toxicokinetics
1. high throughput hazard characterization
(from HTT project) _
high throughput exposure forecasts EPESEZS:!
high throughput toxicokinetics (i.e., Rate

dosimetry) linking hazard and exposure

Lower Medium Higher
Risk Risk Risk

5 of 46 Office of Research and Development
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g T i il “Translation of high-throughput data into risk-
L based rankings is an important application of
exposure data for chemical priority-setting.

Recent advances in high-throughput toxicity

USING assessment, notably the ToxCast and Tox21

21ST CENTURY programs (see Chapter 1), and in high-

SCIENCE throughput computational exposure

TO IMPROVE assessment (Wambaugh et al. 2013, 2014)

RISK-RELATED have enabled first-tier risk-based rankings of

EVALUATIONS chemicals on the basis of margins of
exposure...”

“...The committee sees the potential for the
application of computational exposure
science to be highly valuable and credible for
comparison and priority-setting among

THE NATIONAL ACADEMIES PRESS Chemica's in a risk_based context.”

6 of 46 Washington, DC
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Three Components for Chemical Risk
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Toxicokinetics Exposure
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High-Throughput Risk Prioritization
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High throughput
screening (HTS) for in
vitro bioactivity
potentially allows
characterization of
thousands of
chemicals for which
no other testing has
occurred

r\éc Tox)] fé\/ .

Toxicokinetics Exposure
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Hertzberg and Pope (2000):
* “New technologies in high-throughput screening have significantly increased
throughput and reduced assay volumes”

« “Key advances over the past few years include new fluorescence methods,
detection platforms and liquid-handling technologies.”

Kaewkhaw et al. (2016)

Positive control

Titration of —
potential hits _;

9 of 46 Office of Research and Development




SEPA Toxicity Testing in the 215t Century
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=  We might estimate concentrations causing relevant
bioactivity in vitro using high throughput screening (HTS)

= Tox21: Examining >8,000 chemicals using ~50 assays
intended to identify interactions with biological pathways
(Schmidt, 2009)

=  ToxCast: For a subset (>2000) of Tox21 chemicals ran >1100
additional assays (Kavlock et al., 2012)

=  Most assays conducted in dose-response format (identify 50%
activity concentration — AC50 — and efficacy if data described
by a Hill function, Filer et al., 2016)

= All data is public: http://comptox.epa.gov/dashboard/

NI IM Office of Research and Development
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Response

In vitro Assay AC50

l

~

Concentration

Assay AC50
with Uncertainty

Concentration (uM)
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SEPA CERAPP: Collaborative Estrogen
Eisomansal Protection Receptor Activity Prediction Project

Agency
= ToxCast can only test those compounds
that can be obtained, are soluble, and
are not volatile: There is a need for
predictive models

= CERAPP combined multiple models
developed in collaboration with 17
groups in the United States and Europe
to predict estrogen receptor (ER) activity

= Mostly used a common training set of
1,677 chemicals tested by ToxCast to
make predictions for 32,464 chemical
structures

Concordance between models

Y

09
08
0.7
06
05 f
04
03 |
02

Very weak Weak Moderate Strong

Potency of active chemicals

= Predictions were evaluated on a set of 7,522 chemicals curated from the literature

= A consensus model was built by weighting models based on their evaluated accuracies

(AN IMN Office of Research and Development

Mansouri et al., (2016)
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Toxicokinetics (TK)
describes the Absorption,
Distribution, Metabolism,
and Excretion (ADME) of
a chemical by the body

TK relates external
exposures to internal
tissue concentrations of
chemical

Toxicokinetics Exposure

b X ¥ Office of Research and Development



wEPA Most Chemicals Do Not Have
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Toxicokinetic data
Wetmore et al. (2012) use in vitro methods adapted from pharma to fill gaps
300
250
200 m ToxCast Chemicals
Examined
150 Chemicals with
Traditional in vivo TK
100 B Chemicals with High
Throughput TK
50
0

ToxCast Phase | (Wetmore et al. 2012) ToxCast Phase Il (Wetmore et al. 2015)
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SEPA High-Throughput Toxicokinetics (HT TK)
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e In drug development, HTTK methods estimate therapeutic doses for clinical studies —
predicted concentrations are typically on the order of values measured in clinical trials
(Wang, 2010)

\

() :
i — | —
9 —|© ( i1 o~

~

Human Intrinsic Hepatic I e
Hepatocytes Clearance (Cl,,) In Vitro - In
1 I ' ——l
(10 donor poo )Measurements require chemical- Extr;l/“éloation ﬂ
~ specific methods for concentration P
o —
9 S A Predicted Plasma
ﬁ  — - gy Concentrations
E U LJ Rotroff et al. (2010) 35 chemicals
_ Wetmore et al. (2012) +204 chemicals
Human Plasma Protein .
Plasma Binding (f, ) Wetmore et al. (2015) +163 chemicals
up

(6 donor pool)
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Figure from Barbara Wetmore



_ Open Source Tools and Data for
EPA HTTK

United States
Environmental Protection

Agency
& - o x
:':- RTP Home Page x I: ScholarCne Manuscripts X R CRAN - Package hitk X Y & plos comp bio journal ¢ X [Ri (2} LinkedIn x [ OP-TOX5180022 19.21 - X R R:High-Throughput Tox X
<« C (Y} | & Secure | https;//cranr-project.org/web/packages/httk/index.htm @ & 0 B |

2 Apps \"-" DSStox (&) Confluence I: JESEE -4 EHP a Battelle Box (@ ORD Travel Request V An Intuitive Approac. [ Article Request
httk: High-Throughput Toxicokinetics

Funections and data tables for simulation and statistical analysis of chemical toxicokinetics ("TK") using data obtained from relatively high throughput. in vitro studies. Both physiologically-based ("PBTK") and empirical
(e.g.. one compartment) "TK" models can be parameterized for several hundred chemicals and multiple species. These models are solved efficiently, often using compiled (C-based) code. A Monte Carlo sampler is
included for simulating biological variability and measurement limitations. Functions are also provided for exporting "PBTK" models to "SBML" and "JARNAC" for use with other simulation software. These functions
and data provide a set of tools for in vitro-in vivo extrapolation ("I[VIVE") of high throughput sereening data (e.g.. ToxCast) to real-world exposures via reverse dosimetry (also known as "RTK").

Version: 1.8

Depends: R (=2.10)

Tmports: deSolve, msm, data.table, swrvey. mvtnonm, trunenonn. stats, utils

Suggests: ggplot2, knitr, rmarkdown, R.rsp. GGally. gplots. scales. EnvStats, MASS, RColorBrewer, TeachingDemos. classInt, ks, reshape2, gdata, viridis. CensRegMod. gmodels. colorspace
Published: 2018-01-23

Author: John Wambaugh, Robert Pearce, Caroline Ring, Jimena Davis, Nisha Sipes. and R. Woodrow Setzer

Maintainer: John Wambaugh <wambaugh.john at epa.gov>

License: GPL-3

NeedsCompilation: yes

Citation: httk citation info https://CRAN.R-project.org/package=httk
?Lif:;al;l:tcks: EE?\?;UHS Can access thlS frOm the R GU'

bownloads: “Packages” then “Install Packages”

Reference manual: hitk.pdf

Vignettes: Creating Partition Coefficient Evaluation Plots m & httk” R P ac kag e fo r I n VltrO _ I n VIVO extrap o) I a.tl on

Age distributions
Global sensitivity analysis an d P BT K

Global sensitivity analysis plotting

Height and weight spline fits and residuals .
Hematocrit spline fits and residuals " 553 Ch e m Ical S to d ate
Plotting Css95

Serum ereatinine spline fits and residuals " 100’8 Of addltlonal Chemlcals belng StUdIed

Generating subpopulations

Evaluating HTTK models for subpopulations " Pearce et al (2017) prOVIdeS dOCUmentatlon and
e Ehos 1 examples
Office of Research and Development = Built-in vignettes provide further examples of how

to use many functions



https://cran.r-project.org/package=httk

SEPA Building Confidence in HTTK

Aomonmental Protection We collected new data for 26 chemicals more commonly
associated with non-therapeutic and/or unintentional exposure

Minimal design — six animals per study (3 dosed per oral / 3 iv)

Toxicokinetics

Standardized New in vivo

Statistical toxicokinetics on 26
Analysis non-pharmaceutical
45 chemicals chemicals

In Silico Fgyiaps Absorption
GastroPlus

Lucakova et al. (2009)

HTTK Volume of 2Bl DUt

Distribution
Pearce et al. (2017b) e

Standardized design

Oral and iv dosing
(N=3)

. Conc. vs. time

Est te V,, .

ks-lma € Vd 20 chemicals at US EPA
Siim 8 chemicals at RTI

If oral data .
2 overlap chemicals
then also

estimate

Foioavails Kgutabs Literature TK Data on 19

Determine
-~ Clearance "~~~ 1- vs. 2-

. compartment
Metabolism

HTTK Total

Clearance
Pearce et al. (2017a)

e — — — —_——— —

————— _——— —

Toxicokinetic Triage

Wambaugh et al.
(2015)

(¥ Office of Research and Development

Chemicals
Wambaugh et al., (2015)

Uncertainty

Wambaugh et al. (Tox. Sci., just accepted)
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Wambaugh et al.

(2015)
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Evaluating Predictions of Steady-State
Plasma Concentration (C,))

f_up -
Predicted.Css -
lonization (pKa_Donor) -
Elimination Rate -
BSEP Substrate -
BCRP IC_50 -
log K_ow -
PFC -
OCT1_plC50 -
MCT1 Substrate -
T T T T 1
0] 20 50

Importance of
Descriptors

When we compare the C predicted
from in vitro HTTK with in vivo C
values determined from the
literature we find limited correlation
(R2~0.34)

The dashed line indicates the
identity (perfect predictor) line:

* Over-predict for 65
* Under-predict for 22

The white lines indicate the
discrepancy between measured and
predicted values (the residual)



SEPA Predicting Error in HTTK Predictions
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=  For most compounds in the environment
there will be no clinical trials

= Uncertainty must be well characterized

= We compare to in vivo data to get
empirical estimates of HTTK
uncertainty

= Any approximations, omissions, or
mistakes should work to increase the
estimated uncertainty when evaluated
systematically across chemicals

=  Through comparison to in vivo data, a
cross-validated (Random Forest, Breiman,
2001) predictor of success or failure of
HTTK has been constructed

=  We also have categories for chemicals
that do not reach steady-state or for
which plasma binding assay fails

(XXM Office of Research and Development

1580

100+

Number of HTTK Chemicals

[}
=
|

140
I 6
I

Wambaugh et al., 2015

Errorin C




wEPA Statistical Evaluation of HTTK
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100% Bioavailability Assumed
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tn vivo estimated Cpo.
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100% Bioavailability Assumed

=%
=
|
|

10 E e

In vitro predicted Cax

L
Route

& Dther

Chemical
po # Pharmaceutical

(NI Office of Research and Development
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Statistical Evaluation of HTTK
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New Exposure Data and Models
vEPA
A\ Y4 Need methods to forecast
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exposure for thousands of

High throughput chemicals (Wetmore et al., 2015)

screening + in vitro-
in vivo extrapolation
(IVIVE) can predict a
dose (mg/kg bw/day)
that might be
adverse

High throughput
models exist to make
predictions of
exposure via specific,
important pathways
such as residential
product use, diet, and
environmental fate
and transport

High-Throughput
Risk
Prioritization

Toxicokinetics Exposure

AN ¥ Office of Research and Development



wEPA Limited Available Data for
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Exposure Estimation

Most chemicals lack public exposure-related data beyond production volume (Egeghy et al., 2012)

100004
L
E 1000 4
=
Q
5
2 104
5=
-
[=
§
E
=
=
'I r r 4 1 r r r . v
Production  Use Food Chemical Waler &l Food Air  Biomarkar
Volwma Catagory  Use Ralgasa  Gong, Lo LG, Lo Lo
Data Type
Office of Research and Development Can we use models to generate the exposure

information we need?



<EPA What Do We Know About
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Centers for Disease Control and Prevention (CDC) National Health and Nutrition
Examination Survey (NHANES) provides an important tool for monitoring public health

Large, ongoing CDC survey of US population: demographic, body measures, medical
exam, biomonitoring (health and exposure), ...

Designed to be representative of US population according to census data

Data sets publicly available (http://www.cdc.gov/nchs/nhanes.htm)

Includes measurements of:

. Body weight

. Height
. Chemical analysis of blood and urine
nanes
Office of Research and Development .

National Health and Nutrition Examination Survey


http://www.cdc.gov/nchs/nhanes/nhanes_questionnaires.htm

SEPA Forecasting Exposure is a

United States
Environmental Protection

Systems Problem

Consumer Other Industry ] Chemical Manufacturing and Processing
Products and

USE and RELEASE Durable Goods

Environmental
Release

Direct Us
(e.g., surface cleane

Residential Use
(e.g. ,flooring) Occupati
Use

Food Drinking Outdoor Air, Soil, Surface
Water and Ground Water

Ecolo%l/cal

Indoor Air, Dust, Surfaces

MEDIA

EXPOSURE  MNeFeld

(MEDIA + RECEPTOR)

RECEPTOR

* Exposure event unobservable: Can try to predict exposure by characterizing pathway

* Some pathways have much higher average exposures: In home “Near field” sources
significant (Wallace, et al., 1987)

y LY ¥ Office of Research and Development

Figure from Kristin Isaacs



S EPA Consensus Exposure Predictions
g with the SEEM Framework
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* Different exposure models incorporate knowledge, assumptions, and data (Macleod, et al., 2010)

* We incorporate multiple models (including SHEDS-HT, ExpoDat) into consensus predictions for
1000s of chemicals within the Systematic Empirical Evaluation of Models (SEEM) framework

e Evaluation is similar to a sensitivity analysis: What models are working? What data are most
needed?

-

Estimate
Uncertainty l

Calibrate
models

Inference

Inferred Exposure

Dataset 1
000 Model 1 Joint Regression on Models =
Model 2

Evaluate Model Performance - ~f,:
y LN Office of Research and Development and Refine Models : e

Integrating Multiple Models



wEPA First Generation SEEM
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wEPA Second Generation SEEM
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<EPA Heuristics of Exposure
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Wambaugh et al. (2014)

-

i

1

“ : il
ul

Regression Coefficient
o

D - -
le I I | |
o) X S .\<¢ O
O S Q¢ N e \‘0 O
M 7V &L S
W&o o S <

r2 XXM Office of Research and Development

== Total

== Female

- Male

== ReproAgeFemale

== 6-11_years

== 12-19 years

- 20-65_years
66+years
BMI _LE 30

= BMI_GT 30

Five descriptors explain
roughly 50% of the
chemical-to-chemical
variability in median
NHANES exposure rates

Same five predictors work
for all NHANES
demographic groups
analyzed — stratified by
age, sex, and body-mass
index

Chemical use identifies
relevant pathways

Some pathways have much
higher average exposures
(Wallace et al., 1987)
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Contents lists available at ScienceDirect

Toxicology Reports

ELSEVIER journal homepage: www.elsevier.com/locate/toxrep

Exploring consumer exposure pathways and patterns of use @Cmm
for chemicals in the environment
Kathie L. Dionisio?, Alicia M. Frame" !, Michael-Rock Goldsmith?,

John E. Wambaugh®, Alan Liddell =%, Tommy Cathey?, Doris Smith®,
James Vail”, Alexi S. Ernstoff¢, Peter Fantke ¢, Olivier Jolliet’,

Broad “index”
of chemical
uses

Occurrence data Ingredient

Joumal of Exposure Sclence and Environmental Epidemiclogy (2018} 28, 216-222
© 2018 Nature America, Inc. part of Springer Nature. All ights reserved 1550063118

www.nature.comijes

ORIGINAL ARTICLE
Consumer product chemical weight fractions from
ingredient lists

Kristin K. Isaacs’, Katherine A. Phillips”, Derya Biryol'?, Kathie L. Dionisio' and Paul 5. Price”

NG Office of Research and Development

Slide from Kristin Isaacs

Chemical Use: Chemicals and Products Database

Contents lists available at ScienceDirect

Food and Chemical Toxicology

ELSEVIER journal homepage: www.elsaviar.com/locate/foodchemtox

Development of a consumer product ingredient database for chemical O bk
exposure screening and prioritization

M.-R. Goldsmith **, C.M. Grulke*, R.D. Brooks ", T.R. Transue®, Y.M. Tan®, A. Frame **, P.P. Egeghy ",

R. Edwards ®, D.T. Chang*, R. Tornero-Velez %, K. Isaacs*, A. Wang **, . Johnson®, K. Holm?, M. Reich’,

J. Mitchell %, D.A. Vallero ®, L. Phillips ®, M. Phillips % J.F. Wambaugh *, R.S. Judson®,
TJ. Buckley®, C.C. Dary*

Occurrence and quantitative chemica
composition

The roles
chemicals
play in
products

Functional
Use Data

CPDat

SEPA

Green Chemistry ‘D:mm

PAPER View Article Online

View Journal | View lssue

@9@M¢¢ High-throughput screening of chemicals as
functional substitutes using structure-based
classification modelst

Cite this: Green Chem., 2017, 19,
1063

Katherine A. Phillips,*>* John F. Wambaugh,® Christopher M. Grulke,”
Kathie L. Dionisio® and Kristin K. lsaacs®

Measurement of chemicals in
consumer products

Measured
Saoolbd CORODETIA =

Suspect Screening Analysis of Chemicals in Consumer Products

Katherine A. Phillj ff Alice Yau," Kristin A Favela,’ Kristin K. Isaacs,” Andrew McEachran, ™!
Christopher Grulke,‘ Ann M. Rif:l']a.ﬂ'l,H Antony J. Wi]liams,” Jon R. Sobus,’ Russell S. Thnmas,”
and John F. Wambaugh*‘"




SEPA Collaboration on High Throughput

United States

Smurgnmertal rotection Exposure Predictions

Jon Arnot, Deborah H. Bennett, Peter P. Egeghy, Peter Fantke, Lei Huang, Kristin K. Isaacs, Olivier Jolliet, Hyeong-
Moo Shin, Katherine A. Phillips, Caroline Ring, R. Woodrow Setzer, John F. Wambaugh, Johnny Westgate

9. o =

Arms EPA Inventory Update Reporting and Chemical US EPA (2018) 7856
Data Reporting (CDR) (2015)
M Stockholm Convention of Banned Persistent Lallas (2001) 248  Far-Field Industrial and Pesticide
et s Organic Pollutants (2017)
MICHIGAN
EPA Pesticide Reregistration Eligibility Documents =~ Wetmore etal. (2012, 2015) 239 Far-Field Pesticide
l |C DAV'S (REDs) Exposure Assessments (Through 2015)
UNIVERSITY OF CALIFORNIA | United Nations Environment Program and Society Fantke etal. (2011, 2012, 2016) 940 Dietary
UNIVERSITY OF for Environmental Toxicology and Chemistry
ATRESEQ)E toxicity model (USETox) Industrial Scenario (2.0)
USETox Pesticide Scenario (2.0) Rosenbaum et al. (2008) 8167 Far-Field Industrial
[]TU Danmarks
Tekniske Risk Assessment IDentification And Ranking Arnot et al. (2008) 8167 Far-Field Pesticide
“I | Universitet | (RAIDAR) Far-Field (2.02)
SV ST EPA Stochastic Human Exposure Dose Simulator ~ saacs (2017) 7511 Far-Field Industrial and Pesticide
N '9-7 High Throughput (SHEDS-HT) Near-Field Direct
s z | (2017)
:% M -'e.-% SHEDS-HT Near-field Indirect (2017) Isaacs (2017) 1119 Residential (Near-Field)
% «\O
2N pRDT‘"* Fugacity-based INdoor Exposure (FINE) (2017) ?enne)tt et al. (2004), Shin et al. 645 Residential
2012
RAIDAR-ICE Near-Field (0.803) Arnot et al., (2014), Zhang et al. 1221 Residential
(2014)
USETox Residential Scenario (2.0) Jolliet et al. (2015), Huang et al. 615 Residential
(2016,2017)
USETox Dietary Scenario (2.0) Jolliet et al. (2015), Huang et al. 8167 Residential
(2016), Ernstoff et al. (2017)




SEPA Knowledge of Exposure Pathways Limits
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High Throughput Exposure Models

“In particular, the
assumption that
100% of [quantity
emitted, applied, or
ingested] is being
applied to each
individual use
scenario is a very
conservative
assumption for many
compound / use
scenario pairs.”

LN Office of Research and Development

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes,
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SEPA Forecasting Exposure is a

United States
Environmental Protection

Systems Problem

Consumer Other Industry ] Chemical Manufacturing and Processing
Products and

USE and RELEASE Durable Goods

Environmental
Release

Direct Us
(e.g., surface cleane

Residential Use
(e.g. ,flooring) Occupati
Use

Food Drinking Outdoor Air, Soil, Surface
Water and Ground Water

Ecolo%l/cal

Indoor Air, Dust, Surfaces

MEDIA

EXPOSURE  MNeFeld

(MEDIA + RECEPTOR)

RECEPTOR

* Exposure event unobservable: Can try to predict exposure by characterizing pathway

* Some pathways have much higher average exposures: In home “Near field” sources
significant (Wallace, et al., 1987)
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Figure from Kristin Isaacs



<EPA Predicting Pathways

United States
Environmental Protection
Agency

We use the method of Random Forests to relate chemical structure and properties to exposure pathway

NHANES Chemicals
Negatives

OOB Error Rate
Positives Error Rate
Balanced Accuracy

Sources of Positives Sources of Negatives

Dietary 24 2523 8865 27 32 73 FDACEDI, ExpoCast, CPDat (Food, Pharmapendium, CPDat (non-
Food Additive, Food Contact), food), NHANES Curation
NHANES Curation

WEETAFARE 49 1622 567 27 25 73 CPDat (consumer_use, CPDat (Agricultural, Industrial),
building_material), ExpoCast, FDA CEDI, NHANES Curation
NHANES Curation

Far-Field 94 1480 6522 20 36 80 REDs, Swiss Pesticides, Stockholm Pharmapendium, Industrial

Pesticide Convention, CPDat (Pesticide), Positives, NHANES Curation
NHANES Curation

Far Field 42 5089 2913 19 17 81 CDRHPV, USGS Water Pharmapendium, Pesticide

Industrial Occurrence, NORNAN PFAS, Positives, NHANES Curation

Stockholm Convention, CPDat
(Industrial, Industrial_Fluid),
NHANES Curation




SEPA Pathway-Based Consensus Modeling

United States
Environmental Protection
Agency

10 R?=0.813

1071

10784

10 13

Consensus Model Predictions

1073 107° 10°

Pathway(s)

O Dietary, Pesticide, Industrial

0 Dietary, Residential

< Dietary, Residential, Industrial
/A Dietary, Residential, Pesticide
</ Dietary, Residential, Pesticide, Industrial
B Industrial

® Pesticide

A Pesticide, Industrial

¢+ Residential

[ Residential, Industrial

O Residential, Pesticide

/A Residential, Pesticide, Industrial

Office of Research and Deve Intake Rate (mg/kg BW/day) Inferred from

NHANES Serum and Urine



EPA High Throughput Exposure
Prediction

United States
Environmental Protection
Agency

101 Q 1960 chemicals
>1 mg/kg bw/day

10—4_

Population Median Intake Rate (mg/kg bw/day)

10 10°
Chemical Rank

LY ¥ Office of Research and Development

Pathway(s)

JOX+PDoOepoenrdDODOO

Dietary

Dietary, Industrial

Dietary, Pesticide

Dietary, Pesticide, Industrial
Dietary, Residential

Dietary, Residential, Industrial
Dietary, Residential, Pesticide
Dietary, Residential, Pesticide, Industrial
Industrial

Pesticide

Pesticide, Industrial

Residential

Residential, Industrial
Residential, Pesticide
Residential, Pesticide, Industrial
Unknown

Population Median Intake Rate (mg/kg bw/day)

104-

10

686623 chemicals
<1 mg/kg bw/day

681617 chemicals
<1 pg/kg bw/day/day

10° 2x10° 4x10° 6x10°

Chemical Rank



Exposure-Based Priority Setting

<EPA

United States
Environmental Protection
Agency

High-Throughput
Risk
Prioritization

Toxicokinetics Exposure
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o High Throughput Risk Prioritization
EPA = gnp
’; 'Ejr?\ifti?gnsntwaetﬁt%l Protection
o Agency ToxCast + HTTK can estimate doses
= needed to cause bioactivity
o
Qo . . - =
£ 10 : = , H ¢| LSRN éﬁl
Q L i b - - é - *
Z I | dF s LB CTT T | e
% 1 $‘ I° . $ E. - - i T i 7 1 .
Lu .
o 100 Bl i T . Exposure intake rates
5 ' can be Inferred from
g | = biomarkers
o) ! (Wambaugh et al., 2014)
° !
é 10-7 { . mg/kg BW/day
1=
Q@
g Potential
=] Hazard
S from in vitro
o) with
% ) Reverse
£ Chemicals Monitored by CDC NHANES Toxicokineti
7 Potentigsi
- National Health and Nutrition Examination Survey (NHANES) is Pxposure
an ongoing survey that covers ~10,000 people every two years
Office of Research and Development Lower Medium Higher
Risk Risk Risk

Ring et al. (2017)



SEPA Life-stage and Demographic Specific

E\g\éir:gcmental Protection Predictions

mg'kg BEW/day

* Can calculate Change in Activity:Exposure Ratio

Potential Hazard

margin between "

Toxicokinetics 24-d
Maphthalene

bioactivity and
eX p O S u re fo r Potential Exposure E%EE%EE\‘[HE
specific

populations

Chiorethaxyfos

Pirimiphos-rm ety

Diethylptthalate

Parzathion

Chlorpyrifos-methyl

Dipherylenemethane

Fenthion

Phaorate
B Mcthicathion

Coumnaphos

Dibutylphthalate

Ethion

Bisphenal-a

Lindane

Phosphonothicic acid

Phosmet

Methyl parathion

Quintozene

Lower  pedium Risk  Higher
Risk Risk

)
ol

60

Azinphos-methyl
Carbofuran

Propylparaben
Dicrotophos
Diazinan
Pentachiorophenal (=24-d)
2-pherylphenal
Disulfaton

Atrazine
Chlorpyrifos
Dimethyl phthalate
Carbaryl

Acephate

I I Butylparaben
Pyrene

Paraben
Carbosuifan
Diethyltoluamide
p-tert-Octylphenal

Cournt
40

NHANES Chemicals

20

Nitroherzene

0.5 0 05 Metalachlor

Change in Risk Relative to

Total Population K
Office of Research and Development Q?@
&

Ring et al. (2017)



The Problem of Mixtures

<EPA

United States
Environmental Protection
Agency

High-Throughput
Risk
Prioritization

Toxicokinetics Exposure
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<EPA The Structure of Chemical Exposure

United States

Environmental Protection

Agency

finch species

Loxigilla noxis
Melanospiza richardsoni
Tiara olivacea

Tiara bicolor

Tiara canora

Loxipasser anoxanthus

chemical species

chemical 1
chemical 2
chemical 3
chemical 4
chemical 5
chemical 6

* For n chemicals 2" combinations are possible

0%

LIGI T  Office of Research and Development

Tornero-Velez et al. (2012)

e, & « However, not all are observed
O P o 2°
N ot
S : _ _
00 0 o 11  Diamond (1975): Not all finch species present
ooo0 o oo on all islands of Caribbean
11110 a4
011114 » Tornero-Velez et al. (2012): Not all chemical
1 00001 combinations present at all sites
00 10 0 1
2 2 3 2 2]11 30%
w
Y v R S )
FEFEE £ 25% ST .
100 0 1 2 o Distribution of mixtures
< 20%
1 1 0 1 1] 4 5
0000 11 =
o 15%
1 0 0 0 0O 1 %
0 010 021 0%
0010 01
3 1 2 1 310 5%

01234567 8 9101112131415

K, number of pyrethroids at the site



<EPA Kapraun et al. (2017) EHP

United States
Environmental Protection
Agency

* Targeted analytical chemistry used to quantitate concentration of specific chemicals in
urine

e Samples must be divided up for each chemical tested
e NHANES cohort divided up to allow enough sample for testing all chemicals

Table 4. Summary information tor each of the National Health and Nutrition
Examination Survey (NHANES) 20092010 subsamples.

Category Subsample A Subsample B Subsample C
Number of subjects 2,741 2,736 2,132

MNumber of chemicals 29 37 40

Maximum weight 476,883.0 426,061.1 413 ,068.1
Minimum weight 14.002.7 13,975.1 12,6593
Sum of weights 238,281,689.4 272.911,664.0 226,021 580.6
Records needed 154451 19.528.5 17.854.1

 We will focus on “Sub-sample B” PAHs, Phenols, Pesticides, and Phthalates

LyNGI Tl Office of Research and Development



SEPA Co-Occurrence of

United States

Chemicals in Individuals

The number of chemicals (out of 37) “present” in individuals depends upon where you set the limit

0. 175«
® Ideally we would use
0.150 - some sort of chemical
: e ® toxicity informed point of
departure but don’t have
12
MRS @ that for all chemicals
0.100 .

» @ Limit of Detection
B 50th Percentile
Q0th Percentile

o
=
Y |
W
»

25 30 35
Number of Group B Chemicals Present

Ly X -7l Office of Research and Development

I Proportion of US Population

Kapraun et al. (2017)



<EPA

United States
Environmental Protection
Agency

e Kapraun et al. (2017)
used frequent itemset
mining (FIM, Borgelt,
2012) to identify
combinations of items
(chemicals) that co-occur
together within CDC
NHANES samples from
same individual

e Used total population
median concentration as
threshold for “presence”

e Identified a few dozen
mixtures present in >30%
of U.S. population

LENO Tl Office of Research and Development

Identifying Prevalent Mixtures

Prevalent Mixtures

DONOUVMBWNKE

PAHs and
Phenols Pesticides Phthalates metabolites
NMTONLEeOmammOOe matadI Ty oo =t o, o~ o
S ERS e SR8 S22 YSI288=S8s28 92 ReR
G G DG D DG e DG D D e DG D e e e DG D e DG el D e D D e e e D DG e e G D e e D D
oo oooe ool o O oo OO OF o oF & o
D222 222D D23 DD IDIDI I DD
H N
|
||
H N
[ |
| | [ |
HBE - -
H B
|| [ |
[ |
I [ |

0.4282
0.2377
0.3761
0.3694
0.3654
0.3616
0.3584
0.3539
0.3507
0.3492
0.2461
0.3434
0.3432
0.2432
0.343
0.3409
0.3409
0.3386
0.3379
0.327
0.3361
0.3361
0.3342
0.3337
0.23233
0.3327
0.3322
0.3209
0.33
0.0005

PaJIN220 ainxiw yarym uruorieindod parpnis ayi jo uoielq

Kapraun et al. (2017)



SEPA Demographic-Specific
Prevalence of Combinations

Environmental Protection
Phthalates PAHs

¥ ¥ ST88T

29282726252423222120191817161514131211109 8 7 6 5 4 3 2 1
L1 1 I & 1 & b B 1 & ¥ & b 0 ) 4 b & 0 1 B ¥ & 1 ¥ 1 i |

- All
- Partition 1
- Partition 2
- Partition 3
- Partition 4
- Male
Female
B ] = -' Age 6 to 11
L Age 12to 19
- Age 20 to 65
- Age 664+
- Tobacco Use

| T
EIELR o o rosear 00 01 02 03 04 05 06 07 08 09 1.0
Observed Prevalence

Kapraun et al. (2017)



<EPA A Testable Number of

Combinations

While high throughput screening (HTS) allows thousands of tests, there are millions
of hypothetical combinations

7 <=9 999 999 combinations

I‘?.:I
+
ME 6
K
5 5
s §
L
Lj;ﬁ 4
| =
2 @
< 3
"0 ? =99 combinations

] 9 combinations

‘-H_,H-H_\-_"!H-._
i Wi
l'-S'L- :
ez ;%?7 Thﬁﬂ
Fesh

0 <¢=== () combinations

“Exposure based priority setting” (NAS, 2017) allows

Office of Research and Development identification of most important mixtures to test
Kapraun et al. (2017)



wEPA Conclusions

United States
Environmental Protection
Agency
* We would like to know more about the risk posed by mg/kg BW/day
thousands of chemicals in the environment — which

ones should we start with?

 Using in vitro methods originally developed for Potential
pharmaceuticals, we can make useful predictions of Itlaz:?lrd fr(?m
hazard and TK for large numbers of chemicals in vitro with
Reverse

) . . Toxicokinetics
» Exposure data is also key to risk-based prioritization

— Consensus modeling provides one path forward,

but only as good as available data (at best) Potential
Exposure
 All of these methods are uncertain, but if that Rate

uncertainty can be quantified, we can make
informed decisions

— Safety factors in one form or another date back Lower Medium Higher
at least to the third century B.C. engineer Philo of Risk Risk Risk
Byzantium

LNl Office of Research and Development
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