

Profiling the ToxCast library with pluripotent embryonic stem cell assays

Thomas B. Knudsen¹ Todd J. Zurlinden¹, and E. Sidney Hunter² U.S. Environmental Protection Agency, Office of Research and Development ¹NCCT and ²NHEERL

knudsen.thomas@epa.gov | 919-541-9776 hunter.sid@epa.gov | 919-541-3490

Introduction

ToxCast chemicals were profiled for developmental toxicity potential in two embryonic stem cell assays and processed in the ToxCast data analysis pipeline (tcpl):

- [1] human pluripotent H9 stem cell-based (hESC) assay monitoring a metabolic biomarker [Palmer et al. 2013, BDRB];
- [2] mouse differentiating embryonic stem cell (mESC) adherent assay [Barrier et al. 2011, Reprod Tox].

hESC (pluripotent) assay

Example: Methotrexate (TI = $0.059 \mu M$)

• TI was recorded for 181 chemicals (17% of 1065 tested); model performance used 42 benchmark compounds and ToxRefDB prenatal studies in rats and/or rabbits (dLEL ≤ 200 mg/kg/day) [manuscript in preparation].

hESC model performance stringency filter applied to the in vivo anchor

	benchmark	none	low	medium	high
TP	17	85	60	35	19
FP	0	14	37	23	9
FN	9	217	127	51	11
TN	16	116	208	176	88
n	42	432	432	285	127
Sensitivity	0.654	0.281	0.321	0.407	0.633
Specificity	1.000	0.892	0.849	0.884	0.907
Accuracy	78.6%	46.5%	62.0%	74.0%	84.3%
MCC	0.647	0.190	0.202	0.332	0.554

Mining the ToxCast dataset to define assay sensitivity

To gain insight into the biological pathways and targets associated with the stem cell responses, machine-learning was used to mine correlations to 337 enzymatic and receptor signaling assays in the ToxCast NovaScreen dataset (NVS). Each NVS assay was enriched for an AC50 correlation against a hESC-positive or hESC-negative outcome, weighted by an assay-specific logistic regression model, processed through the Reactome HSA Pathway Browser (v3.5, database release 63), and independently enriched for significant pathway associations with the ClueGO plug-in to Cytoscape v3.4 (Bonferroni-corrected p \leq 0.05, minimum 3 genes for a pathway identifier).

mESC (differentiation) assay

Effects of ToxCast chemicals on mESC endpoints

32

44

0.167

0.579

54.9%

-0.135

medium

52

150

0.397

0.565

50.0%

-0.038

0.430

0.300

47.3%

mESC model performance

- positive mESC response recorded for 95 chemicals (30.1% of 315 with ToxRefDB prenatal rat or rabbit studies);
- 221 dLEL-positives: *Gsc1* picked up 28% and MHC picked up 25% (overlap = 11% for *Gsc1* on day 4 + MHC on day 9).

Domain Network (hESC):

- enriched pathway interactions mapped with the Cluepedia plug-in to Cytoscape.
- positive-response examples: inhibition of BRAF signaling, adrenocorticoids (GR, MR);
- negative-response examples: female hormone receptors (ESR1, PR), muscarinic receptors (M1-5), MMPs.
- mESC examples: p53 signaling sensitive, IL8 signaling not.

Summary

- ToxCast chemicals were classified for potential developmental toxicity using the hESC devTOX^{qp} platform from Stemina Biomarker Discovery [1] or an adherent mESC assay [2].
- Performance against prenatal animal studies (ToxRefDB) improved from 62% to >84% accuracy as the level of confidence in the *in vivo* anchoring result (dLEL) increased.
- Characterizing the applicability domain at a pathway level sets the stage for new approach methodologies predicting developmental toxicity without vertebrate animal testing.

• ↓ ornithine/cysteine in

predicts µM threshold

for teratogenicity (TI) [1];

point of departure for cell

viability equates to 11%

reduction in cell number.

day 3 secretome