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High-Throughput Bioactivity 
Screening

 Tox21: Examining >8,000 chemicals using ~50 assays intended to identify 
interactions with biological pathways (Schmidt, 2009)

 ToxCast: For a subset (>2000) of Tox21 chemicals ran >1100 additional assays 
(Judson et al., 2010)

 Most assays conducted in dose-response format (identify 50% activity 
concentration – AC50 – and efficacy if data described by a Hill function, Filer et al., 
2016)

 Data are public: https://comptox.epa.gov/dashboard
 National Academy of Sciences, January, 2017:
“Translation of high-throughput data into risk-based rankings is an 
important application of exposure data for chemical priority-setting. 
Recent advances in high-throughput toxicity assessment, notably the 
ToxCast and Tox21 programs… and in high-throughput computational 
exposure assessment… have enabled first-tier risk-based rankings of 
chemicals on the basis of margins of exposure…”

https://comptox.epa.gov/dashboard
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High-Throughput Risk Prioritization

• High throughput risk prioritization based upon in vitro-in vivo
extrapolation (IVIVE) requires (e.g., NRC, 1983):
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The Need for In Vitro Toxicokinetics
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Most chemicals do not have TK data – Wetmore et al. (2012…) use in vitro
methods adapted from pharma to fill gaps
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High Throughput Toxicokinetics (HTTK)

 In order to address greater numbers of chemicals we collect in vitro, high 
throughput toxicokinetic (HTTK) data (Rotroff et al., 2010, Wetmore et al., 
2012, 2015)

 HTTK methods have been used by the pharmaceutical industry to 
determine range of efficacious doses and to prospectively evaluate success 
of planned clinical trials (Jamei, et al., 2009; Wang, 2010)

 The primary goal of HTTK is to provide a human dose context for bioactive 
in vitro concentrations from HTS (i.e., in vitro-in vivo extrapolation, or 
IVIVE) (e.g., Wetmore et al., 2015)

 Secondary goal is to provide open source data and models for evaluation 
and use by the broader scientific community (Pearce et al, 2017)
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In VitroToxicokinetics for 
Prioritization
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Rotroff et al. (2010) 35 chemicals
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Wetmore et al. (2015) +163 chemicals
Wambaugh et al. (in prep.) + ~300 chemicals
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In VitroToxicokinetics for 
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https://CRAN.R-project.org/package=httk 
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Exposure Forecaster (ExpoCast) generates rapid 
exposure estimates (Wambaugh et al., 2013,2014)

ToxCast + Reverse Dosimetry generates estimated doses needed to cause bioactivity

Incorporating Dosimetry-Adjusted 
ToxCast Bioactivity Data with Exposure

Wetmore et al., Tox. Sci, 2015
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High Throughput Toxicokinetics (HTTK) for 
Statistical Analysis

 “httk” R Package for 
IVIVE and PBTK

 553 chemicals to date
 100’s of additional 

chemicals being 
studied

 Pearce et al. (2017) 
provides 
documentation and 
examples

 Built-in vignettes 
provide further 
examples of how to 
use many functions

https://CRAN.R-
project.org/package=httk

Can access this from the R GUI: 
“Packages” then “Install Packages”

Download R:
https://www.r-project.org/

within R, type:
install.packages("httk")

Then
library("httk")

https://cran.r-project.org/package=httk
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Why Build Another Generic PBTK Tool?

SimCYP ADMET Predictor / GastroPlus MEGen IndusChemFate httk
Maker SimCYP Consortium / Certara Simulations Plus UK Health and Safety 

Laboratory
Cefic LRI US EPA

Availability License, but inexpensive for research License, but inexpensive for research Free:
http://xnet.hsl.gov.uk/megen

Free:
http://cefic-lri.org/lri_toolbox/induschemfate/

Free:
https://CRAN.R-project.org/package=httk

Open Source No No Yes No Yes
Default PBPK Structure Yes Yes No Yes Yes
Expandable PBPK Structure No No Yes No No
Population Variability Yes No No No Yes
Batch Mode Yes Yes No No Yes
Graphical User Interface Yes Yes Yes Excel No
Physiological Data Yes Yes Yes Yes Yes
Chemical-Specific Data 
Library

Many Clinical Drugs No No 15 Environmental
Compounds

543 Pharmaceutical and 
ToxCast Compounds

Ionizable Compounds Yes Yes Potentially No Yes
Export Function No No Matlab and AcslX No SBML and Jarnac
R Integration No No No No Yes
Easy Reverse Dosimetry Yes Yes No No Yes
Future Proof XML No No Yes No No

We want to do a statistical analysis (using R) for as many 
chemicals as possible

In addition to new Population Lifecourse Exposure-To-Health-Effects Model Suite, 
various groups have been generating generic PBPTK models for some time:



Office of Research and Development11 of 61

Doing Statistical Analysis with HTTK

 If we are to use HTTK, we need confidence in predictive ability

 In drug development, HTTK methods estimate therapeutic doses for clinical studies 
– predicted concentrations are typically on the order of values measured in clinical 
trials (Wang, 2010)
 For most compounds in the environment there will be no clinical trials 

 Uncertainty must be well characterized
 We compare to in vivo data to get empirical estimates of HTTK uncertainty
 ORD has both compiled existing (literature) TK data (Wambaugh et al., 2015) 

and conducted new experiments in rats on chemicals with HTTK in vitro data 
(Wambaugh et al., 2018)

 Any approximations, omissions, or mistakes should work to increase the 
estimated uncertainty when evaluated systematically across chemicals



Office of Research and Development12 of 61

Model Evaluation
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Model Evaluation
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Comparison Between httk and SimCYP

• In the Rotroff et al. (2010) and Wetmore et al. 
(2012,2013,2014,2015) papers SimCYP was used to 
predict distributions of Css from in vitro data

• We show that “httk” can reproduce the 
results from those publications for most 
chemicals using our implementation of 
Monte Carlo. 

• Any one chemical’s median, 5th and 95th quantiles 
are connected by a  line.

• The RED assay for measuring protein binding fails 
in some cases because the amount of free chemical 
is below the limit of detection

• A default value of 0.5% free was used
• Now we use random draws from a uniform 
distribution from 0 to 1%. 

Wambaugh et al. (2015)

Quantiles for 
each chemical 
are joined by a 
line

Identity line
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Using in vivo Data to Evaluate RTK

Wambaugh et al. (2015)

• When we compare the Css predicted 
from in vitro HTTK with in vivo Css
values determined from the 
literature we find limited correlation 
(R2 ~0.34)

• The dashed line indicates the 
identity (perfect predictor) line: 

• Over-predict for 65
• Under-predict for 22

• The white lines indicate the 
discrepancy between measured and 
predicted values (the residual)
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Toxicokinetic Triage

 Through comparison to in vivo 
data, a cross-validated 
(random forest) predictor of 
success or failure of HTTK has 
been constructed

 Add categories for chemicals 
that do not reach steady-state 
or for which plasma binding 
assay fails

 All chemicals can be placed 
into one of seven confidence 
categories

 Plurality of chemicals end up 
in the “on the order” bin 
(within a factor of 3.2x) which 
is consistent with Wang (2010)

Wambaugh et al. (2015)
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Installing “httk”

install.packages("httk")

library(httk)

#Steady-state concentration (uM) for 1 mg/kg/day for 0.95 quantile for human for 
Acetochlor (published value):

calc_mc_css(chem.cas="34256-82-1")

#State-state oral equivalent dose (mg/kg BW/day) to produce 0.1 uM serum concentration for 
human, 0.95 quantile, for Acetochlor (calculated value):

calc_mc_oral_equiv(0.1,chem.cas="34256-82-1")

# Should produce error:

calc_mc_css(chem.name="34256-82-1")

#Capitalization shouldn’t matter:

calc_mc_css(chem.name="acetochlor")

calc_mc_css(chem.name="Acetochlor")

# What’s going on?

help(calc_mc_css)
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Interspecies Extrapolation Examples

#Steady-state concentration (uM) for 1 mg/kg/day for 0.95 quantile for human for Acetochlor 
(calculated value):

calc_mc_css(chem.cas="34256-82-1")

#Steady-state concentration (uM) for 1 mg/kg/day for 0.95 quantile for rat for Acetochlor (should 
produce errors since there is no published value, 0.5 quantile only):

get_wetmore_css(chem.cas="34256-82-1",species="Rat")

#Steady-state concentration (uM) for 1 mg/kg/day for 0.95 quantile for rat for Acetochlor 
(calculated value):

calc_mc_css(chem.cas="34256-82-1",species="Rat")

#Steady-state concentration (uM) for 1 mg/kg/day for 0.5 quantile for rat for Acetochlor 
(published value):

get_wetmore_css(chem.cas="34256-82-1",species="Rat",which.quantile=0.5)

#Steady-state concentration (uM) for 1 mg/kg/day for 0.5 quantile for rat for Acetochlor 
(calculated value):

calc_mc_css(chem.cas="34256-82-1",species="Rat",which.quantile=0.5)

#Steady-state concentration (uM) for 1 mg/kg/day for 0.95 quantile for mouse for Acetochlor 
(should produce error since there is no published value, human and rat only):

get_wetmore_css(chem.cas="34256-82-1",species="Mouse")

#Steady-state concentration (uM) for 1 mg/kg/day for 0.95 quantile for mouse for Acetochlor 
(calculated value):

calc_mc_css(chem.cas="34256-82-1",species ="Mouse")

calc_mc_css(chem.cas="34256-82-1",species ="Mouse",default.to.human=T)
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Help Files

help(add_chemtable)

Add a table of chemical information for use in making httk predictions.

Description
This function adds chemical-specific information to the table 
chem.physical_and_invitro.data. This table is queried by the model parameterization 
functions when attempting to parameterize a model, so adding sufficient data to this 
table allows additional chemicals to be modeled.
Usage
add_chemtable(new.table, data.list, current.table=NULL, reference=NULL,species=NULL, 
overwrite=F) 
Arguments

new.table Object of class data.frame containing one row per chemical, with each chemical minimally by 
described by a CAS number.

data.list This list identifies which properties are to be read from the table. Each item in the list should 
point to a column in the table new.table. Valid names in the list are: 'Compound', 'CAS', 
'DSSTox.GSID' 'SMILES.desalt', 'Reference', 'Species', 'MW', 'logP', 'pKa_Donor', 'pKa_Accept', 
'logMA', 'Clint', 'Clint.pValue', 'Funbound.plasma', 'Fgutabs', 'Rblood2plasma'. Note that 
Rblood2plasma (Ratio blood to plasma) is currently not used.

Every function has a help file

Pearce et al. (2017a)
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A General Physiologically-based Toxicokinetic 
(PBTK) Model

• “httk” also includes a generic PBTK model

• Some tissues (e.g. arterial blood) are simple compartments, while 
others (e.g. kidney) are compound compartments consisting of 
separate blood and tissue sections with constant partitioning (i.e., 
tissue specific partition coefficients)

• Exposures are absorbed from reservoirs (gut lumen)

• Some specific tissues (lung, kidney, gut, and liver) are modeled 
explicitly, others (e.g. fat, brain, bones) are lumped into the “Rest of 
Body” compartment.

• Blood flows move the chemical throughout the body. The total blood 
flow to all tissues equals the cardiac output.

• The only ways chemicals “leave” the body are through metabolism 
(change into a metabolite) in the liver or excretion by glomerular 
filtration into the proximal tubules of the kidney (which filter into the 
lumen of the kidney). 
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Basic PK Statistics Examples

library(httk)

#A Function to get PK summary statistics from the PBPK model:

help(calc_stats)

# 28 day human study (20 mg/kg/day) for Bisphenol A:

calc_stats(days=28,chem.name="bisphenol a", dose=20)

Human plasma concentrations returned in uM units.

AUC is area under plasma concentration curve in uM * days units with Rblood2plasma = 
0.79 .

$AUC

[1] 44.82138

$peak

[1] 23.16455

$mean

[1] 1.600764

# Units default to µM but can use mg/L:

calc_stats(days=28,chem.name="bisphenol a", dose=20,output.units="mg/L")

# Same study in a mouse:

calc_stats(days=28,chem.name="bisphenol a", dose=20,species="mouse",default.to.human=T)
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Predicting Partition Coefficients

Pearce et al. (2017b)

 Analyzed literature 
measurements of chemical-
specific partition coefficients 
(PC) in rat

• 945 tissue-specific PC
• 137 unique chemicals
• Mostly pharmaceuticals

 Calibrating in silico predictors 
(Schmitt, 2008) to actual 
performance

 Evaluated with human 
measured volumes of 
distribution for 498 
chemicals from Obach (2008)

• All pharmaceuticals
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Predicting Partition Coefficients

Pearce et al. (2017b)
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Using the PBPK Solver Directly

library(httk)

solve_pbtk(chem.name="bisphenol a")

Human values returned in uM units.

AUC is area under plasma concentration curve in uM * days units with Rblood2plasma = 13.829 .
time     Agutlumen Cart      Cven Clung       Cgut Cliver Ckidney Crest Ametabolized Atubules Cplasma AUC

[1,]  0.00000000  3.066275e+02 0.0000000 0.0000000 0.0000000  0.0000000  0.000000 0.000000 0.0000000    0.0000000 0.000000000 0.00000000 0.0000000000

[2,]  0.01041667  2.388017e+02 0.5991529 0.6287457 1.3199744 21.5143390 16.400297 3.233837 0.1914032    0.6152291 0.001766711 0.04546572 0.0002027523

[3,]  0.02083333  1.859790e+02 1.0004073 1.0083651 2.1406984 21.2910531 23.929492 5.969930 0.8381364    2.3122408 0.009141183 0.07291668 0.0008494912

[4,]  0.03125000  1.448406e+02 1.0588194 1.0574935 2.2507541 18.6383943 23.805194 6.461686 1.6078696    4.2587907 0.018747032 0.07646924 0.0016399193

[5,]  0.04166667  1.128020e+02 0.9900774 0.9858431 2.1000346 15.6437008 21.093573 6.086786 2.3205218    6.0701074 0.028321968 0.07128808 0.0024132951

[6,]  0.05208333  8.785027e+01 0.8881710 0.8835210 1.8825725 12.9223287 17.876882 5.473438 2.9227548    7.6352470 0.037100155 0.06388898 0.0031178197

[7,]  0.06250000  6.841785e+01 0.7883695 0.7841762 1.6709261 10.6387106 14.905516 4.859989 3.4111465    8.9492093 0.044931086 0.05670518 0.0037452376

[8,]  0.07291667  5.328387e+01 0.7019889 0.6984803 1.4881848  8.7907797 12.394544 4.324754 3.7991362   10.0424589 0.051886143 0.05050836 0.0043026722

[9,]  0.08333333  4.149753e+01 0.6310281 0.6281916 1.3382326  7.3221169 10.355693 3.883444 4.1039821   10.9532118 0.058100464 0.04542565 0.0048013867

[10,]  0.09375000  3.231830e+01 0.5741708 0.5719161 1.2181499  6.1656716  8.732407 3.529201 4.3419895   11.7173422 0.063712849 0.04135627 0.0052525642

[11,]  0.10416667  2.516952e+01 0.5291804 0.5274035 1.1231570  5.2594857  7.452953 3.248636 4.5270631   12.3653625 0.068845520 0.03813749 0.0056659289

[12,]  0.11458333  1.960204e+01 0.4938045 0.4924101 1.0484744  4.5511975  6.449790 3.027926 4.6705414   12.9221223 0.073599630 0.03560705 0.0060494826

[13,]  0.12500000  1.526609e+01 0.4660733 0.4649812 0.9899344  3.9982940  5.665391 2.854874 4.7814699   13.4074338 0.078056481 0.03362362 0.0064096387

[14,]  0.13541667  1.188924e+01 0.4443620 0.4435072 0.9441034  3.5669375  5.052878 2.719379 4.8669831   13.8369184 0.082280440 0.03207080 0.0067514674

[15,]  0.14583333  9.259350e+00 0.4273671 0.4266978 0.9082280  3.2304670  4.574870 2.613319 4.9326758   14.2228237 0.086322084 0.03085528 0.0070789492

[16,]  0.15625000  7.211189e+00 0.4140571 0.4135327 0.8801305  2.9679880  4.201883 2.530261 4.9829214   14.5747234 0.090221004 0.02990328 0.0073951988

[17,]  0.16666667  5.616079e+00 0.4036218 0.4032104 0.8581008  2.7631742  3.910801 2.465151 5.0211325   14.9000872 0.094008099 0.02915686 0.0077026468

[18,]  0.17708333  4.373808e+00 0.3954277 0.3951043 0.8408012  2.6032874  3.683555 2.414033 5.0499698   15.2047384 0.097707470 0.02857070 0.0080031886

[19,]  0.18750000  3.406325e+00 0.3889798 0.3887250 0.8271873  2.4783968  3.506044 2.373818 5.0715067   15.4932160 0.101337911 0.02810940 0.0082983022

[20,]  0.19791667  2.652848e+00 0.3838923 0.3836909 0.8164447  2.3807648  3.367276 2.342097 5.0873584   15.7690549 0.104914056 0.02774538 0.0085891383

[21,]  0.20833333  2.066041e+00 0.3798646 0.3797048 0.8079387  2.3043633  3.258686 2.316992 5.0987829   16.0350089 0.108447302 0.02745713 0.0088765933

[22,]  0.21875000  1.609034e+00 0.3766622 0.3765349 0.8011748  2.2444970  3.173600 2.297042 5.1067604   16.2932235 0.111946540 0.02722791 0.0091613663

[23,]  0.22916667  1.253117e+00 0.3741028 0.3740007 0.7957679  2.1975087  3.106820 2.281105 5.1120540   16.5453689 0.115418684 0.02704466 0.0094440009
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Evaluation of Peak Concentration vs. Css

 Peak serum concentrations from the 
HT-PBTK model are compared 
against the steady-state 
concentration predicted by the 
three compartment model for a 
constant infusion exposure (as in 
Wetmore et al. 2012)

 The dashed, identity (1:1) line 
indicates that for most compounds 
the peak concentrations are very 
similar to Css

Wambaugh et al. (2015)
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Evaluating In Vitro PBTK Predictions with 
In Vivo Data

28

Wambaugh et al., 2018

100% 
Bioavailability 
Assumed

 PBTK predictions can be made for 
maximum plasma concentration (Cmax) 
and for the AUC (time integrated 
plasma concentration or Area Under 
the Curve)

 in vivo measurements from the 
literature for various treatments (dose 
and route) of rat



Office of Research and Development29 of 61

Evaluating In Vitro PBTK Predictions with 
In Vivo Data

 Inclusion of oral bioavailability data (Panel B) improves 
predictions (“httk” assumes default of 100%. Panel A))

29

Wambaugh et al., 2018

In vivo 
Bioavailability 
Used

100% 
Bioavailability 
Assumed
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Overview of Dermal Approach

 We model dynamic concentration in media
• PBTK model is called using solve_pbtk
• Reverse dosimetry possible using calc_dermal_equiv
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Overview of Dermal Approach

 We model dynamic concentration in media
• PBTK model is called using solve_pbtk
• Reverse dosimetry possible using calc_dermal_equiv

 Dosing is characterized by:
• Initial concentration in media when applied (C0)
• Volume of media applied (Vmedia)
• Schedule of exposures (C0, Vmedia, and times can be irregular, remaining past exposure 

replaced with new)
• Schedule of wash-off (media removed completely, times can be irregular)
• Fraction skin exposed (Fskinexposed)
• Average skin depth (skin.depth) at site of application
• Fraction dermally absorbed (Fdermabs)
• pH of media
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 We model dynamic concentration in media
• PBTK model is called using solve_pbtk
• Reverse dosimetry possible using calc_dermal_equiv

 Dosing is characterized by:
• Initial concentration in media when applied (C0)
• Volume of media applied (Vmedia)
• Schedule of exposures (C0, Vmedia, and times can be irregular, remaining past exposure 

replaced with new)
• Schedule of wash-off (media removed completely, times can be irregular)
• Fraction skin exposed (Fskinexposed)
• Average skin depth (skin.depth) at site of application
• Fraction dermally absorbed (Fdermabs)
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 Physiology is characterized by body surface area, total skin volume, total skin blood flow, pH of skin
 2 chemical specific parameters: Kskin2media, permeability

• Calculated from Sawyer et al. 2016 and Chen et al. 2015
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Overview of Dermal Approach

 We model dynamic concentration in media
• PBTK model is called using solve_pbtk
• Reverse dosimetry possible using calc_dermal_equiv

 Dosing is characterized by:
• Initial concentration in media when applied (C0)
• Volume of media applied (Vmedia)
• Schedule of exposures (C0, Vmedia, and times can be irregular, remaining past exposure 

replaced with new)
• Schedule of wash-off (media removed completely, times can be irregular)
• Fraction skin exposed (Fskinexposed)
• Average skin depth (skin.depth) at site of application
• Fraction dermally absorbed (Fdermabs)
• pH of media

 Physiology is characterized by body surface area, total skin volume, total skin blood flow, pH of skin
 2 chemical specific parameters: Kskin2media, permeability

• Calculated from Sawyer et al. 2016 and Chen et al. 2015
 Assumptions: 

• No explicit stratum corneum (accounted for by skin.depth in dermal permeability parameter D)
• Constant Fskinexposed and skin depth, i.e. site of exposure
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• Collaboration with Frederic Bois (INERS), 
Marina Evans (EPA), and Robert Pearce 
(EPA)

• Urine data from a single man and woman 
following separate dermal and oral 
exposures to Imazalil

• Hope to obtain additional data on four 
other compounds from same lab

• What other data are available?

Evaluation Data
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Variability in this Steady-State TK Model

 In vitro clearance (µL/min/106 hepatocytes) is scaled to a whole organ clearance 
using the density of hepatocytes per gram of liver and the volume of the liver 
(which varies between individuals)

 Glomerular filtration rate (GFR) and blood flow to the liver (Ql) both vary from 
individual to individual

 Further assume that measured HTTK parameters have 30% coefficient of variation

( ) 







+

+
=

intubl

int
ublub *FQ

*F*QF*GFR

rate dose oral

Cl
Cl

Css

(Passive) Renal 
Clearance

Hepatic Clearance 
(Metabolism)

Jamei et al. (2009)
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Monte Carlo (MC) Approach to Variability
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Wetmore et al. (2012)
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Steady-State In Vitro-In Vivo 
Extrapolation (IVIVE)

O
ra

l E
qu

iv
al

en
t D

ai
ly

 D
os

e

Steady-state Concentration (µM) = in vitro AC500

Median
Predicted Css

 The higher the predicted Css, the lower the oral equivalent dose, so the upper 95% predicted Css
from the MC has a lower oral equivalent dose

Lower 95%
Predicted Css

Upper 95%
Predicted Css
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McNally et al. (2014) Linear Regressions for 
Population Simulation
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Sample quantities from 

Sex
Race/ethnicity
Age
Height
Weight
Serum creatinine

Ring et al. (2017)

Correlated Monte Carlo sampling of physiological model parameters

Modern U.S. Population Simulator for 
HTTK
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Sample quantities from 

Sex
Race/ethnicity
Age
Height
Weight
Serum creatinine

Use equations from literature 
(McNally et al., 2014)

(+ residual marginal variability) 

Ring et al. (2017)

Correlated Monte Carlo sampling of physiological model parameters

Modern U.S. Population Simulator for 
HTTK
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Sample quantities from 

Sex
Race/ethnicity
Age
Height
Weight
Serum creatinine

Modern U.S. Population Simulator for 
HTTK

Predict physiological 
quantities

Tissue masses
Tissue blood flows
GFR (kidney function)
Hepatocellularity

Use equations from literature 
(McNally et al., 2014)

(+ residual marginal variability) 

Ring et al. (2017)

Correlated Monte Carlo sampling of physiological model parameters
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Generating demographic subgroups

 NHANES quantities sampled from appropriate conditional
distribution (given specifications)

• Physiological parameters predicted accordingly

User can specify…. Default if not specified
Age limits 0-79 years
Sex (# males, # females) NHANES proportions
Race/ethnicity (5 NHANES categories) NHANES proportions
BMI/weight categories NHANES proportions

Ring et al. (2017)
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NHANES Demographic Examples 

library(httk)

# Oral equivalent (mg/kg/day) for in vitro activity of 1 µM for Acetochlor

calc_mc_oral_equiv(1,chem.cas="34256-82-1")

# Oral equivalent (mg/kg/day) for NHANES “Mexican American” Population

calc_mc_oral_equiv(1,chem.cas="34256-82-1", reths = "Mexican American")

# Oral equivalent (mg/kg/day) for NHANES “Mexican American” Population aged 18-25 years

calc_mc_oral_equiv(1,chem.cas="34256-82-1",agelim_years=c(18,25),reths = "Mexican 
American")

# Probably too few individuals in NHANES for direct resampling (“dr”) so use virtual 
individuals (“vi”) resampling method:

calc_mc_oral_equiv(1,chem.cas="34256-82-1",method="vi",agelim_years=c(18,25),reths = 
"Mexican American")

Can also specify gender, weight categories, and kidney function

Ring et al. (2017)
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Exposure Forecaster (ExpoCast) generates rapid 
exposure estimates (Wambaugh et al., 2013,2014)

ToxCast + Reverse Dosimetry generates estimated doses needed to cause bioactivity

High Throughput Risk Prioritization for 
the Total Population

Wetmore et al., Tox. Sci, 2015
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Change in Risk

Life-stage and Demographic Specific Predictions

Change in Activity : Exposure Ratio

• We use HTTK to 
calculate margin 
between bioactivity and 
exposure for specific 
populations

• Most NHANES 
chemicals do not have 
traditional PK models 
(Strope et al., 2018)

Potential Exposure 
Rate

mg/kg BW/day

Potential hazard from 
in vitro

converted to dose by  
HTTK

Lower
Risk

Medium Risk Higher
Risk

Ring et al. (2017)

N
HAN

ES Chem
icals

NHANES Demographic Groups
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Evaluating HTTK Predictions

• We collected new in vivo data for 26 chemicals more commonly associated with non-
therapeutic and/or unintentional exposure

• Minimal design – six animals per study (3 dosed per oral / 3 iv)
• In Vivo Work led by Mike Hughes (EPA/NHEERL) and Tim Fennell (RTI)

Wambaugh et al., 2018
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Evaluating In Silico Oral Bioavailability
Predictions with In Vivo Data

50

Bioavailability predictions from GastroPlus

In silico methods 
developed for 
pharmaceuticals do 
not seem to do a 
good job of 
predicting oral 
bioavailability for 
environmental 
chemicals

Predictions were 
made without the 
benefit of in vitro 
assays that can 
inform absorption 
(i.e., CACO-2 
membrane 
permeability)

Wambaugh et al., 2018

CACO-2 permeability is now being measured for 
HTTK chemicals (Cyprotex)
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Does My Chemical Have HTTK Data?

> library(httk)

> get_cheminfo()

[1] "2971-36-0"   "94-75-7"     "94-82-6"     "90-43-7"     "1007-28-9"  

[6] "71751-41-2"  "30560-19-1"  "135410-20-7" "34256-82-1"  "50594-66-6" 

[11] "15972-60-8"  "116-06-3"    "834-12-8"    "33089-61-1"  "101-05-3"   

[16] "1912-24-9"   "86-50-0"     "131860-33-8" "22781-23-3"  "1861-40-1" …

> get_cheminfo(info="all")

Compound CAS logP
pKa_Acce
pt pKa_Donor MW Human.Clint

Human.Clint.p
Value

Human.Funbo
und.plasma

DSSTox_Substance
_Id Structure_Formula Substance_Type

2,4-d 94-75-7 2.81 <NA> 2.81 221.03 0 0.149 0.04 DTXSID0020442 C8H6Cl2O3 Single
Compoun
d

2,4-db 94-82-6 3.53 <NA> 4.5 249.09 0 0.104 0.01 DTXSID7024035 C10H10Cl2O3 Single
Compoun
d

2-phenylphenol 90-43-7 3.09 <NA> 10.6 170.211 2.08 0.164 0.04 DTXSID2021151 C12H10O Single
Compoun
d

6-desisopropylatrazine 1007-28-9 1.15 1.59 <NA> 173.6 0 0.539 0.46 DTXSID0037495 C5H8ClN5 Single
Compoun
d

> "80-05-7" %in% get_cheminfo()
[1] TRUE

subset(get_cheminfo(info="all"),Compound%in%c("A","B","C"))

Is a chemical available?

All data on chemicals A, B, C
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In Silico HTTK Predictions

Dose range for all 3925 Tox21 
compounds eliciting a ‘possible’-to-

‘likely’ human in vivo interaction 
alongside estimated daily exposure

56 compounds with potential in 
vivo biological interaction at or 
above estimated environmental 

exposures

Sipes et al., (2017)

• Tox21 has screened >8000 chemicals – Sipes et al. (2017) wanted to compare in vitro active 
concentrations with HTTK predicted maximum plasma concentrations with high throughput 
exposure predictions from Wambaugh et al. (2014)

• “httk” package only has ~500 chemicals
• Used Simulations Plus ADMet Predictor to predict for entire library (supplemental table) and used 

add_chemtable() function to add into “httk” package
• Data available as on-line with new toolbox: https://sandbox.ntp.niehs.nih.gov/ivive/
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Review: What Can You Do with HTTK?

• Public, open-source set of models and data that have been published in peer-
reviewed scientific journals

• Allows PBTK modeling
• Allows conversion of in vitro concentration to in vivo doses
• A peer-reviewed paper in the Journal of Statistical software provides a how-to guide 

(Pearce et al., 2017a)
• You can add new chemical information to library and analyze with package tools
• You can use specific demographics from modern U.S. population in the population 

simulator
• Gender, age, weight, ethnicity, renal function

For risk assessors, in particular:
• You can load specific (older) versions of the package
• You can control the built-in random number generator to reproduce the same 

random sequence (function set.seed())
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HTTK Limitations 
(from Ring et al., 2017)

 Oral absorption
• 100% assumed, but may be very different
• In silico models not necessarily appropriate for environmental chemicals

 Hepatic Clearance (CLint)
• Ten donor pool in suspension for 2-4 h misses variability and low turnover compounds
• Isozyme abundances and activity: varies with age, ethnicity (at least) (Yasuda et al. 2008, 

Howgate et al. 2006, Johnson et al. 2006)
• Parent chemical depletion only

 Isozyme-specific data & modeling (Wetmore et al. 2014)
• Isozyme-specific metabolism assays not HT
• In silico predictions of isozyme-specific metabolism? Not easy!

– Existing data is mostly for pharmaceuticals
 Plasma binding assay (Fup)

• Assay often fails due to analytical chemistry sensitivity (Wetmore et al., 2012)
• Plasma protein concentration variability (Johnson et al. 2006, Israili et al. 2001)
• Albumin or AAG binding? (Routledge 1986)
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Version history for “httk”

The publicly available R package contains code and data that has been part of peer-reviewed 
publications (Old versions are archived)

• Version 1.1 accompanied “Toxicokinetic Triage for Environmental Chemicals” Wambaugh et al. 
(2015) Tox. Sci.

• Version 1.2 accompanied submission of “httk: R Package for High-Throughput Toxicokinetics” 
Pearce et al., Journal of Statistical Software (2017a)

• Version 1.3 accompanied “Incorporating High-Throughput Exposure Predictions with 
Dosimetry-Adjusted In Vitro Bioactivity to Inform Chemical Toxicity Testing” Wetmore et al., 
Toxicological Sciences (2015). 

• Version 1.4 addressed comments for revision of Pearce et al., Journal of Statistical Software 
(2017)

• Version 1.5 accompanied “Identifying populations sensitive to environmental chemicals by 
simulating toxicokinetic variability,” Ring et al. Environment International (2017)

• Version 1.6 accompanied “Evaluation and Calibration of High-Throughput Predictions of 
Chemical Distribution to Tissues,” Pearce et al. (2017b) submission to Journal of 
Pharmacokinetics and Pharmacodynamics

• Version 1.7 accompanied publication of Pearce et al., Journal of Statistical Software (2017a)
• Version 1.8 included revisions from Pearce et al. (2017b), new in vivo data (Wambaugh et al., 

2018, and In silico HTTK parameter predictions (Sipes et al., 2017)

Lead programmer Robert Pearce
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Dermal Exposure Route

• We are working to augment the basic HT-PBPTK model with new PBTK 
models

• Each model will be released publicly upon peer-reviewed publication

• Pre-publication models can be shared under a MTA

• We assume there will be coding errors and over-simplifications, so each 
publication involves curation of evaluation data from the scientific 
literature and through statistical analysis
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Summary

 Toxicokinetics (TK) provides a bridge between HTS and HTE by predicting 
tissue concentrations due to exposure 

 High Throughput (HTTK) methods developed for pharmaceuticals have 
been adapted to environmental testing

 R package “httk” freely available on CRAN allows statistical analyses to 
identify strengths and weaknesses
• All HTTK models and data made public upon peer-reviewed publication

 Includes one compartment, three compartment (e.g., Wetmore et al.) and 
generic PBTK model
• Dermal model available, but needs to be evaluated and published 

before public release
 New bioavailability (CACO2) data being collected and analyzed
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