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Proof of Lemma 5

Proof. We prove the lemma in the following two steps. In the first step, we demon-

strate that maxi∈I0
∣∣ση,ii − ση,ii

∣∣ = Op

{√
logN/T

}
, followed by extending the results

to σ̃η,ii in the second step.

We firstly show that maxi∈I0
∣∣ση,ii − ση,ii

∣∣ = Op

{√
logN/T

}
. Note that ση,ii =

T−1η⊤
i.ηi. with η⊤ = Q(Z)E⊤, where Z and Q(Z) are defined in Section 3.1. As a

result, we have ση,ii = T−1ε⊤i Q(Z)εi, which leads to∣∣ση,ii − ση,ii

∣∣ = ∣∣T−1ε⊤i Q(Z)εi − T−1η⊤
i.Q(Z)ηi. + T−1η⊤

i.Q(Z)ηi. − ση,ii

∣∣
≤

∣∣T−1ε⊤i Q(Z)εi − T−1η⊤
i.Q(Z)ηi.

∣∣+ ∣∣T−1η⊤
i.Q(Z)ηi. − ση,ii

∣∣. (A.1)

We then consider the above two parts separately. We firstly consider the second term.

Note that ηi. follows a multivariate normal distribution with mean zero and covariance

matrix ση,iiIT . As a result, η⊤
i.Q(Z)ηi./ση,ii follows a chi-square distribution of degree

T − r. Thus, according to Lemma 2, we can obtain that

max
i∈I0

∣∣T−1η⊤
i.Q(Z)ηi. − ση,ii

∣∣ ≤ max
i∈I0

∣∣T−1η⊤
i.Q(Z)ηi. − (T − r)ση,ii/T

∣∣+ rmax
i∈I0

ση,ii/T

= max
i∈I0

ση,ii|T−1χT−r − (T − r)/T |+ rmax
i

ση,ii/T

= Op

(√
logN/T

)
+Op

(
T−1

)
= Op

(√
logN/T

)
.

Consequently, we can obtain

max
i∈I0

∣∣T−1η⊤
i.Q(Z)ηi. − ση,ii

∣∣ = Op

(√
logN/T

)
. (A.2)
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We next consider the first part of (A.1). Note that T−1ε⊤i Q(Z)εi = T−1η⊤
i.Q(Z)ηi. +

2T−1η⊤
i.Q(Z)Zγi + T−1γ⊤

i Z
⊤Q(Z)Zγi. We then consider the three parts in the fol-

lowing three steps.

STEP I. We firstly consider T−1η⊤
i.Q(Z)ηi.−T−1η⊤

i.Q(Z)ηi.. According to the results

of Theorem 2 in Wang (2012) that tr{Q(Z)−Q(Z)}2 = Op(T
−1), we can obtain that

max
i∈I0

∣∣T−1η⊤
i.Q(Z)ηi. − T−1η⊤

i.Q(Z)ηi.

∣∣ = max
i∈I0

∣∣T−1η⊤
i.

{
Q(Z)−Q(Z)

}
ηi.

∣∣
≤

[
tr{Q(Z)−Q(Z)}2

]1/2
max
i∈I0

T−1η⊤
i.ηi. = Op(T

−1/2),

where the last equality is due to the fact that maxi η
⊤
i.ηi. = Op(T ) by Lemma 2.

STEP II. We next consider T−1η⊤
i.Q(Z)Zγi, which is equivalent to T−1η⊤

i. {Q(Z) −
Q(Z)}Zγi. By the results of Theorem 2 in Wang (2012) that tr{Q(Z) − Q(Z)}2 =

Op(T
−1), together with condition (C4), we have

|η⊤
i. {Q(Z)−Q(Z)}Zγi|2

=η⊤
i. {Q(Z)−Q(Z)}Zγiγ

⊤
i Z

⊤{Q(Z)−Q(Z)}ηi.

≤max
i

∥γi∥2 × λmax(ZZ
⊤)× η⊤

i. {Q(Z)−Q(Z)}2ηi.

≤T × tr{Q(Z)−Q(Z)}2 × ∥ηi.∥2 = Op(T ).

Hence, T−1η⊤
i.Q(Z)Zγi = Op(T

−1/2).

STEP III. We lastly consider T−1γ⊤
i Z

⊤Q(Z)Zγi. By condition (C4) and the fact that

tr(Z⊤Q(Z)Z) = Op(1) as demonstrated by Wang (2012), we obtain

max
i∈I0

T−1γ⊤
i Z

⊤Q(Z)Zγi ≤ T−1max
i∈I0

∥γi∥2tr(Z⊤Q(Z)Z) = Op(1/T ) = op

(√
logN/T

)
.

Combining all of these results above, we have completed the first part of the proof of

Lemma 5.

We next consider the second part of Lemma 5. Note that Q(X)E⊤ can be written

as Q(X)Zγ⊤ +Q(X)η⊤. As a result, Q(X)E⊤ also follows a latent factor structure of

dimension r. The only difference is that, the variance of the random error is converted

to be (T − r)ση,ii/T . Thus, by the results in the first part of the proof, we can obtain

that

max
i∈I0

∣∣σ̃η,ii − (T − r)ση,ii/T
∣∣ = Op

{√
logN/T

}
.
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Consequently, we have

max
i∈I0

∣∣σ̃η,ii − ση,ii

∣∣ ≤ max
i

∣∣σ̃η,ii − (T − r)ση,ii/T
∣∣+max

i∈I0
r
(
ση,ii

)
/T

= Op

{√
logN/T

}
+O(1/T ) = Op

{√
logN/T

}
,

which completes the entire proof.

Proof of Lemma 6

Proof. Similar to the proof of Lemma 5, we only need to prove that

max
i∈I0

|w⊤Zγi −w⊤Zγi| = Op

{
(logN)1/4/T 1/2

}
+Op(T

−1/4) +Op

{
N−ν

}
.

By triangle inequality inequality, we can obtain

|w⊤Zγi −w⊤Zγi| = |w⊤Zγi −w⊤Zγi +w⊤Zγi −w⊤Zγi|

≤ |w⊤Zγi −w⊤Zγi|+ |w⊤Zγi −w⊤Zγi|. (A.3)

We then consider the above two terms separately. Note that

|w⊤Zγi −w⊤Zγi|2 = (γi − γi)
⊤
(
Z⊤ww⊤Z

)
(γi − γi)

≤ λmax(Z
⊤ww⊤Z)∥γi − γi∥2 = Op(r)∥γi − γi∥2,

where the last result above is due to the fact that w⊤Z has mean zero and identity

covariance matrix given w. As a result,

max
i∈I0

|w⊤Zγi −w⊤Zγi| ≤ max
i∈I0

∥γi − γi∥

= max
i∈I0

∥T−1Z
⊤
Zγi + T−1Z

⊤
ηi. − γi∥ ≤ T−1max

i∈I0
∥Z⊤

Zγi − Z⊤Zγi∥

+T−1 max
i∈I0

∥Z⊤
ηi. − Z

⊤
ηi.∥. (A.4)

We consider the above two parts separately. First note that

∥Z⊤
Zγi − Z⊤Zγi∥2 = γ⊤

i Z
⊤(Z− Z)(Z− Z)⊤Zγi

≤ ∥γi∥2tr
{
Z⊤(Z− Z)(Z− Z)⊤Z

}
≤ T∥γi∥2tr

{
(Z− Z)(Z− Z)⊤

}
.
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Moreover, according to condition (C4), we have maxi ∥γi∥2 = O(1). Consequently, we

only need to consider tr
{
(Z − Z)⊤(Z − Z)

}
. According to condition (C5), one can

easily verify that

tr
{
(Z− Z)⊤(Z− Z)

}
=

∑
e≤r

∥ϱe − ϱe∥2 = Op(N
−2ν).

Here, (ϱ1, . . . ,ϱr) = Z. Consequently, we have

T−1 max
i∈I0

∥Z⊤
Zγi − Z⊤Zγi∥ = Op

(
N−ν/

√
T
)
. (A.5)

We next consider the second part of (A.4). By Cauchy–Schwarz inequality, we have

∥Z⊤
ηi. − Z

⊤
ηi.∥2 ≤ 2∥(Z− Z)⊤(ηi. − ηi.)∥2 + 2∥Z⊤(ηi. − ηi.)∥2.

We firstly consider the second term. Note that ηi. − ηi. = Q(Z)Zγi − H(Z)ηi.,

where H(.) = IT −Q(.). Consequently, applying Cauchy-Schwarz inequality, we have

∥Z⊤(ηi.−ηi.)∥2 ≤ 2γ⊤
i

{
Z⊤Q(Z)Z

}2
γi+2η⊤

i.H(Z)ZZ⊤H(Z)ηi. ≤ 2∥γi∥2tr
{
Z⊤Q(Z)Z

}2
+

2tr{Z⊤H(Z)Z}η⊤
i.H(Z)ηi.. The first term is again Op(1) by condition (C4) and the

results from Wang (2012) that tr
{
Z⊤Q(Z)Z

}
= Op(1). For the second term, note that

H(Z) is a projection matrix of rank r, then η⊤
i.H(Z)ηi. can be expressed as a summa-

tion of r chi-square distributions of degree 1. Accordingly, by Bonferroni inequality, we

have maxi∈I0 η
⊤
i.H(Z)ηi. = Op(

√
logN). This together with the results in Theorem 2

of Wang (2012) that tr{Z⊤Q(Z)Z} = Op(1) yields that ∥Z⊤(ηi.−ηi.)∥2 = Op(
√
logN).

We next consider the second part,

∥(Z− Z)⊤(ηi. − ηi.)∥2 =
(
ηi. − ηi.

)⊤(
Z− Z

)(
Z− Z

)⊤(
ηi. − ηi.

)
≤ tr

{
(Z− Z)(Z− Z)⊤

}
∥ηi. − ηi.∥2 ≤ tr

{
(Z− Z)(Z− Z)⊤

}
max
i∈I0

∥ηi. − ηi.∥2.

Similar to the proof of Lemma 5, we can have maxi∈I0 ∥ηi. − ηi.∥2 = Op(
√
logN).

Moreover, tr
{
(Z−Z)(Z−Z)⊤

}
= Op(N

−2ν) according to condition (C5). As a result,

∥(Z − Z)⊤(ηi. − ηi.)∥2 = Op

{√
logN/N2ν

}
. Consequently, combining these results

above, we have

T−1 max
i∈I0

∥Z⊤
ηi. − Z

⊤
ηi.∥ = Op

(
{logN}1/4/T 1/2

)
. (A.6)
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Combining these results in (A.5) and (A.6), together with condition (C1),

max
i∈I0

|w⊤Zγi −w⊤Zγi| = Op

(
{logN}1/4/T 1/2

)
+Op

(
N−ν/

√
T
)
. (A.7)

We next consider the second term of (A.3). Note that

∥w⊤Zγi −w⊤Z⊤γi∥2 = γ⊤
i (Z− Z)ww⊤(Z− Z)⊤γi ≤ ∥γi∥2tr

{
(Z− Z)⊤(Z− Z)

}
.

As a result, we can obtain that

max
i∈I0

|w⊤Z
⊤
γi −w⊤Z⊤γi| ≤ Op(N

−ν)max
i∈I0

∥γi∥.

≤ Op(N
−ν)max

i∈I0

{
∥γi∥+ ∥γi − γi∥

}
= Op(N

−ν). (A.8)

Combining these results in (A.7) and (A.8), we thus have

max
i∈I0

∥w⊤Z
⊤
γi −w⊤Z⊤γi∥ = Op

(
{logN}1/4/T 1/2

)
+Op

(
N−ν

)
,

which completes the entire proof of Lemma 6.

Proof of Proposition 1

Proof. We first prove that V o(t)/N0 converges to the uniform distribution t almost

surely. Since ηi. follows a multivariate normal distribution with mean 0 and covariance

matrix ση,iiIT , T
o
i is a standard normal variable under the null hypothesis. Hence, it

amounts to show that

N−1
0

∑
i∈I0

[
I(T o

i ≥ −zt/2)− P(T o
i ≥ −zt/2)

]
N0→∞−→ 0 a.s. (A.9)

N−1
0

∑
i∈I0

[
I(T o

i ≤ zt/2)− P(T o
i ≤ zt/2)

]
N0→∞−→ 0 a.s. (A.10)

By Lemma 1, the conclusion (A.9) is valid if we can show that

var
{
N−1

0

∑
i∈I0

I
(
T o
i ≥ −zt/2

)}
= O(N−δ

0 ), for some δ > 0. (A.11)
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Starting with (A.11), we note that

var
{
N−1

0

∑
i∈I0

I
(
T o
i ≥ −zt/2

)}
= N−2

0

∑
i∈I0

var
{
I
(
T o
i ≥ −zt/2

)}
+N−2

0

∑
i1∈I0,i2∈I0,i1 ̸=i2

cov
{
I
(
T o
i1
≥ −zt/2

)
, I
(
T o
i2
≥ −zt/2

)}
.

The first term above is Op(N
−1
0 ) by the fact that var

{
I(T o

i ≥ −zt/2)
}
≤ 1. For the

second term, the covariance is given by

P(T o
i1
≥ −zt/2, T

o
i2
≥ −zt/2)− P(T o

i1
≥ −zt/2)P(T

o
i2
≥ −zt/2)

= P(T o
i1
≥ −zt/2, T

o
i2
≥ −zt/2)− {Φ(zt/2)}2. (A.12)

To evaluate (A.12), we need to verify that for any i1 ∈ I0 and i2 ∈ I0, (T
o
i1
, T o

i2
)⊤ has a

bivariate normal distribution with mean zero and covariance matrix given by Σi1i2 =

(σi1i2)2×2, where σ11 = σ22 = 1 and σ12 = σ21 = ρη,i1i2 . This conclusion is immediately

implied by the assumption that {η.1, . . . ,η.T} are independent and the constraint that

w⊤w = 1. Without loss of generality, we assume ρη,i1i2 > 0 (for ρη,i1i2 < 0, the

conclusion is similar). Let (x, y, z) be three independent standard normal random

variables. Then T o
i1
, T o

i2
can be constructed by T o

i1
= (ρη,i1i2)

1/2z + (1 − ρη,i1i2)
1/2x,

T o
i2

= (ρη,i1i2)
1/2z + (1 − ρη,i1i2)

1/2y. By using the above formulas, the first term in

(A.12) can be expressed as

P
(
T o
i1
≥ −zt/2, T

o
i2
≥ −zt/2

)
= P

(
(ρη,i1i2)

1/2z + (1− ρη,i1i2)
1/2x ≥ −zt/2, (ρη,i1i2)

1/2z + (1− ρη,i1i2)
1/2y ≥ −zt/2

)
= P

(
x ≥

−zt/2 − (ρη,i1i2)
1/2z

(1− ρη,i1i2)
1/2

, y ≥
−zt/2 − (ρη,i1i2)

1/2z

(1− ρη,i1i2)
1/2

)
=

∫ ∞

−∞
Φ

{
(ρη,i1i2)

1/2 + zt/2
(1− ρη,i1i2)

1/2

}2

ϕ(z)dz. (A.13)

Employing Taylor expansion to Φ(·) with respect to (ρη,i1i2)
1/2 yields that

Φ

{
(ρη,i1i2)

1/2z + zt/2
(1− ρη,i1i2)

1/2

}
= Φ(zt/2) + ϕ(zt/2)z(ρη,i1i2)

1/2 +
1

2
ϕ(zt/2)(1− z2)ρη,i1i2 +R(ρη,i1i2),

where R(ρη,i1i2) = fR(z)O(|ρη,i1i2 |3/2) with fR(z) being a polynomial function of z of

6



order 3. Therefore, using the fact that E(z) = 0, var(z) = 1, (A.13) equals

Φ(zt/2)
2 + ϕ(zt/2)

2ρη,i1i2 +O(|ρη,i1i2 |3/2). (A.14)

Combining (A.12) and (A.14), we obtain that∣∣∣cov{I(T o
i1
≥ −zt/2), I(T

o
i2
≥ −zt/2)

}∣∣∣ ≤ ϕ(zt/2)
2ρη,i1i2 +O(|ρη,i1i2 |3/2).

By the assumption (2.3) and π0 > 0, N−2
0

∑
i1∈I0,i2∈I0,i1 ̸=i2

|ρη,i1i2 | = O(N−δ
0 ). This in

turn implies that

var
{
N−1

0

∑
i∈I0

I(T o
i ≥ −zt/2)

}
= Op(N

−δ
0 ), for some δ > 0,

from which (A.9) holds. (A.10) can be verified in a similar manner.

Now we show that V (t)/N0 also converges to the uniform distribution t almost surely

under the conditions that maxi∈I0 |σ̂η,ii−ση,ii| →p 0 and maxi∈I0 |(1⊤Q1)−1/21⊤QẐγ̂i−
(1⊤Q1)−1/21⊤QZγi| →p 0. Denote by t1 = −zt/2(σ̂η,ii)

1/2/(ση,ii)
1/2+(1⊤Q1)−1/21⊤Q(Ẑγ̂i−

Zγi)/(ση,ii)
1/2 and t2 = zt/2(σ̂η,ii)

1/2/(ση,ii)
1/2+(1⊤Q1)−1/21⊤Q(Ẑγ̂i−Zγi)/(ση,ii)

1/2.

Then, by the assumptions of Proposition 1, we have t1 →p −zt/2 and t2 →p zt/2 u-

niformly for any i. For any ε > 0, there exists a constant δ > 0 not depending

on i, such that P(|t1 + zt/2| < δ) ≥ 1 − ε and P(|t2 − zt/2| < δ) ≥ 1 − ε. Let

Ω1 = {w : |t1(w) + zt/2| < δ, |t2(w) − zt/2| < δ}. As a result, P(Ω1) ≥ 1 − ε. Denote

by Ω2 the set of w such that V o(t)/N0 converges to t such that P(Ω2) = 1. For any

w ∈ Ω1 ∩ Ω2, we bound V (t)/N0 as

N−1
0

∑
i∈I0

I(T o
i (w) > −zt/2 + δ) ≤ N−1

0

∑
i∈I0

I(T o
i (w) > t1(w)) ≤ N−1

0

∑
i∈I0

I(T o
i (w) > −zt/2 − δ)

N−1
0

∑
i∈I0

I(T o
i (w) < zt/2 − δ) ≤ N−1

0

∑
i∈I0

I(T o
i (w) < t2(w)) ≤ N−1

0

∑
i∈I0

I(T o
i (w) < zt/2 + δ)

Letting ε → 0 and δ → 0, we obtain that for all w ∈ Ω1 ∩ Ω2 with P(Ω1 ∩ Ω2) = 1,

N−1
0

∑
i∈I0 I(T

o
i (w) > t1(w)) → t/2 and N−1

0

∑
i∈I0 I(T

o
i (w) < t2(w)) → t/2. This

completes the proof of Proposition 1.

Proof of Theorem 1

Proof. By Proposition 1 and the sparsity condition (C2), Ro(t)/N ≥ V o(t)/N which

is lower bounded by t/2 as N, T are sufficiently large. By the result of Proposition 1,
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V (t)/N0 − V o(t)/N0
a.s.→ 0, which implies that R(t)/N is lower bounded by t/2. Then,

for any given t > 0,

lim
N,T→∞

∣∣F̂DRλ(t)− FDPo(t)
∣∣

≤ lim
N,T→∞

{π̂0(λ)t}{Ro(t)/N} − {V o(t)/N}{R(t)/N}
{Ro(t)/N}{R(t)/N}

≤ 4/t2 × lim
N,T→∞

{
|π̂0(λ)t− V o(t)/N |{Ro(t)/N}+ {V o(t)/N}|Ro(t)/N −R(t)/N |

}
≤ 4/t2 ×

{
lim

N,T→∞
|π̂0(λ)− π0|t+ |π0t− V o(t)/N |+ |R(t)/N −Ro(t)/N |

}
≤ 4/t2 ×

{
lim

N,T→∞
|π̂0(λ)− π0|t+ |π0t− V o(t)/N |+ |V (t)/N − V o(t)/N |+O(N1/N)

}
.

According to the proof of Propositions 1 and 2, |V (t)/N−V o(t)/N | ≤ C×{maxi∈I0 |σ̂η,ii−
ση,ii|+maxi∈I0 |(1⊤Q(X)1)−1/21⊤Q(X)(Ẑγ̂i−Zγi)|} = Op{(logN)1/4/T 1/2}+Op(N

−ν)+

Op

(
N−1T∥µ∥2

)
+Op

(
N

1/2
1 N−1T∥µ∥

)
, and |π0t−V o(t)/N | = Op(N

−δ/2). Combining

these two results, |V (t)/N0− t| = Op{(logN)1/4/T 1/2}+Op(N
−ν)+Op

(
N−1T∥µ∥2

)
+

Op

(
N

1/2
1 N−1T∥µ∥

)
+Op(N

−δ/2). By decomposition, π̂0(λ) =
∑

i∈I0 I(Pi > λ)/{N(1−
λ)}+O(N1/N). Similar to the proof of Proposition 1, we can show that

∑
i∈I0 I(Pi >

λ)/{N(1 − λ)} → π0 almost surely. Moreover, the convergence rate of
∑

i∈I0 I(Pi >

λ)/{N(1−λ)} is the same as that of V (t)/N0−t, which completes the proof of Theorem

1.

The “negative” dependence of BH type estimator in finite sample

It has been theoretically shown that the BH type estimator can control the FDR

when the test statistics or p-values have some special dependence structures (Benjamini

and Yekutieli, 2001; Storey et al., 2004). In this part, we will show that the BH

type estimator is negatively correlated with the true FDP when the signals under the

alternative are strong in finite sample.

For ease of presentation, denote by P1, . . . , PN are p-values corresponding to N

hypotheses Hi, i = 1, . . . , N , and there are N0 of them are from the true null. Then,

V (t), R(t), and FDP(t) can be defined in a similar way as in (2.10) in the main ar-

ticle. Benjamini and Hochberg (1995) proposed to estimate the FDP(t) as F̂DP(t) =

Nt/max(R(t), 1). If the p-values under the alternative are all smaller than the thresh-

old t, then R(t) = N1 + V (t), where t is a threshold and N1 = N − N0. For any

two replications, the number of the false discoveries, the true discoveries, and the false
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discovery proportion are denoted as Vi(t), Ri(t), and FDPi(t) for i = 1, 2, respectively.

Then, the slope of the two pairs of {FDPi(t), F̂DPi(t)} which satisfy the above property

and V1(t) ̸= V2(t), can be explicitly decomposed as,

slopeBH =
F̂DP1(t)− F̂DP2(t)

FDP1(t)− FDP2(t)

=

Nt
R1(t)

− Nt
R2(t)

V1(t)
R1(t)

− V2(t)
R2(t)

=

Nt
N1+V1(t)

− Nt
N1+V2(t)

V1(t)
N1+V1(t)

− V2(t)
N1+V2(t)

= −Nt

N1

< 0

However, under the independence or weak dependence assumption of the p-values, it

is straightforward to show that |F̂DP(t) − FDP(t)| = op(1) when N is sufficient large

and π0 = 1.

The above negative dependence property can be extended to Storey’s estimator

(Storey et al., 2004), which incorporates the estimator of π0 = limN→∞N0/N into

the BH method. Specifically, the estimated FDP can be formulated as Nπ̂0(λ)t
R(t)∨1 , with

π̂0(λ) = #{Pi;Pi > λ}/{N(1 − λ)} for a tuning parameter λ > 0. Under the same

assumption on the alternative and t ≤ λ, we have π̂0(λ) = (N0 − V (λ))/{N(1 − λ)}.
Similarly, the slope of any two pairs of estimators can be derived as

slopeStorey =
t

1− λ
× {−N0

N1

− V1(λ)− V2(λ)

V1(t)− V2(t)
− V1(λ)V2(t)− V1(t)V2(λ)

N1(V1(t)− V2(t))
}

=
t

1− λ
× {−N0 − V2(λ)

N1

− (1 +
V2(t)

N1

)× V1(λ)− V2(λ)

V1(t)− V2(t)
},

which is negative if V1(λ)− V2(λ) and V1(t)− V2(t) have the same sign.
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