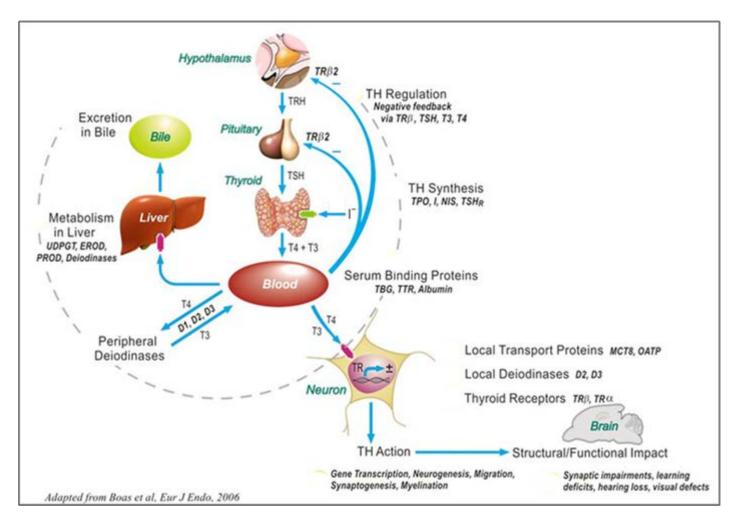


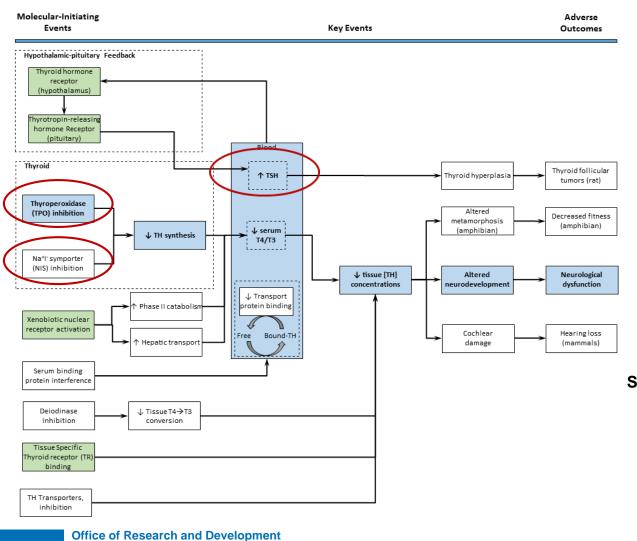
Development of a Human Thyroid Microtissue Model for Evaluation of Thyroid Hormone Synthesis


Chad Deisenroth (NCCT)
RIVM Meeting

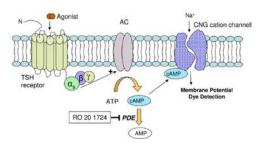
4/18/2018

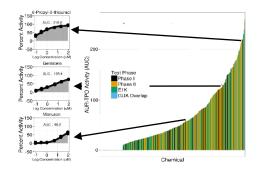
The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

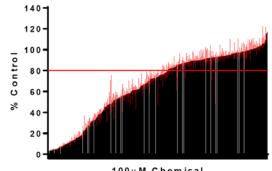
Thyroid Disruption: Why Do We Care?


Endocrine Disruptor Screening Program (EDSP): Current Approach to Hazard Identification

- EPA guideline screening batteries evaluate effects of chemical exposure on estrogen, androgen, and thyroid endocrine pathways
- Problems
 - Too reliant on animal tests
 - No *in vitro* tests for thyroid disruption
 - Possibly low human relevance to testing

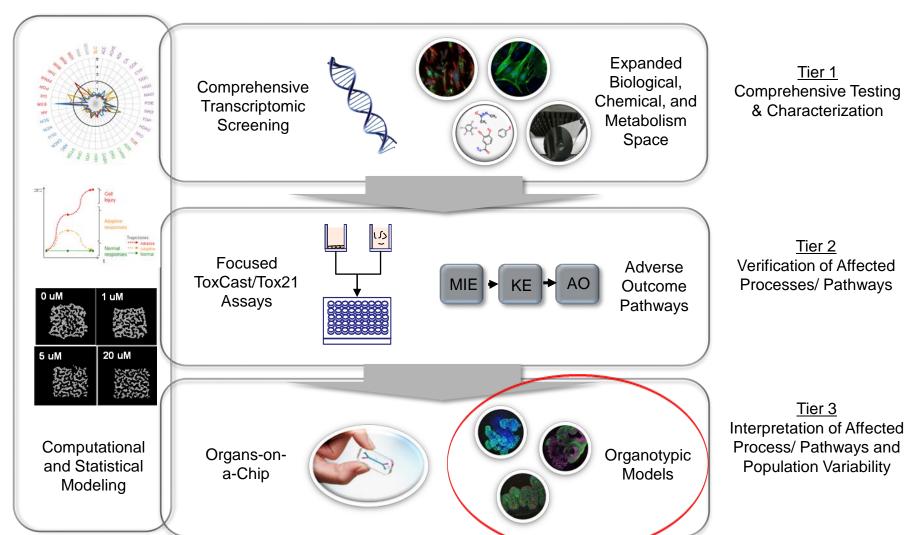

	Tier 1 Screening Battery												Tier 2 Testing Assays			
Endocrine Pathway	ER Binding	ERα Transcriptional Activation*	AR Binding	Aromatase Inhibition	Steroidogenesis*	Uterotrophic*	Hershberger*	Pubertal Male	Pubertal Female	Amphibian Metamorphosis*	Fish Short Term Reproduction*	Rat 2-gen/ Extended One-Gen*	Medaka Extended One- Gen Repro Test*	Amphibian Growth and Dev Assay*	Japanese Quail Two Gen Toxicity Test	
E+	-								-		-	-	-	-		
E-	-			-	-				-		-	-	-	-		
A+			-								-	-				
A-			-		-			-			-	-	-	-		
HPT Axis												-			•	


Thyroid Toxicity Testing: High Throughput Assays


TSH Receptor (TSHR) Screen

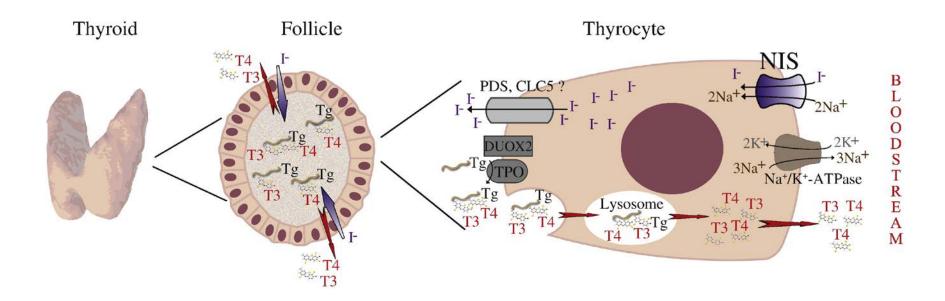
Thyroid Peroxidase (TPO) Screen

Sodium-Iodide Symporter (NIS) Screen


Paul-Friedman et al., 2016

National Center for Computational Toxicology

100μM Chemical



National Center for Computational Toxicology: A Strategy for Integrated Tiered Testing Approaches

Thyroid Hormone Synthesis: Cell Type and Architecture are Critical for Hormone Synthesis

Assay Concept: Develop an In Vitro Human Thyroid Microtissue Model for Evaluation of Thyroid Hormone Synthesis

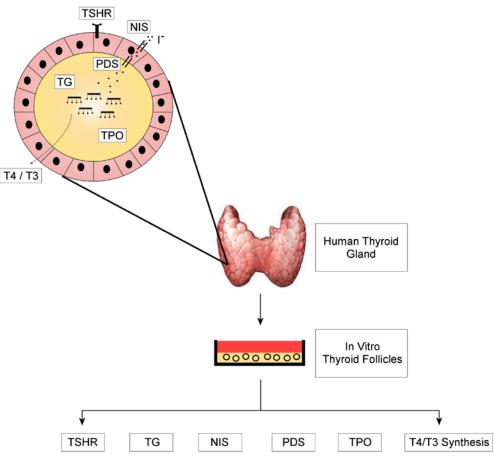
Tier 3 Assay

96-well medium throughput

Scope

 Functional evaluation of physiological thyroid hormone synthesis

Cell type:


Primary human thyroid epithelial

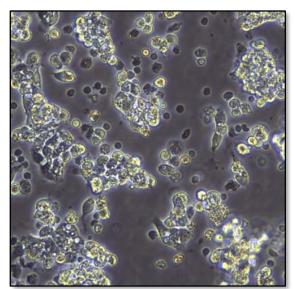
Features

- Human-derived cells
- Maintenance of biochemical and morphological features
- Integrated MOA
- Increased culture longevity
- Suitable for concentration-response screening

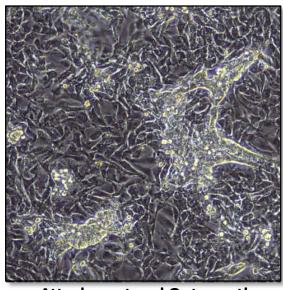
Assay readout

 Integrated assay endpoints for key events with initial focus on T4/T3 secretion as an "apical" outcome

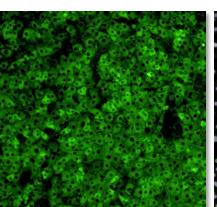
Integrated Mode-of-Action for Thyroid Hormone Synthesis

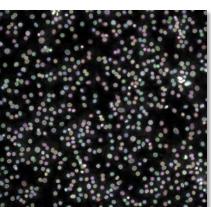


Thyroid Tissue Procurement and Cell Isolation

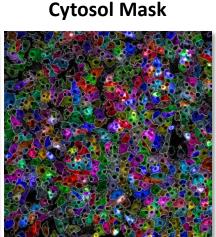

Key Considerations

- 1. Tissue clearance and stabilization
- 2. Tissue transport and timing
- 3. Tissue preparation
- 4. Digestion cocktail and timing
- 5. Viability enrichment
- 6. Cell counting, plating and passaging
- 7. Cell culture medium formulation
- 8. Live cell transport
- 9. Cryopreservation formulation
- 10. Quality control criteria

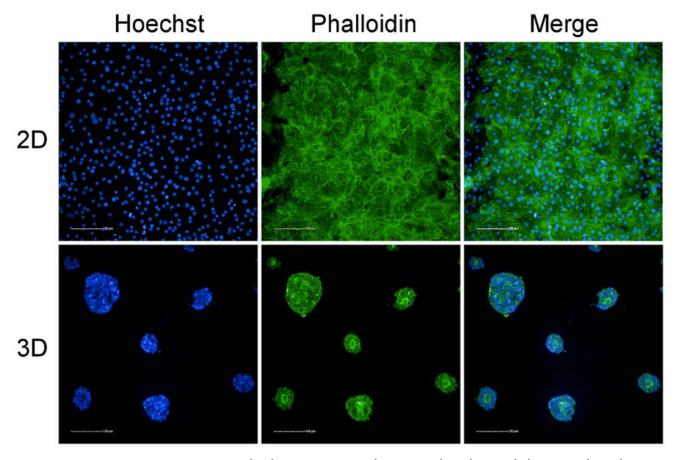

Attachment and Outgrowth



Thyroid Cell Characterization: QC for Population Purity

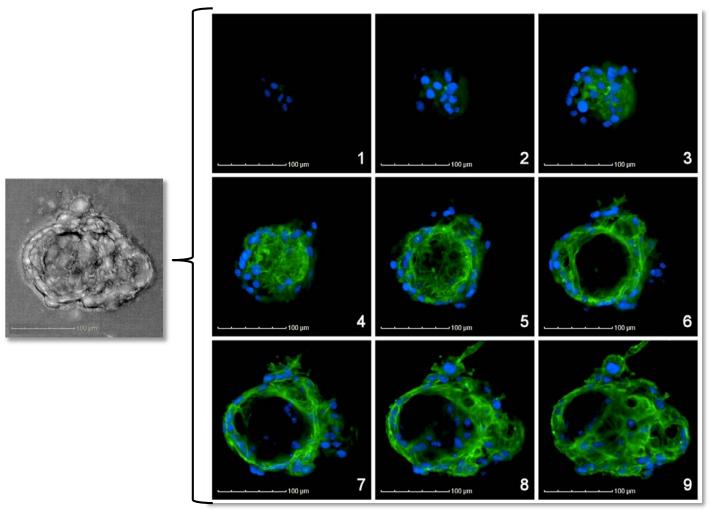

United States Environmental Protection Agency

Nuclear Mask

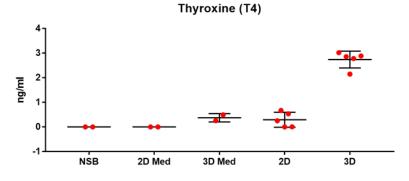

Thyroglobulin immunostaining in donor LNH 1722161 at passage 1

	IgG		IgG, kappa		NKX2-1			KRT7			TG				
	% POS	SD	N	% POS	SD	N	% POS	SD	N	% POS	SD	N	% POS	SD	N
NKX2-1	0.00	0.00	3	0.02	0.00	3	94.70	0.60	3	-	-	-	-	-	-
KRT7	1.00	0.01	3	1.00	0.06	3	-	-	-	94.23	0.42	3	-	-	-
TG	1.08	0.09	3	1.00	0.09	3	-	-	-	-	-	-	99.90	0.10	3

- Image Cytometry: Opera Phenix HCI used to acquire and analyze images
- Analysis: Total cell counts and % Positive for specified marker
 - NKX2-1: Nuclear transcription factor expressed in thyroid epithelial cells
 - KRT7: Cytokeratin enriched in thyroid epithelial cells
 - TG: Functional marker for thyroid-dependent gene expression

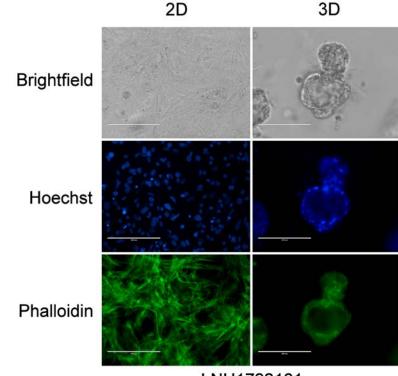

Thyroid Cell Characterization: 2D vs 3D

Donor LNH 1722161: High-density 2D and 3D sandwich model stained with Hoechst 33342 and Phalloidin-AF488 at Day 10 of culture.


Thyroid Microtissue Morphology: The "Bird's Nest"

Donor LNH 1722161: Confocal series of 3D sandwich model.

Hormone Analysis: More T4 and T3 is Secreted in 3D than 2D Culture

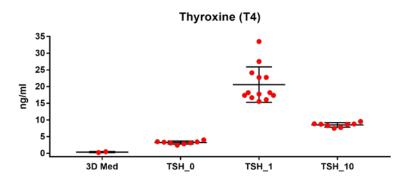

LNH1722161 (Day 9; 48 Hr h7H CS-FBS + 1 mIU/ml TSH)

Human Serum Total T4 Reference Range: 50-125 ng/ml

Triiodothyronine (T3)

LNH1722161 (Day 9; 48 Hr h7H CS-FBS + 1 mlU/ml TSH)

Human Serum Total T3 Reference Range: 0.80 - 1.8 ng/ml

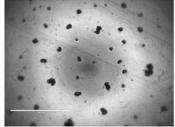

LNH1722161

		Т	4		Т3					
	Mean	SD	% CV	% TH	Mean	SD	% CV	% TH		
NSB	0	0	0	0	0	0	0	0		
2D Med	0	0	0	0	0.18	0.02	9.7	100		
3D Med	0.38	0.17	45.1	69	0.17	0.08	51.0	31		
2D Sup	0.29	0.30	104.2	38	0.48	0.14	29.0	62		
3D Sup	2.74	0.34	12.5	60	1.79	0.17	9.36	40		

Office of Research and Development
National Center for Computational Toxicology

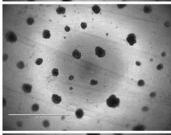
Hormone Analysis: TSH Modulates T4 and T3 Secretion in 3D Culture

LNH1811621 (Day 13; 48 Hr h7H CS-FBS)

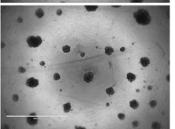

Human Serum Total T4 Reference Range: 50-125 ng/ml

Triiodothyronine (T3) Triiodothyronine (T3) 3D Med TSH_0 TSH_1 TSH_10

LNH1811621 (Day 13; 48 Hr h7H CS-FBS)


Human Serum Total T3 Reference Range: 0.8 - 1.8 ng/ml

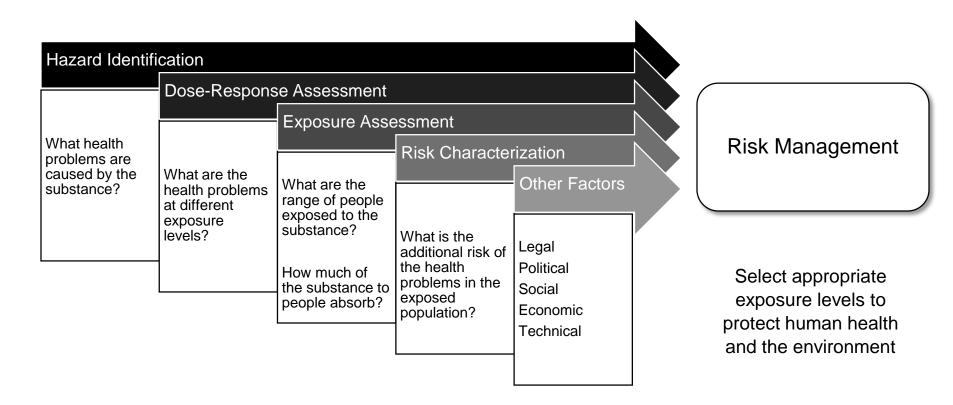
TSH Null



Brightfield

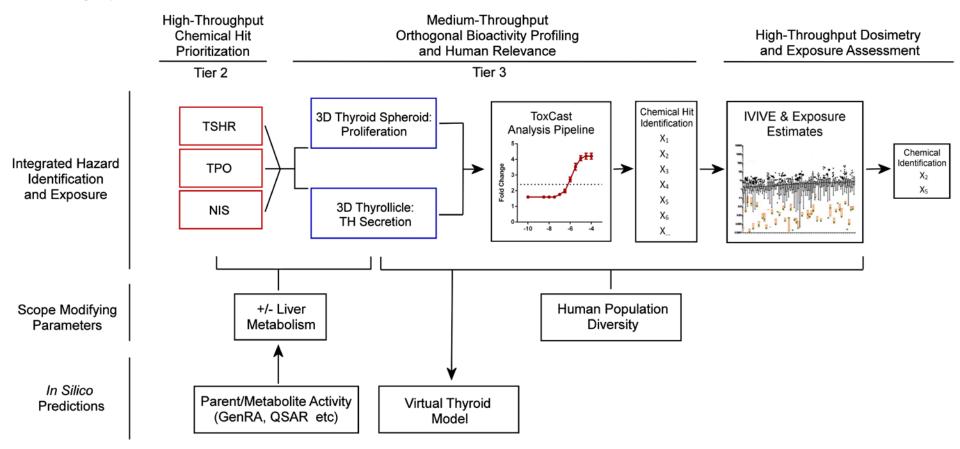
TSH 1 mIU/ml

TSH 10 mIU/ml


LNH1811621

		т	4		Т3						
	Mean	SD	% CV	% TH	Mean	SD	% CV	% TH			
3D Med	0.38	0.17	45.1	69	0.17	0.08	51.0	31			
TSH 0	3.23	0.47	14.59	86	0.51	0.28	55.40	14			
TSH 1	20.60	5.31	25.78	77	6.11	1.18	19.25	23			
TSH 10	8.53	0.65	7.68	66	4.35	0.75	17.32	34			

Office of Research and Development
National Center for Computational Toxicology


Phases of Chemical Risk Assessment and Management: Can an *In Vitro* Biologist Design Screening Workflows Useful for Risk Assessment?

- Risk assessment is a four step process that integrates hazard, dose-response, and exposure
- Risk management incorporates additional factors related to risk characterization to set appropriate response

In Vitro Screening for Thyroid Disruption: How Can Tier 3 Medium-Throughput Testing Fit In?

- Hazard Identification: Refinement of bioactivity hit calls and evaluation of variability in human populations
- **Toxicodynamics**: Increased comprehension of apical endpoint dosimetry and bioactivity/exposure margins
- *In Silico* **Predictions**: Data generation to enhance prediction of parent/metabolite activity and construct virtual simulations of thyroid perturbation