

Use of a Defined Approach for Identifying Estrogen Receptor Active Chemicals

Maureen R. Gwinn, PhD DABT

Office of Research and Development U.S. Environmental Protection Agency Washington, DC

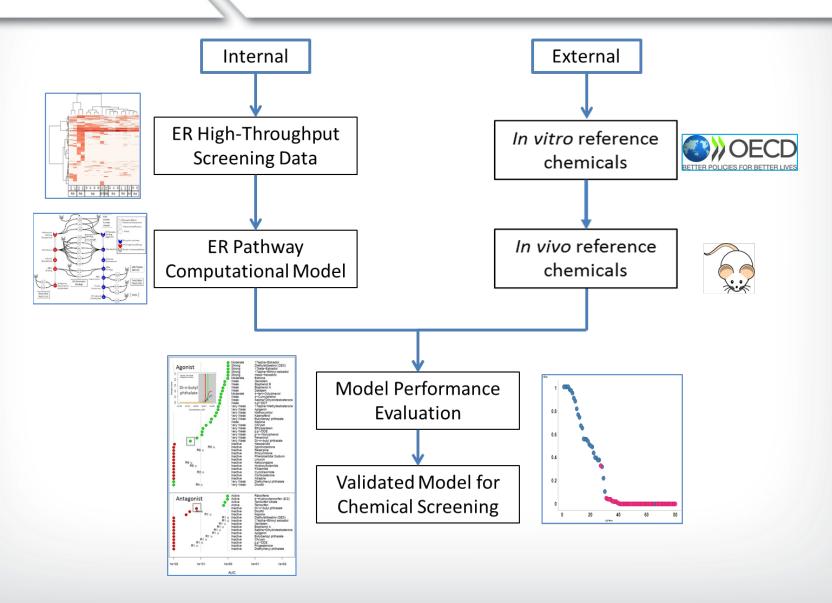
The views of this presentation are those of the authors and do not necessarily reflect the views of the US Environmental Protection Agency.

Endocrine Disrupting Chemicals (EDCs)

- Endocrine Disrupting Chemicals (EDCs)
 - a diverse set of substances that have the potential to interfere with normal endocrine function (e.g., estrogen receptor activity).
 - exposure may lead to adverse outcomes (e.g., impaired reproduction)
 - evaluated by regulatory agencies in many countries using internationally harmonised tools (e.g., IATA)

Integrated Approach to Testing and Assessment (IATA)

- Integrated Approach to Testing and Assessment (IATA)
 - a framework for hazard identification, hazard characterisation and/or safety assessment of a chemical or group of chemicals
 - based on multiple information sources
 - integrates and weights all relevant existing evidence and guides the targeted generation of new data where required
 - informs regulatory decision-making regarding potential hazard and/or risk
 - may include Defined Approaches(DA)


The ER Pathway Model Defined Approach

Purpose:

 Use an integrated battery of in vitro high-throughput screening assays (4 – 18 assays) and computational model of ER pathway activity as a case study in the development, performance-based evaluation, and regulatory application of a defined approach for endocrine disruption.

Overall Approach

Curation of Reference Chemicals

In Vitro Reference Chemicals

- Identified by ICCVAM and OECD using multiple validated low throughput in vitro ER assays
- Forty chemicals total (28 agonists and 12 inactive)

In Vivo Reference Chemicals

- Identified by NICEATM from scientific literature search for rodent uterotrophic data on 1800 ToxCast chemicals
- Data extracted and data quality reviewed based on minimum guideline-like study criteria
- Forty-three chemicals total (30 active, 13 inactive)

Curation of In Vivo Reference Chemicals

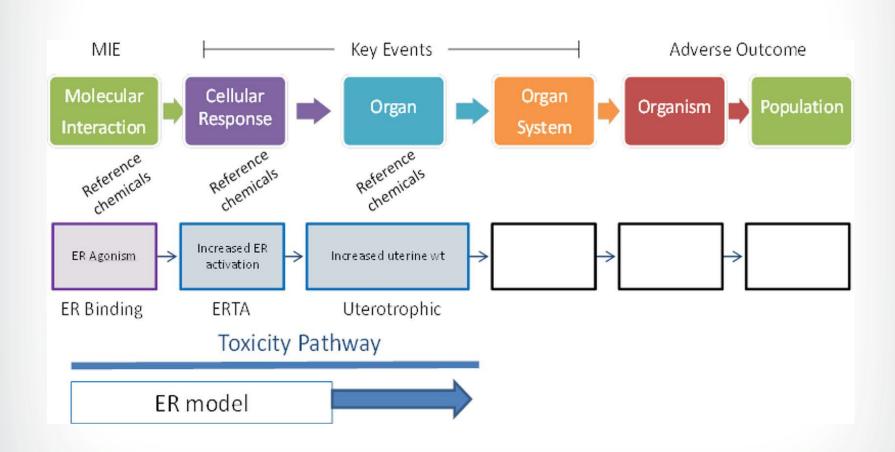
Literature Searches: 1800 Chemicals

High-Level Filter

Data Review: 700 Papers, 42 Descriptors, x2

6 Minimum Criteria

Uterotrophic Database
98 Chemicals
442 GL uterotrophic bioassays

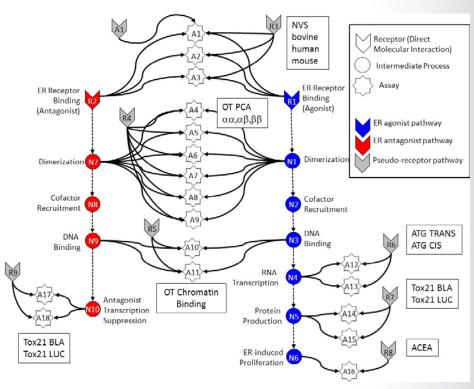

"Guideline-Like" (GL)

> Selection Criteria

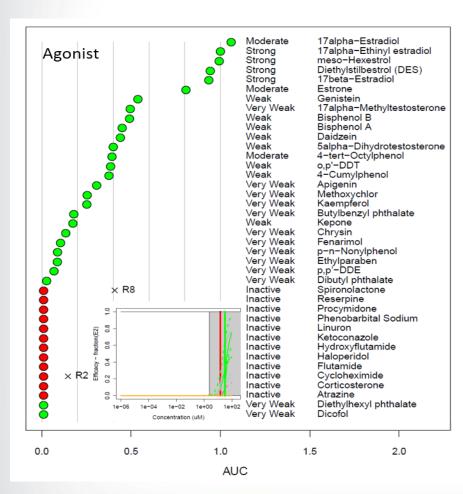
In Vivo ER Reference Chemicals 30 Active, 13 Inactive

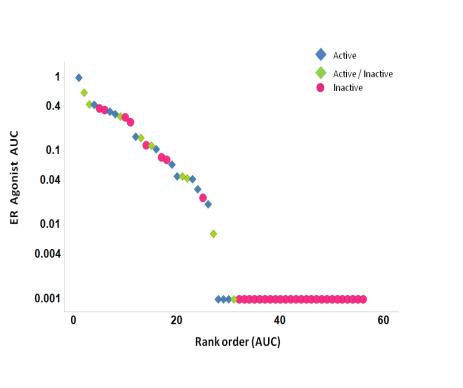
ER Pathway

In Vitro Assays


Model

assay ID	ass ay	biological process	detection	organis	tissue	cell line
A1	NVS_NR_bER	receptor binding	radioligand	bovine	uterus	NA
A2	NVS_NR_hER	receptor binding	radioligand	hum an	NA	NA
A3	NVS_NR_mERa	receptor binding	radioligand	mouse	NA	NA
A4	OT_ER_ERaERa_0480	protein	fluorescence	hum an	kidney	HEK293
A5	OT_ER_ERaERa_1440	protein	fluorescence	hum an	kidney	HEK293
A6	OT_ER_ER ₂ ERb_0480	protein	fluorescence	hum an	kidney	HEK293
A7	OT_ER_ERaERb_1440	protein	fluorescence	hum an	kidney	HEK293
A8	OT_ER_ERbERb_0480	protein	fluorescence	hum an	kidney	HEK293
A9	OT_ER_ERbERb_1440	protein	fluorescence	hum an	kidney	HEK293
A10	OT_ERa_EREGFP_0120	protein production	fluorescence	hum an	cervix	HeLa
A11	OT_ERa_EREGFP_0480	protein production	fluorescence	hum an	cervix	HeLa
A12	ATG_ERa_TRANS_up	mRNA induction	fluorescence	hum an	liver	HepG2
A13	ATG_ERE_CIS_up	mRNA induction	fluorescence	hum an	liver	HepG2
A14	Tox21_ERa_BLA_Agonist_	protein production	fluorescence	hum an	kidney	HEK293
A15	Tox21_ERa_LUC_BG1_Ag	protein production	bioluminescence	hum an	ovary	BG1
A16	ACEA_T47D_80 h_Positive	cell proliferation	electrical	hum an	breast	T47D
A17	Tox21_ERa_BLA_Antagoni	protein production	fluorescence	hum an	kidney	HEK293
A18	Tox21_ERa_LUC_BG1_An	protein production	bioluminescence	hum an	ovary	BG1

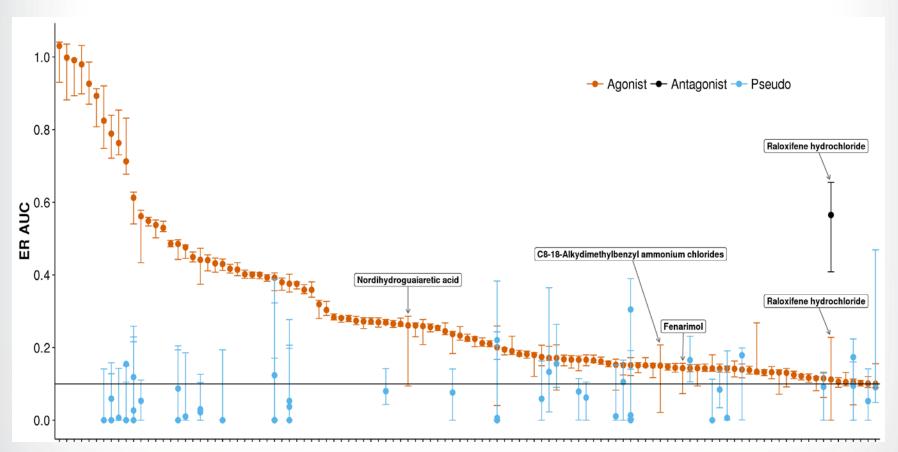

In Vitro Estrogen Receptor Model


- Use multiple assays per pathway
 - Different technologies
 - Different points in pathway
- No assay is perfect
 - Assay Interference
 - Noise
- Use model to integrate assays
- Model creates a composite doseresponse curve for each chemical to summarize results from all assays
 - Used to calculate performance metrics for chemicals with any indication of ToxCast ER agonist bioactivity (AUC > 0.1), inconclusive (0 < AUC < 0.1) or no activity (AUC = 0).

Characterizing Performance of the Defined Approach

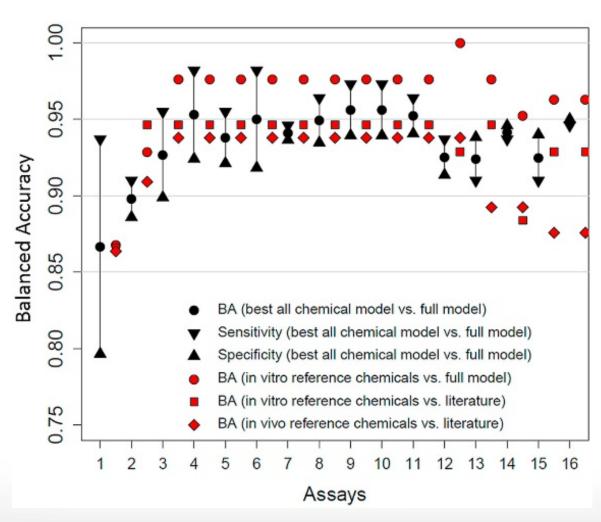
Characterizing Performance of the Defined Approach

In Vitro Reference Chemicals*


True Positive	26 (25)		
True Negative	11 (11)		
False Positive	I (0)		
False Negative	2 (2)		
Accuracy	0.93 (0.95)		
Sensitivity	0.93 (0.93)		

In Vivo Reference Chemicals*

True Positive	29 (29)		
True Negative	8 (8)		
False Positive	5 (1)		
False Negative	I (I)		
Accuracy	0.86 (0.95)		
Sensitivity	0.97 (0.97)		
Specificity	0.67 (0.89)		



Evaluation of Uncertainty

Equivalent Performance Observed for a Subset of In Vitro Assays

Conclusions

- Summarized the proposed ER Pathway Model Defined Approach
- A DA can provide predictable outcomes that can either be used on their own or considered together with other sources of information in the context of an IATA.
- DA described here has been demonstrated to predict ER bioactivity of both in vitro and in vivo reference chemical with accuracy ranging from 84 – 93%.
- The results of the analysis of this DA gives scientific support for the potential use in regulatory decisions related to estrogen bioactivity.

Acknowledgements

US Environmental Protection Agency

- Richard Judson
- Keith Houck
- Stacie Flood
- Eric D Watt
- Katie Paul-Friedman

- Kevin Crofton
- Russell S Thomas
- Anna Lowit
- Stan Barone
- Patience Browne (currently OECD)

US National Toxicology Program

- Nicole Kleinstreuer
- Warren Casey