The EPA Comptox Chemistry Dashboard: A Web-Based Data Integration Hub for Environmental Chemistry and Toxicology Data

Antony Williams

U.S. Environmental Protection Agency, RTP, NC

This work was reviewed by the U.S. EPA and approved for presentation but does not necessarily reflect official Agency policy.

February 13th 2018 Research Triangle Institute, RTP, NC

National Center for Computational Toxicology

 National Center for Computational Toxicology established in 2005 to integrate:

mental Protection

- High-throughput and high-content technologies
- Modern molecular biology
- Data mining and statistical modeling
- Computational biology and chemistry
- Currently staffed by ~60 employees as part of EPA's Office of Research and Development
- Home of ToxCast & ExpoCast research efforts
- Key partner in U.S. Tox21 federal consortium
- Multiple cross-division collaborations (e.g. NERL, OPP, OPPT)

The NCCT Team

- Our team is broad in skills
 - Biologists, chemists and toxicologists
 - Bioinformaticians and cheminformaticians modelers (QSAR, Deep Learning), text miners
 - Information technology team, software developers
 - A large IT support team for production applications (National Computing Center)

The need for data and derivative models and algorithms

- NCCT outputs: include a lot of data, models, algorithms and software applications
- We produce Open Data we want people to interrogate it, learn from it, develop understanding

Toxicity Forecasting

Advancing the Next Generation of Chemical Evaluation

EPA needs rapid and efficient methods to prioritize, screen and evaluate thousands of chemicals. EPA's Toxicity Forecaster (ToxCast) generates data and predictive models on thousands of chemicals of interest to the EPA. ToxCast uses high-throughput screening methods and computational toxicology approaches to rank and prioritize chemicals. In fact, EPA's Endocrine Disruption

Screening Program (EDSP) is working to use ToxCast to rank and prioritize chemicals.

- ToxCast has data on over 1,800 chemicals from a broad range of sources including industrial and consumer products, food additives, and potentially "green" chemicals that could be safer alternatives to existing chemicals.
- ToxCast screens chemicals in over 700 high-throughput assays that cover a range of high-

Downloadable Computational Toxicology Data

EPA's computational toxicology research efforts evaluate the potential health effects of thousands of chemicals. The process of evaluating potential health effects involves generating data that investigates the potential harm, or hazard of a chemical, the degree of exposure to chemicals as well as the unique chemical characteristics.

As part of EPA's commitment to share data, all of the computational toxicology data is publicly available for anyone to access and use.

High-throughput Screening Data

EPA researchers use rapid chemical screening (called high-throughput screening assays) to limit the number of laboratory animal tests while quickly and efficiently testing thousands of chemicals for potential health effects.

• ToxCast Data: High-throughput screening data on thousands of chemicals.

Rapid Exposure and Dose Data

EPA researchers develop and use rapid exposure estimates to predict potential exposure for thousands of chemicals.

 <u>High-throughput toxicokinetics data</u>: It is important to link the external dose of a chemical to an internal blood or tissue conceptration, this process is called toxicokinetics. EDA researchers measure the critical factors that determine the distribution.

Underpinning with chemicals

Approximately 15 Years of Data... Growing with daily curation

QC Levels

DSSTox_High:	Hand curated and validated
DSSTox_Low:	Hand curated and confirmed using multiple public sources
Public_High:	Extracted from EPA SRS and confirmed to have no conflicts in ChemID and PubChe
Public_Medium:	Extracted from ChemID and confirmed to have no conflicts in PubChem
Public_Low:	Extracted from ACToR or PubChem
Public_Untrusted:	Postulated, but found to have conflicts in public sources

Chemical representation levels supporting data integration

nvironmental Protection

Agency

Chemical representation levels supporting data integration

Integrating in vitro and in vivo data

≎FP

United States Environmental Protection

Agency

TEN YEARS of Assay Measurements: ToxCast & Tox21

Set	Chemicals	Assays	Endpoints	Completion
ToxCast Phase I	293	~600	~700	2011
ToxCast Phase II	767	~600	~700	03/2013
ToxCast E1K	800	~50	~120	03/2013
ToxCast Phase III	~900	~300	~300	In progress
Tox21	~9000	~80	~150	In progress

Pesticides, antimicrobials, food additives, green alternatives, HPV, MPV, endocrine reference cmpds, tox reference cmpds, NTP in vivo, FDA GRAS, FDA PAFA, EDSP, water contaminants, exposure data, industrial, failed drugs, marketed drugs, fragrances, flame retardants, etc.

Chemicals

~800

Assays

FD/A

GC

NCATS

 $\mathbf{0}$

NIEHS

NTP

Adding Product Use and Exposure

≎FP

United States Invironmental Protection

Agency

High Throughput Measurement to Identify **Exposure**

Rapid Chemical Exposure and Dose Research

EPA is responsible for ensuring the safety of thousands of chemicals. Quantitative exposure data are available for only a small fraction of registered chemicals. This type of exposure data is needed to thoroughly evaluate chemicals for potential risks to humans, wildlife and ecosystems. EPA is developing innovative methods to develop exposure estimates for thousands of chemicals to better protect human health and the environment. These innovative methods are called rapid exposure and dose assessments.

Rapid Exposure Predictions

Rapid, also called high-throughput, exposure predictions or ExpoCast provide rapid exposure estimates for thousands of chemicals. ExpoCast quickly and efficiently looks at multiple routes of exposure to provide exposure estimates. ExpoCast uses and enhances two well-known exposure models to estimate chemical exposure.

- > Farfield Exposure Models
- > Nearfield Exposure Models

Evaluating High-throughput Exposure Predictions

EDA is currently avaluating the effectiveness of high throughput eveneurs models.

Pictured Above: Farfield Exposure Examples

roomental Protection

Building Models from the data

Multiple Dashboards Delivered

<image>Expression of the series of t

Toxcast Dashboard https://actor.epa.gov/dashboard/

 Access and Interrogate chemical screening data from ToxCast and the Tox21 collaboration

	SEPA iCSS ToxCast Dashboard	Home Export
Choose a view: O Assays Chemicals	Database: prod_dashboard_v2 Chemical Summary Assay Summary Bioactivity Help Dashboard: v2 Start Tutorial - Chemical Tab Start Tutorial - Chemical Tab	
Chemicals - 1 Q Q 80-05 Chemical Name. CASRN Chemical Name 80-05-7 Bisphenol A	Assays - 1091 Q Q Q Assay Endpoint Name. Gene Symbol. Gene Symbol. Save Chart Preview Chart Actives - MC Only ✓ All Tested Active endpoints for 80-05-7 9.7 # ACEA_T47D_80ry_Negative Active endpoints for 80-05-7 9.7 # ACEA_T47D_80ry_Negative Active endpoints for 80-05-7 # APR_Hep32_CellCycleArrest_1h_up 7.8 # APR_Hep32_CellCycleArrest_1h_up 95.8 # APR_Hep32_MicrotubuleCSK_1h_up 95.8 # APR_Hep32_MicrotubuleCSK_1h_up 95.8 # APR_Hep32_MicrotubuleCSK_1h_up 95.8 # APR_Hep32_MicrotubuleCSK_1h_up 93.9 # APR_Hep32_MitoMass_1h_up 93.9	background measure cell adhesion molect cell oyole cell morphology cyp cytokine dna binding esterase gpor
Filters - 0 List Field V	APR_HepG2_MitoMembPot_th_dn APR_HepG2_MitoMembPot_th_up APR_HepG2_MitoticArrest_th_dn APR_HepG2_MitoticArrest_th_dn APR_HepG2_MitoticArrest_th_un APR_H	growth factor hydrolase ion channel kinase lyase
	4	•

What we have learned...

- Data curation, standardization and versioning is essential
- Prototype application development suffices for research projects
- Production apps need managed processes
- ODOSOS (Open Data, Open Source and Open Standards) endows many benefits
- We are building: CompTox Chemistry Dashboard

Comptox Chemistry Dashboard https://comptox.epa.gov

Comptox Chemistry Dashboard https://comptox.epa.gov

Chemical Page

N-Methyl-2-pyrrolidone 872-50-4 | DTXSID6020856

Searched by Synonym from Valid Source: Found 1 result for 'N-METHYLPYRROLIDONE'.

Wikipedia	
Intrinsic Properties	
Molecular Formula: C5H9NO Average Mass: 99.133 g/mol Monoisotopic Mass: 99.068414 g/mol	Q Find All Chemicals
Structural Identifiers	
Related Compounds	
Presence in Lists	
Record Information	

	Chemical Properties	Env. Fate/Transport	Toxicity Values (Beta)	ADME (Beta)	Exposure	Bioassays	Similar Molecules (Beta)	Synonyms	Literature	External Links
--	---------------------	---------------------	------------------------	-------------	----------	-----------	--------------------------	----------	------------	----------------

Chemical Properties

Summary	Download as: TSV Ex	el SDF						
LogP: Octanol-Water	Property	Av	rerage	Me	dian		Range	Unit
Water Solubility		Experimental	Predicted	Experimental	Predicted	Experimental	Predicted	
Density	LogP: Octanol-Water	-0.380 (1)	-0.329 (5)	-0.380	-0.329	-0.380	-0.494 to -0.110	-
	Water Solubility	10.1 (1)	6.68 (4)	10.1	6.68	10.1	1.48 to 12.8	mol/L
Flash Point	Density	-	1.02 (2)	-	1.02	-	1.01 to 1.03	g/cm^3
Melting Point	Flash Point	-	75.7 (2)	-	75.7	-	65.2 to 86.1	°C
	Melting Point	-23.8 (8)	1.32e-01 (4)	-24.0	1.32e-01	-24.0 to -23.0	-10.2 to 25.9	°C
Boiling Point	Boiling Point	203 (6)	199 (5)	204	199	202 to 204	191 to 202	°C
Surface Tension	Surface Tension	-	33.8 (1)	-	33.8	-	-	dyn/cm
	Thermal Conductivity	-	158 (1)	-	158	-		mW/(m*K)
Thermal Conductivity	Vapor Pressure	3.45e-01 (1)	5.21e-01 (4)	3.45e-01	5.21e-01	3.45e-01	1.71e-01 to 9.99e-01	mmHg
Vapor Pressure	Viscosity	-	3.61 (1)	-	3.61	-	•	cP
	LogKoa: Octanol-Air	-	3.84 (1)	-	3.84	-		-
Viscosity	Henry's Law	3.20e-09 (1)	9.15e-09 (1)	3.20e-09	9.15e-09	-	•	atm-m3/mole
LogKoa: Octanol-Air	Index of Refraction	-	1.47 (1)	-	1.47	-	•	-
			60 0 (A)					**

ADME (Beta)

Exposure Bioassays

Similar Molecules (Beta)

Synonyms

Literature

External Links

Available Properties

- Solubility
- Melting Point
- Boiling Point
- LogP (Octanol-water partition coefficient)
- Atmospheric Hydroxylation Rate
- LogBCF (Bioconcentration Factor)
- Biodegradation Half-life
- Henry's Law Constant
- Fish Biotransformation Half-life
- LogKOA (Octanol/Air Partition Coefficient)
- LogKOC (Soil Adsorption Coefficient)
- Vapor Pressure
- Data and models are updated ~90 days

Developing "NCCT Models"

- Our approach to modeling:
 - Obtain high quality training sets
 - Apply appropriate modeling approaches
 - Validate performance of models
 - Define the applicability domain and model limitations
 - Use models to predict properties across our full datasets
 - Release as Open Data and Open Models

Multiple Prediction Algorithms **Transparency** is Important

Summary			LogP: Octanol-Water								
LogP: Octanol-Water	•					Average		Median	Range		
		Experim	ental			-0.380 (1)		-0.380	-0.380		
Water Solubility		Predicte	d			-0.329 (5)		-0.329	-0.494 to -0.110		
Density	Download as:	TSV	Evcel	SDE							
Flash Point	Download as. ISV Excel SDF										
Malling Daint							Experim	ental			
				Result							
Boiling Point	PhysPropNCC	ст				-0.380					
Surface Tension							Predic	ted			
Thermal Conductivity	Source					Result	Calculatio	Calculation Details			
Vapor Pressure	EPISUITE				-0.110	Not Availa	Not Available				
	NICEATM					-0.494	Not Availa	Not Available			
Viscosity	ACD/Labs Consensus					-0.345	Not Availa	Not Available		Not Available	
LogKoa: Octanol-Air	ACD/Labs					-0.398	Not Availa	Not Available		Not Available	
Henry's Law	OPERA					-0.300	OPERA	Model Report		Available	

OPERA Models: LogP: Octanol-Water

N-Methyl-2-pyrrolidone

872-50-4 | DTXSID6020856

Model Results
Predicted value: -0.300
Global applicability domain: Inside 0
Local applicability domain index: 0.88 😧
Confidence level: 0.81 Ø

Model Performance

	Weighted KNN model							
5-fold CV (75%	%)	Training (75	%)	Test (25%)				
Q2	RMSE	R2	R2 RMSE		RMSE			
0.85	0.69	0.88	0.67	0.88	0.78			

QSAR Modeling Reporting Format

L LOG	gr (0000002).pdf - Adobe Acrobat Pro					e x
File I	dit View Window Help					*
	Create 🗸 🛛 🔁 🖨 🖂 🖗 🖗 🌮 🎲 🕼 🕼 🖏 🕏			Customiz	ze 🔻	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	1 / 11] 125% •]		Tools	Fill & Sign	Com	ment
- D	Bookmarks					^
	 □			_		E
		OMRF identifier (JRC Inventory): To be entered by JRC		_		
B	ILQSAR identifier	OMRF Title: LogP: Octanol-water partition		_		
	1.1.QSAK Identifier (Itile)	coefficient prediction from the		_		
LGB	1.3 Software coding the model	NCCT Models Suite.				
	2 General information	Printing Date: Apr 25, 2016		_		
	21.Date of OMRF					
		1.QSAR identifier				
		11 OSAP identifier (title)		_		
	2.4.QMRF update(s)					
	2.5.Model developer(s) and contact details			_		
	2.6.Date of model development and/or publication	coefficient prediction from the		_		
	2.7.Reference(s) to main scientific papers and/or software	NCCT_Models Suite.				
	package	1.2.Other related models:				
	2.8.Availability of information about the model	No related models		_		
	2.9.Availability of another QMRF for exactly the same model 2.9.Availability of another QMRF for exactly the same model	1.3.Software coding the model:				
	3.Defining the endpoint - OECD Principle 1	NCCT models V1.02		_		
	3.2 Endpoint	Suite of OSAR models to predict physico-chemical properties and environmental fate of organic				
	3.3 Comment on endpoint			_		
	34.Endpoint units					
	III 3.5.Dependent variable	Kamei Mansoun (mansouri kamei @epa.gov; mansouri kamei @gmaii.com);		_		
		https://comptox.epa.gov/dashboard/				
	3.7.Endpoint data quality and variability					
	4.Defining the algorithm - OECD Principle 2					
	4.1.Type of model	PaDEL descriptors V2.21				
	4.2.Explicit algorithm	Open source software to calculate molecular descriptors and fingerprints.				
	4.3.Descriptors in the model	Chun Wei Yap (phayapc@nus.edu.sq)				
	4.4.Descriptor selection	http://padel.nus.edu.sg/software/padeldescriptor				
	4.5.Algorithm and descriptor generation	· · · · · · · · · · · · · · · · · · ·				
	4.6.Software name and version for descriptor generation					
	4.7.Chemicals/Descriptors ratio					
	5.Defining the applicability domain - OECD Principle 3	MATLAB				
	5.1.Description of the applicability domain of the model	MATrix LABoratory is a multi-paradigm numerical computing environment and fourth-generation				-

Consuming and Curating Public Data

Public data should be curated prior to modeling

Environmental Protection

Agency

Workflow Details and Data

lournal

SAR and QSAR in Environmental Research >

Articles

Volume 27, 2016 - Issue 11: 17th International Conference on QSAR in Environmental and Health Sciences (QSAR 2016) - Part II. Guest Editors: C.G. Barber and G.J. Myatt

Enter keywords, authors, DOI etc.

258 Views 4 CrossRef citations 16 Altmetric

An automated curation procedure for addressing chemical errors and inconsistencies in public datasets used in QSAR modelling^{\$}

Check for updates

K. Mansouri, C. M. Grulke, A. M. Richard, R. S. Judson & A. J. Williams 🔤 Pages 911-937 | Received 03 Sep 2016, Accepted 24 Oct 2016, Published online: 25 Nov 2016

http://dx.doi.org/10.1080/1062936X.2016.1253611 66 Download citation

OPERA Models: https://github.com/kmansouri/OPERA

OPERA on GitHub

This repository Search	Pull	requests Issues	Marketplace Gis	t	_ ++ ™
kmansouri / OPERA				O Unwatch ▼ 1	TUnstar 1 Y Fork
<>Code (!) Issues 0 ₿ ĵĵ	Pull requests 0	ojects 0 📰 Wik	ii Insights 🗸		
ommand line application prov hysicochemical properties and	/iding QSAR models pre d environmental fate en	dictions as well as dpoints.	applicability do	main and accuracy a	ssessment for
36 commits	u 1 branch	🛇 0 releas	ies	1 contributor	MIT ک <u>ڑ</u> ک
Branch: master New pull reques	it		Creat	e new file Upload files	Find file Clone or download
🎗 kmansouri committed on GitHu	b OPERA 1.2 Windows				Latest commit 731deaf on May 1
) Icon.png		OPERA 1.2 icon			3 months ag
		Initial commit			9 months ag
E Logo.png		Added logo and ico	n		9 months ag
Matlab_Source_code.tar.gz		OPERA 1.2 MATLAB	source code		3 months ag
OPERA_CLi_Linux.tar.gz		OPERA 1.2 Linux			3 months ag
OPERA CPP library.tar.gz					3 months ag
		OPERA 1.2 C++ LIDI	ary		5 months ug

https://github.com/kmansouri/OPERA.git

Toxicity Values

Bioavailability Metric	Download a	as: TSV	Excel								
Exposure Limit					Study	Exposure	Study				
Point Of Departure	Туре	Subtype 🎈	Value 🌵	Units 🌖	Туре	Route	Duration	Species 🔷	Media 🌖	Details	Source
Regulatory Toxicity Value	TD50	-	20.7	mM/kg-day	-	-	-	-	-	DSSTox C	ACToR
	TD50	-	2050	mg/kg-day	-	-	-	-		DSSTox C	ACToR
Effect Level	LEL	systemic	619	mg/kg-day	subchronic	oral	subchronic	mouse	-	Study ID:	ToxRefDB
Misc Hazard Information	NEL	systemic	277	mg/kg-day	subchronic	oral	subchronic	mouse	-	Study ID:	ToxRefDB
Companies Laws	LEL	systemic	25.0	mg/kg-day	subchronic	oral	subchronic	dog	-	Study ID:	ToxRefDB
Screening Level	NEL	systemic	25.0	mg/kg-day	subchronic	oral	subchronic	dog	-	Study ID:	ToxRefDB
Uncertainty Factor	LEL	systemic	173	mg/kg-day	chronic	oral	chronic	mouse	-	Study ID:	ToxRefDB
	NEL	systemic	115	mg/kg-day	chronic	oral	chronic	mouse	-	Study ID:	ToxRefDB
	LEL	systemic	878	mg/kg-day	chronic	oral	chronic	rat	-	Study ID:	ToxRefDB
	NEL	systemic	283	mg/kg-day	chronic	oral	chronic	rat	-	Study ID:	ToxRefDB
	LEL	systemic	1230	mg/kg-day	subacute	oral	subacute	rat	-	Study ID:	ToxRefDB
	NEL	systemic	493	mg/kg-day	subacute	oral	subacute	rat	-	Study ID:	ToxRefDB
	LEL	systemic	2130	mg/kg-day	subacute	oral	subacute	mouse	-	Study ID:	ToxRefDB
	NEL	systemic	920	mg/kg-day	subacute	oral	subacute	mouse	-	Study ID:	ToxRefDB

Chemical Properties

ADME (Beta)

Exposure Bioassays

Similar Molecules (Beta)

Synonyms Literature

External Links

20

Product Composition Details

Chemical Properties

Env. Fate/Transport Toxicity Values (Beta)

) ADME (Beta)

Exposure Bioassays

Similar Molecules (Beta)

Beta) Synonyms

Literature

External Links

ToxCast and Tox21 Bioassays

Env. Fate/Transport

Synonyms

External Links

United States Environmental Protection

Agency

ToxCast and Tox21 Bioassays

Download as:	TSV	Excel	Show:	Inactive	Background				
Assay Name				Hit Call	Тор	Scaled Top	AC50	log AC50↓	Intended Target Family
APR_Hepat_C	CellLoss_	48hr_dn		ACTIVE	1.41	1.41	120	2.08	cell cycle
APR_HepG2_	MitoMass	s_24h_dn		ACTIVE	0.874	1.76	109	2.04	cell morphology
APR_HepG2_	Oxidative	Stress_24	h_up	ACTIVE	1.20	1.47	110	2.04	cell cycle
APR_Hepat_D	ONADama	age_48hr_	up	ACTIVE	1.84	1.14	107	2.03	cell morphology
APR_HepG2_	CellLoss	_24h_dn		ACTIVE	1.20	1.81	106	2.02	cell cycle
APR_HepG2_	Oxidative	Stress_72	h_up?	ACTIVE	1.80	1.65	106	2.02	cell cycle
ATG_HSE_CIS	S_up			ACTIVE	1.59	3.38	102	2.01	dna binding

Comments

Names and Identifiers

Found 40 synonyms										
	Legend:	Valid Synonyms	Good Synonyms	Other Synonyms	Copy all Synonyms					
N-Methyl-2-pyrrolidone										
1-Methylpyrrolidin-2-one										
2-Pyrrolidinone, 1-methyl-										
872-50-4 Active CA3-RN										
2-Pyrrolidinone, 1-methyl-										
1-Methyl-2-pyrrolidinone										
1-Methyl-2-pyrrolidon										
1-Methyl-2-pyrrolidone										
1-Methyl-5-pyrrolidinone										
1-Methylazacyclopentan-2-one										
1-Methylpyrrolidone										
1-metil-2-pirrolidona										
2-Pyrolidinone, 1-methyl-										
2-Pyrrolidone, 1-methyl-										
Microposit 2001										
M-Pyrol										

Chemical Properties

ADME (Beta)

Exposure Bioassays Similar Molecules (Beta)

Synonyms Literature

External Links

Integrated Literature Searching

Google Scholar	Select Term:	Hazard AND RfD OR reference dose
PubMed Abstract S	Google	"RfD OR reference dose" AND "Hazard" AND "872-50-4" OR "N-Methyl-2-p) -
PubChem Articles	Scholar	About 22 results (0.05 sec)
Publichem Patents	Articles Case law My library	Solvent Substitution: An Analysis of Comprehensive Hazard Screening Indices M Debia, D Bégin, M Gérin - Journal of occupational and, 2011 - oeh.tandfonline.com Reliability and weighting factors were not used. Armenti and Moure-Eraso(22) used the same FHS index, using six hazard categories, to compare replacement options 872-50-4 N-Methyl-2-pyrrolidone 45.4 13 1.46E-03 11 4.55 6 20 4 Related articles All 4 versions Cite Save
	Any time Since 2017 Since 2016 Since 2013 Custom range	Effects of 'inactive'ingredients on bees <u>CA Mullin</u> - Current Opinion in Insect Science, 2015 - Elsevier tallow amines, organosilicone ethoxylates and co-solvents such as N-methyl-2-pyrrolidone (NMP) [7 of tools to environmentally monitor residues and determine their relative hazard to bees Defining a benchmark or reference dose , particularly for bee viruses [51], for what can Cited by 9 Related articles All 2 versions Web of Science: 6 Cite Save More
	Sort by relevance Sort by date	Biological monitoring: exquisite research probes, risk assessment, and routine exposure measurement WM Draper - Analytical chemistry, 2001 - ACS Publications ADVERTISEMENT
	 ✓ include patents ✓ include citations 	Cited by 19 Related articles All 5 versions Web of Science: 10 Cite Save Evolution of chemical-specific adjustment factors (CSAF) based on recent
	Create alert	VS Bhat, ME Meek, M Valcke, C English Critical Reviews in, 2017 - Taylor & Francis As shown in the right side of Figure 2, uncertainty is taken into consideration at all tiers of hazard assessment For decades, developing "safe doses" such as the oral reference dose (RfD), the inhaled reference concentration (RfC) or the acceptable or tolerable daily intake (ADI All 3 versions Cite Save

Chemical Properties Env. Fate/Transport Toxicity Values (Beta) ADME (Beta) Exposure Bioassays Similar Molecules (Beta) Synonyms Literature External Links

Integrated Literature Searching

Google Scholar	Select Term:	ng Articles
PubMed Abstract	Select a Query Term	rrolidone" OR "N-methylpyrrolidone"
PubChem Articles	Select a Query Term	
PubChem Patents	Hazard Fate and Transport Metabolism/PK/PD Chemical Properties Exposure Mixtures Male Reproduction Androgen Disruption Female Reproduction GeneTox Embryo and embryonic development Child (infant through adolescent) Dust and Exposure	Search and Count

ADME (Beta)

Exposure

Bioassays

Similar Molecules (Beta)

Synonyms

Integrated Literature Searching

Π

Google Scholar

PubMed Abstract Sifter

PubChem Articles

PubChem Patents

("872-50-4" OR "N-Methyl-2-pyrrolidone" OR "Nmethylpyrrolidone") AND (exposure OR near-field OR far-field OR SHEDS[tiab] AND ENVIRONMENTAL MONITORING)

Edit the Query Before Retrieving Articles

0	0	0	0	24078144	2013	Biological monitoring and health effects of low-level exposure to N-methyl-2-pyrrolidone: a cross-sectional study.
0	0	0	0	23337464	2013	Biomonitoring of exposure to N-methyl-2-pyrrolidone in workers of the automobile industry.
0	0	0	0	19875680	2009	Quantitative risk analysis for N-methyl pyrrolidone using physiologically based pharmacokinetic and benchmark dos
0 Reco	0 ord: H	0	0 1 of 16	16897094	2006	Human volunteer study on the influence of exposure duration and dilution of dermally applied N-methyl-2-pyrrolidon

Title: [Not Available].

0

Abstract: N-Ethyl-2-pyrrolidone (NEP), a polar aprotic solvent, is used in many applications as substitute for the structural analogue N-methyl-2-pyrrolidone (NMP), e. g. for surface coatings, in cleaning agents and paint strippers. Monitoring studies indicate that individuals within the general public, without occupational exposure, may be exposed to NEP to an extent, which is comparable to NMP. As NMP, NEP presents a potential health hazard due to its developmental toxicity and teratogenicity. Exposure to NEP can be quantified by the determination of the excretion of its urinary metabolites 5-Hydroxy-N-ethyl-2-pyrrolidone (5-HNEP) and 2-Hydroxy-N-ethylsuccinimide (2-HESI). For the derivation of HBM values, the german Human Biomonitoring Commission (HBM commission) evaluated different toxicological endpoints and finally decided on the BMDL05 and the BMD10 for the endpoint "reduced grasp intensity" of a subchronic feeding study with rats as point of departure (POD) for further procedural steps. The resulting HBM-I and HBM-II values for the sum of the metabolites 5-HNEP and 2-HESI in the urine of children are 10 resp. 25 mg/l and in the urine of adults are 15 resp. 40 mg/l. If the HBM values are exceeded, a check-up will be necessary at first. Measurements above the HBM-II value give cause for concern, especially for pregnant women. Air meas **a** ents to determine the source of exposure can be useful. The possibility of skin absorption from use of

Chemical Properties

Env. Fate/Transport Toxicity Values (Beta)

ADME (Beta)

Exposure Bioassays

Similar Molecules (Beta)

Synonyms L

Links to Other Resources

General	Toxicology	Publications	Analytical				
EPA Substance Re	ACToR	Toxline	Q National Environme				
NIST Chemistry W	🤲 DrugPortal	Environmental Heal	♂ MONA: MassBank …				
K Household Product	CCRIS	NIEHS	🛕 Tox21 Analytical Data				
🙄 PubChem		National Toxicology	🖿 RSC Analytical Abs				
💢 Chemspider	CTD	G Google Books	FOR-IDENT				
CPCat	🐭 e The Office of the Fede	ral Register (OFR) of the Nationa	Archives and				
🔊 DrugBank	Records Administratio	(NARA), and the U.S. Government Printing Office					
Amp HMDB	GPO) jointy administ		le.				
w Wikipedia	HSDB	Q Federal Register					
Q MSDS Lookup	(a) ToxCast Dashboar	Q Regulations.gov					
I ChEMBL	🔛 LactMed	Springer Materials					
Q Chemical Vendors	3 ACToR PDF Report	縃 BioCaddie DataMed					
Consumer Product	🔛 International Toxicit	C RSC Publications					

Chemical Properties

Env. Fate/Transport Toxicity Values (Beta)

ADME (Beta)

Exposure Bioassays

Similar Molecules (Beta)

a) Synonyms

Literature

External Links

Example External Links...

This substance is used by consumers, by professional workers (widespread uses), in formulation or re-

Accessing Lists of Chemicals

- Build out definitive "lists" of chemicals
 - Algal toxins
 - Poly/perfluorinated chemicals
 - Pesticides
 - Toxcast screening chemical collection

The Collection of Lists

SEPA United States Environmental Protection	Home Advanced Search Balch Search Lists				Search All Data	Q Options -
Chemistry Dashboard	d					Aa • Aa Aa •
			Select List			
	list Name	Number of C	hemicale A List I	Description		
	ed States	Search Batch Search Lists			Search All Data	O Options -
	ncy stry Dashboard LOEHHA				Contra Data	
Chemi	Stry Dashboard I OLITIA					
		California Office of	f Environmental Health H	Hazard Assessment		
					0	
					Q	
	List Details					
	Description: The Office of Environmental Health scientific evaluation of risks posed by hazardous developed by OEHHA including reference expo	Hazard Assessment (OEHHA) is the lead state agen substances. The Office is one of five state departmer	tcy for the assessment of health risks posed by enviro ts within the California Environmental Protection Age s reference doese. Proposition 65 safe barbor number	nmental contaminants. OEHHA's mission is to protect ncy (CalEPA). The OEHHA Chemical Database is a se re-soli-screening levels, and fich advisories	human health and the environment through archable compilation of health hazard information	
	Number of Chemicals: 972	ure levels, canorna public nearth guais,chilo-specific		is, solescienting levels, and lish advisories		
	Sort Options - Select/Deselect All	Download as: TSV	•		View Selected	
		CH-				
		H ₂ N	H CH ₃		H ₂ C	
	HN NH2	N 2 N 0	HO	HO N CH3	~ ~ 0	
	A-alpha-C 26148-68-5	Acetamide	Acetaminophen	Acetoxime	Acrolein	
	20140-00-3	00-35-5	103-30-2	127-00-0	07-02-0	
	About	Contact Privacy	Mented State ACToR	Accessibility	Help Downloads	

Crowdsourced Curation – HELP!

https://comptox.epa.gov/dashboard/comments/public_index

SEPA United States Environmental Protection Home Advanced Search Agency	Batch Search Lists		Search All Data	Q
Chemistry Dashboard		Submit Comment Share Copy	Aa 🔻 🗛	Aa 🔺
2,2'-[biphenyl-4,4'-diyldi(E)ether 38775-22-3 DTXSID7047017 Searched by DSSTox_Substance_Id: Found 1 result for 'DT Q	ne-2,1-diyl]dibenz rxsid7047017'.	enesulfonic acid		
	Intrinsic Properties	New Comment	3	ĸ
	Molecular Formula Average Mass: 51 Monoisotopic Mas	Comment Type your comments here	li li	
	Structural Identifiers	Email address		
	Related Compound	Enter your email address		
	Presence in Lists Record Information	I'm not a robot		
Chemical Properties Env. Fate/Transport Toxicit	y Values (Beta) ADME (Bet	Submit		

Answering Questions

- I have a 1000 CAS Numbers (or Names) are there data available?
 - Has any Toxcast data been run?
 - Are there Toxicity Data values available?
 - Are there predicted exposure data (via Expocast)?
 - Can I get predicted physchem data for my model?

Batch Searching for Data for Thousands of Chemicals

Batch Searching for Data for Thousands of Chemicals

			Step One	Step	Two	Step Three			Step I	Four			Step Five			Ste	ep Six		
						Step S	ix: Cli	ck "Do	wnload	d''									
			Display All Chemic	cals Download Chem	cal Data														
			Select Output Form	at															
			Excel	•															
			Select All																
			Select All In Lists Chemical Identifiers	3				Presen	ce In List										
			DTXSIDChemical Name					400 Alg	FR355 al Toxins										
А	В	C	CAS-RN	D	F	F G H		ATS	SDR Toxic S	ubstances	Portal Chemica	I List	0	Р	0	B	S	т	U V
INPUT	FOUND	BYDTXSID	PREFERRE	D_NAME	CASRN	IUPAC_NAI SMILES MOLECULA	AVERAGE	ATMOSPHIE	BIOCONCEE	BIODEGRAE	BOILING_FHEN	RYS_L O	PERA_KN	CTANOL S	SOIL_ADS	OCTANOL_I	MELTING_	VAPOR_PF	WATER_SOLUBILIT
18699-02-0	CAS-RI	V, In DTXSID00200	20 4-Acetylam	inophenylacetic acid	18699-02-	-0 (4-Acetamic CC(=O)NC1C10H11NO	193.202	7.544E-12	3.42204	3.53611	291.22 4.2	68E-10	0.432781	8.16821	40.7227	1.11077	169.466	5.945E-07	0.0027159
50594-66-6	CAS-RI	V, In DTXSID00200	22 Acifluorfen		50594-66	-6 5-[2-Chloro-OC(=O)C1=C14H7CIF3	361.66	1.38E-11	5.01914	3.54682	322.232 8.0	6E-09	0.894058	10.6329	375.753	3.75101	152.287	1.151E-09	0.0002794
2113-61-3	CAS-RI		72 4-Biphenyla	amine hydrochloride	2113-61-3	1H 1 2 4 TriNC1=NC1=CC C12H12CIN	205.69	7.263E-11	2 20651	22.3831	302.005 2.2	4E-07	0.13/444	9.26/88	1450.75	2.86436	229.065	4 7095 07	0.0004509
13/1-02-5	CAS-RI		05 Sodium L-s	iscorbate	134-03-2	Sodium (28 INa+1 OCIC C6H7NaO6	198 106	8 252E-12	1 77879	3.50444	313 644 1 2	3E-00	0.104303	8 18129	303 789	-1.03255	168 898	4.736E-07	0.287515
22839-47-0	CAS-RI	V. In DTXSID00201	07 Aspartame	scorbate	22839-47-	-0 Methyl L-alrCOC(=O)IC C14H18N20	294.307	1.69E-11	4.54579	3.53293	284.29 6.1	7E-11	0.110876	9.24976	166.002	-0.334933	234.896	1.373E-09	0.0126548
140-11-4	CAS-RI	N, In DTXSID00201	51 Benzyl ace	tate	140-11-4	Benzyl acetCC(=O)OC(C9H10O2	150.177	1.137E-11	6.68119	4.30298	216.69 3.8	5E-07	0.134105	4.83138	72.657	2.15746	-7.81986	0.181933	0.0139724
58-08-2	CAS-RI	N, In DTXSID00202	32 Caffeine		58-08-2	1,3,7-Trimet CN1C=NC2 C8H10N4O	194.194	6.002E-12	1.86426	3.52242	286.771 1.5	5E-06	0.281842	8.51987	62.2886	-0.150871	202.556	2.08E-06	0.0991131
814-80-2	CAS-RI	N, In DTXSID00202	36 Calcium lac	ctate	814-80-2	Calcium bis [Ca++].CC(C6H10CaO	218.218		-	-	-	-	-	-				-	-
88-73-3	CAS-RI	V, In DTXSID00202	80 1-Chloro-2-	nitrobenzene	88-73-3	1-Chloro-2-r [O-][N+](=C C6H4CINO2	157.55	1.039E-12	22.1838	5.34707	245.57 9.3	6E-06	0.454339	4.31183	668.302	2.3191	48.0313	0.040638	0.0010906
5131-60-2	CAS-RI	N, In DTXSID00202	82 4-Chloro-1,	3-diaminobenzene	5131-60-2	4-Chlorober NC1=CC(N) C6H7CIN2 4-Chlorober NC1=CC(N) C6H7CIN2	142.59	2.495E-11	8.06476	8.48537	238.553 2.4	88E-07	0.141138	7.84318	67.087	0.962899	89.0194	0.0006677	0.0057247
95-74-9	CAS-RI		2-Chloro-1, 86 3-Chloro-4-	4-diaminopenzene suitate	95-74-9	3-Chloro-4-r CC1=C(CI)(C7H8CIN	240.00	2.40E-11 2.486E-11	20 8027	3 66038	235.888 5.1	9E-07	0.141213	7.04310	164 083	1 92694	34.0556	0.0006676	0.0021064
3165-93-3	CAS-RI	V. In DTXSID00202	88 4-Chloro-2-	methylaniline hydrochloride	3165-93-3	3 4-Chloro-2-r CL CC1=C(N C7H9Cl2N	178.06	2.400E-11	21 8011	3.56253	242 562 2 1	1E-07	0 162479	7 47775	164.003	2 13482	228 53	0.0536476	0.0046491
150-68-5	CAS-RI	V, In DTXSID00203	11 Monuron	,,	150-68-5	N'-(4-Chloro CN(C)C(=O C9H11CIN2	198.65	1.233E-11	21.0734	4.9644	300.033 1.5	4E-09	0.080547	9.30039	68.765	1.97223	156.714	2.733E-07	0.0009876
76-06-2	CAS-RI	V, In DTXSID00203	15 Chloropicrir	ı	76-06-2	Trichloro(nit [O-][N+](=C CCI3NO2	164.37	4.975E-15	19.1016	4.61961	126.822	0.005	2.61824	3.07713	61.6502	1.85845	-58.1899	90.3279	0.0176702
1897-45-6	CAS-RI	V, In DTXSID00203	19 Chlorothalo	nil	1897-45-6	5 2,4,5,6-Tetr CIC1=C(CI) C8CI4N2	265.9	2.835E-12	86.539	5.52071	339.516 3.5	32E-06	1.27499	8.49259	1866.18	3.1346	230.81	1.29E-06	3.211E-06
4998-76-9	CAS-RI	V, In DTXSID00203	61 Cyclohexyl	amine hydrochloride	4998-76-9	Cyclohexan CLNC1CCC C6H14CIN	135.64	1.307E-11	6.49625	4.50266	132.539 1.0	2E-05	0.146863	4.74766	46.924	0.968819	216.087	7.42003	5.20689
59865-13-3	CAS-RI	V, In DTXSID00203	65 Cyclosporir	1A	59865-13-	-3 (3S,6S,9S,1CC[C@@H C62H111N1	1202.635	1.855E-10	10.5684	13.4555	380.042 1.8	9E-11	0.336609	9.63201	30808.1	2.8611	149.875	2.258E-10	0.0002704
52-69-1 100.26 E	CAS-RI		67 I-Cysteine I 40 Dicklorprop	nyarochioriae	52-89-1	2 (2 4 Diabli CC/OC1=C/C9H8CI2O2	157.61	5.306E-12	4.29025	3.54/48	247.043 5.2	00E-09	0.13252	0.10600	12.2561	-2.10103	176.504	1.044E-06	1.72407
94-75-7	CAS-RI		40 Dichlorphop 42 2.4-Dichlorp	onhenovyacetic acid	94-75-7	(2.4-Dichlor OC(=0)CO(C8H6Cl2O3	200.00	8.509E-12	3 33933	3.53105	300 487 2 9	4E-09	0.144701	8.64934	81 / 078	2.02030	120.150	4.507E-07	0.0015665
330-54-1	CAS-RI	V. In DTXSID00204	46 Diuron	sphenoxyacetic acid	330-54-1	N'-(3 4-Dich CN(C)C(=O C9H10Cl2N	233.09	1 205E-11	17 1704	3 55395	323 013 1 0	2E-09	0.057673	9 95685	190 73	2 48235	151.201	8 966E-08	0.0002698
756-79-6	CAS-RI	V. In DTXSID00204	94 Dimethyl m	ethylphosphonate	756-79-6	Dimethyl m COP(C)(=O C3H9O3P	124.076	1.794E-11	3.57788	4.58659	172.811 9.1	4E-08	0.101991	4.52878	5,1856	-0.557951	-65.5885	0.474397	6.36062
120-61-6	CAS-RI	N, In DTXSID00204	98 Dimethyl te	rephthalate	120-61-6	Dimethyl be COC(=O)C1C10H10O4	194.186	5.999E-12	3.75263	3.67612	279.314 7.9	1E-08	0.224423	5.6765	43.5705	1.98051	74.4094	0.0061344	0.0006996
51-28-5	CAS-RI	N, In DTXSID00205	23 2,4-Dinitrop	henol	51-28-5	2,4-Dinitrop OC1=C(C=(C6H4N2O5	184.107	8.576E-13	5.31642	4.59079	349.689 9.8	7E-08	0.134389	7.33727	221.884	1.87568	117.909	0.0002339	0.0017297
121-14-2	CAS-RI	N, In DTXSID00205	29 2,4-Dinitrot	oluene	121-14-2	1-Methyl-2, CC1=C(C=(C7H6N2O4	182.135	1.626E-12	9.50638	3.55991	297.386 9.4	8E-08	0.191762	5.07604	402.949	1.91053	70.7766	0.0002412	0.0012579
50-28-2	CAS-RI	N, In DTXSID00205	73 17beta-Est	radiol	50-28-2	(17beta)-Es [H][C@@]1 C18H24O2	272.388	1.66E-11	33.8438	58.4157	372.709 8.5	28E-06	1.49013	9.15213	212402	3.85324	195.408	3.413E-10	1.729E-05
140-67-0	CAS-RI	N, In DTXSID00205	75 Estragole		140-67-0	1-Methoxy-COC1=CC=C10H12O	148.205	7.077E-11	34.0071	3.53538	219.742 9.7	6E-06	1.3162	4.9796	1632.41	3.02077	-7.93361	0.173572	0.001369
536-33-4	CAS-RI	N, IN DIXSID00205	11 Ethionamid	e velahavana diawida	536-33-4	2-Ethylpyric CCC1=NC= C8H10N2S	166.24	4.4/1E-11	5.38695	2.1117	298.219 1.8	8E-09	0.252948	8.49908	63.9763	1.20325	153.065	5.153E-06	0.139454
100-07-0	CAS-RI		04 4-Vinyl-1-c	volunexene dioxide	105-87-6	3-(UXIran-2-CTUC1C1CC8H1202 Bis(2 atbulk CCCCC/CC C22H42O4	140.182	1.945E-11	3.56105	3.05805 5.60070	218.846 2.0	4E-05	0.142/5/	4.30621	57.8208	6 85077	61 5044	0.0260644 1.159⊑.00	0.506226 3.903E.06
25812-30-0	CAS-RI		52 Cemfibrozil	rexyrinexarredioate	25812-30	-0 5-(2 5-Dime CC1=CC(O) C15H22O3	250 338	1.203E-11	3 1653/	3 521/8	326 707 86	5E-07	0.893056	9 60201	216 1/17	4 42964	74 6536	9 356E-06	0.0002483
105-87-3	CAS-RI		54 Geranyl ac	etate	105-87-3	(2E)-3 7-Dir CC(C)=CC(C12H2002	196 29	1.645E-10	19 0144	4 49702	236 888 0.0	02711	0.413938	5 79896	470 461	4 13931	-53 0564	0.0434534	0.0003752

Supporting NTA Applications

- What chemicals are in food, products, dust, blood, etc.?
- Chemical prioritization
 - What are relevant chemicals & mixtures?
- Exposure forensics
 - What are chemical signatures of exposure sources?

- Effect-directed analysis
 - What are the biologically active chemicals in complex mixtures?
- Biomarker discovery
 - What chemicals are predictive of bioactivity/health impairment?

Suspect Screening Analysis Chemicals in House Dust

- Chemical confirmation from ToxCast
- Detection frequency
- External calibration for concentrations
- Cluster analysis (homes/chemicals)
- Chemical functional use

Improving Exposure Estimates – Characterizing Commercial Products

423 ToxCast and/or Commonly Occurring Chemicals*

- GCXGC-MS with DCM Extraction
- 1606 tentative and confirmed chemical identifications
- Common Chemical (n>19)
- ToxCast
- Flame Retardant
- Potent ER

- Log₁₀ (μg/g) Air freshener Baby soap Carpet
 - Carpet padding
 - Cereals
 - Cotton clothing
 - Deodorant
 - Fabric upholstery
 - Glass cleaners
 - Hand soap
 - Indoor house paint
 - Lipstick
 - Plastic children's toys
 - Shampoo
 - Shaving cream
 - Shower curtain
 - Skin lotion
 - Sunscreen
 - Toothpaste
 - Vinyl upholstery

Wambaugh et al. Unpublished

Non-targeted Analysis Support

More detail »

Environmental Pollution Volume 234, March 2018, Pages 297-306

Suspect screening and non-targeted analysis of drinking water using point-of-use filters \Rightarrow

Seth R. Newton ^a 옷 팩, Rebecca L. McMahen ^{a, b}, Jon R. Sobus ^a, Kamel Mansouri ^{b, c, 1}, Antony J. Williams ^c, Andrew D. McEachran ^{b, c}, Mark J. Strynar ^a

Talanta Available online 11 January 2018 In Press, Accepted Manuscript ()

A Comparison of Three Liquid Chromatography (LC) Retention Time Prediction Models

Andrew D. McEachran ^{a, b} 유용, Kamel Mansouri ^{a, b, 1}용, Seth R. Newton ^c, Brandiese E.J. Beverly ^{a, c, 2}월, Jon R. Sobus ^c, Antony J. Williams ^b 유 원

Environment International Volume 88, March 2016, Pages 269-280

Linking high resolution mass spectrometry data with exposure and toxicity forecasts to advance high-throughput environmental monitoring

Julia E. Rager ^a, Mark J. Strynar ^b, Shuang Liang ^a, Rebecca L. McMahen ^a, Ann M. Richard ^c, Christopher M. Grulke ^d, John F. Wambaugh ^c, Kristin K. Isaacs ^b, Richard Judson ^c, Antony J. Williams ^c, Jon R. Sobus ^b A ≅

Journal of Exposure Science & Environmental Epidemiology

Altmetric: 4 Citations: 1

Access provided by XXX US Environmental Protection Agency - Agency Wide

Review Article

Integrating tools for non-targeted analysis research and chemical safety evaluations at the US EPA

Jon R. Sobus 🏝 John F. Wambaugh, Kristin K. Isaacs, Antony J. Williams, Andrew D. McEachran, Ann M. Richard, Christopher M. Grulke, Elin M. Ulrich, Julia E. Rager, Mark J. Strynar & Seth R. Newton

Analytical and Bioanalytical Chemistry March 2017, Volume 409, Issue 7, pp 1729–1735 | Cite as

Identifying known unknowns using the US EPA's CompTox Chemistry Dashboard

Authors and affiliations

Andrew D. McEachran 🖂 , Jon R. Sobus, Antony J. Williams 🖂

Authors

Open Science for Identifying "Known Unknown" Chemicals Emma L. Schymanski^{*,†}[●] and Antony J. Williams^{*,†}[●]

- Sometimes the simplest of questions are difficult to answer!
 - What is the list of CAS Numbers for all PCBs?
 - Can I get an SDF file of all PCBs?
 - Do you have predicted properties for all PCBs?
 - What toxicity data is available for individual PCBS?
 - Have you measured ToxCast data for any PCBs?
 - Can I get all PCBs listed in an Excel Spreadsheet?

Chemical "Families"

Download as: TSV Excel SDF

One click download

1	A	В	C	D	E	F	G	H	
1	DTXSID	CASRN	PREFERRED NAME	IUPAC NAME	MOLECULAR F	MONOISO	AVERAGE	SMILES	INCHI KEY [
2	DTXSID9074779	70362-45-7	PCB 045	2,2',3,6-Tetrachloro-1,1'	C12H6Cl4	289.92236	291.98001	CIC1=CC=C(CI)C(=C1CI)C1=CC=CC=C1CI	VHGHHZZT
3	DTXSID9074777	38444-73-4	PCB 019	2,2',6-Trichloro-1,1'-biph	C12H7Cl3	255.96133	257.54001	CIC1=CC=CC(CI)=C1C1=C(CI)C=CC=C1	MVXIJRBB(
4	DTXSID9074228	74472-39-2	2,3',4',5',6-Pentachloro	2,3',4',5',6-Pentachloro-	C12H5Cl5	323.88339	326.42001	CIC1=CC(=CC(CI)=C1CI)C1=C(CI)C=CC=C1CI	WAZUWHG
5	DTXSID9074226	74472-37-0	2,3,4,4',5-Pentachlorob	2,3,4,4',5-Pentachloro-	C12H5Cl5	323.88339	326.42001	CIC1=CC=C(C=C1)C1=C(CI)C(CI)=C(CI)C(CI)=C1	SXZSFWHC
6	DTXSID9074224	74472-35-8	2,3,3',4,6-Pentachlorob	2,3,3',4,6-Pentachloro-	C12H5CI5	323.88339	326.42001	CIC1=CC=CC(=C1)C1=C(CI)C(CI)=C(CI)C=C1CI	XGQBSVV
7	DTXSID9074222	74472-33-6	2,3,3',6-Tetrachlorobiph	2,3,3',6-Tetrachloro-1,1	C12H6Cl4	289.92236	291.98001	CIC1=CC=CC(=C1)C1=C(CI)C(CI)=CC=C1CI	WZNAMGY
8	DTXSID9074220	74338-23-1	2,3',5',6-Tetrachlorobipl	2,3',5',6-Tetrachloro-1,1	C12H6Cl4	289.92236	291.98001	CIC1=CC(=CC(CI)=C1)C1=C(CI)C=CC=C1CI	HDULUCZR
9	DTXSID9074199	68194-11-6	2,3,4',5,6-Pentachlorob	2,3,4',5,6-Pentachloro-	C12H5CI5	323.88339	326.42001	CIC1=CC=C(C=C1)C1=C(CI)C(CI)=CC(CI)=C1CI	ZDDZPDTV
10	DTXSID9074197	68194-08-1	2,2',3,4',6,6'-Hexachlor	2,2',3,4',6,6'-Hexachlor	C12H4Cl6	357.84442	360.85999	CIC1=CC(CI)=C(C(CI)=C1)C1=C(CI)C(CI)=CC=C1CI	RPPNJBZN
11	DTXSID9074195	68194-04-7	2,2',4,6'-Tetrachlorobipl	2,2',4,6'-Tetrachloro-1,1	C12H6Cl4	289.92236	291.98001	CIC1=CC=C(C(CI)=C1)C1=C(CI)C=CC=C1CI	WVHNUGR
12	DTXSID9074193	60233-25-2	2,2',3,4',6'-Pentachloro	2,2',3,4',6'-Pentachloro-	C12H5CI5	323.88339	326.42001	CIC1=CC(CI)=C(C(CI)=C1)C1=C(CI)C(CI)=CC=C1	GOFFZTAP
13	DTXSID9074191	60145-23-5	2,2',3,4,4',5,6'-Heptach	2,2',3,4,4',5,6'-Heptachl	C12H3CI7	391.80544	395.31	CIC1=CC(CI)=C(C(CI)=C1)C1=C(CI)C(CI)=C(CI)C(CI)=C	1 RXRLRYZU
14	DTXSID9074149	41411-61-4	2,2',3,4,5,6-Hexachloro	2,2',3,4,5,6-Hexachloro	C12H4Cl6	357.84442	360.85999	CIC1=C(C=CC=C1)C1=C(CI)C(CI)=C(CI)C(CI)=C1CI	RUEIBQJF(
15	DTXSID9074147	40186-70-7	2,2',3,3',4,5',6-Heptach	2,2',3,3',4,5',6-Heptachl	C12H3CI7	391.80544	395.31	CIC1=CC(CI)=C(CI)C(=C1)C1=C(CI)C(CI)=C(CI)C=C1CI	KJBDZJFS
16	DTXSID9074145	39635-33-1	3,3',4,5,5'-Pentachlorol	3,3',4,5,5'-Pentachloro-	C12H5CI5	323.88339	326.42001	CIC1=CC(=CC(CI)=C1)C1=CC(CI)=C(CI)C(CI)=C1	MXVAYAXII
17	DTXSID9074143	38444-76-7	2,3',6-Trichlorobiphenyl	2,3',6-Trichloro-1,1'-biph	C12H7Cl3	255.96133	257.54001	CIC1=CC=CC(=C1)C1=C(CI)C=CC=C1CI	VQOFJPFY
18	DTXSID9074141	38380-05-1	2,2',3,3',4,6'-Hexachlor	2,2',3,3',4,6'-Hexachlor	C12H4Cl6	357.84442	360.85999	CIC1=CC=C(CI)C(=C1CI)C1=C(CI)C(CI)=C(CI)C=C1	OKBJVIVE
19	DTXSID9073599	65510-45-4	2,2',3,4,4'-Pentachlorol	2,2',3,4,4'-Pentachloro-	C12H5CI5	323.88339	326.42001	CIC1=CC(CI)=C(C=C1)C1=C(CI)C(CI)=C(CI)C=C1	LACXVZHA,
20	DTXSID9073541	52744-13-5	2,2',3,3',5,6'-Hexachlor	2,2',3,3',5,6'-Hexachlor	C12H4Cl6	357.84442	360.85999	CIC1=CC(=C(CI)C(CI)=C1)C1=C(CI)C(CI)=CC=C1CI	UUTNFLRS
21	DTXSID9073410	16606-02-3	2,4',5-Trichlorobiphenyl	2,4',5-Trichloro-1,1'-biph	C12H7Cl3	255.96133	257.54001	CIC1=CC=C(C=C1)C1=C(CI)C=CC(CI)=C1	VAHKBZSA
22	DTXSID80873557	36559-22-5	2,2',3,4'-Tetrachloro-1,1	2,2',3,4'-Tetrachloro-1,1	C12H6Cl4	289.92236	291.98	CIC1=CC(CI)=C(C=C1)C1=CC=CC(CI)=C1CI	ALFHIHDQ
23	DTXSID8074780	61798-70-7	PCB 131	2,2',3,3',4,6-Hexachlord	C12H4Cl6	357.84442	360.85999	CIC1=CC(CI)=C(CI)C(CI)=C1C1=CC=CC(CI)=C1CI	WDLTVNW
24	DTXSID8074239	74472-51-8	2,3,3',4,5,5',6-Heptachl	2,3,3',4,5,5',6-Heptachl	C12H3CI7	391.80544	395.31	CIC1=CC(=CC(CI)=C1)C1=C(CI)C(CI)=C(CI)C(CI)=C1CI	ZUTDUGMN
25	DTXSID8074237	74472-49-4	2,2',3,4,5,6,6'-Heptachl	2,2',3,4,5,6,6'-Heptachl	C12H3CI7	391.80544	395.31	CIC1=CC=CC(CI)=C1C1=C(CI)C(CI)=C(CI)C(CI)=C1CI	FGDPOTM
26	DTXSID8074235	74472-47-2	2,2',3,4,4',5,6-Heptachl	2,2',3,4,4',5,6-Heptachl	C12H3CI7	391.80544	395.31	CIC1=CC(CI)=C(C=C1)C1=C(CI)C(CI)=C(CI)C(CI)=C1CI	DJEUXBQA
27	DTXSID8074233	74472-44-9	2,3,3',4',5,6-Hexachlord	2,3,3',4',5,6-Hexachlord	C12H4Cl6	357.84442	360.85999	CIC1=CC=C(C=C1CI)C1=C(CI)C(CI)=CC(CI)=C1CI	ZAGRQXM
~~	DTUDID COT LOCK	TILITO IO T			A 4 4 4 4 4 4 4 4				7010000000

Delivering our Chemistry Data

-	Agency	al Protection	Home	Advanced Search	Batch Search	Lists	Search Chemistry Das	shboard	٩
Ch	emistry D	ashboard							Aa 🕶 🛛 Aa
					Downlo	bads			
DS	STox Identifier to F	PubChem Identifier I	Mapping P	File				Pos	ted: 11/14/2016
The	DSSTox to PubC	hem Identifiers map	ping file is	s in TXT format and incl	udes the PubChem	SID, PubChen	n CID and DSSTox substance ide	entifier (DTXSID).	
	STD		СТ	D	рт	XSTD			
	3163888	91	20	404	DT	VS TD 20	0873143		
	2162000	<u> </u>	10	142016	01	VC TD 70	072142		
	2102000	90	10	142010		XSID/C	J07 J142		
	3103888	89	50	/4212/	DT	XSID40	08/3139		
	3163888	88	19	073841	DT	XSID20	0873137		
	3163888	87	11	505215	DT	XSID00	0873135		
	3163888	86	25	021861	DT	XSID80	0873133		
	3163888	85	27	84427	DT	XSTD60	0873131		
	3163888	84	67	21	DT	VSTDO	0873130		
	5105000		07	51		~31D00	073130		
<u> </u>									
DS	STox identifiers ma	apped to CAS Numb	ers and N	Names File				Pos	ted: 11/14/2016
The	DSSTox Identifier	s file is in Excel for	mat and i	ncludes the CAS Numb	er, DSSTox substan	ce identifier (D	TXSID) and the Preferred Name.		
	Casrn	disstor substa	nce id	preferred name					
1	Custin	ussion_subsid	noe_iu	A-alpha-C					
1 2	26148-68-5	DTXSID7020001							
1 2 3	26148-68-5 107-29-9	DTXSID7020001 DTXSID2020004		Acetaldehyde oxime					
1 2 3 4	26148-68-5 107-29-9 60-35-5	DTXSID7020001 DTXSID2020004 DTXSID7020005		Acetaldehyde oxime Acetamide					
1 2 3 4 5	26148-68-5 107-29-9 60-35-5 103-90-2	DTXSID7020001 DTXSID2020004 DTXSID7020005 DTXSID2020006		Acetaldehyde oxime Acetamide Acetaminophen					
1 2 3 4 5 6	26148-68-5 107-29-9 60-35-5 103-90-2 968-81-0	DTXSID7020001 DTXSID2020004 DTXSID7020005 DTXSID2020006 DTXSID7020007		Acetaldehyde oxime Acetamide Acetaminophen Acetohexamide					
1 2 3 4 5 6 7	26148-68-5 107-29-9 60-35-5 103-90-2 968-81-0 18523-69-8	DTXSID7020001 DTXSID2020004 DTXSID7020005 DTXSID2020006 DTXSID7020007 DTXSID2020008		Acetaldehyde oxime Acetamide Acetaminophen Acetohexamide Acetone[4-(5-nitro-	2-furyl)-2-thiazoly] hydrazone			
1 2 3 4 5 6 7 8	26148-68-5 107-29-9 60-35-5 103-90-2 968-81-0 18523-69-8 75-05-8 127-05-8	DTXSID7020001 DTXSID2020004 DTXSID7020005 DTXSID2020006 DTXSID7020007 DTXSID2020008 DTXSID7020009		Acetaldehyde oxime Acetamide Acetaminophen Acetohexamide Acetone[4-(5-nitro- Acetonitrile	2-furyl)-2-thiazoly] hydrazone			
1 2 3 4 5 6 7 8 9	26148-68-5 107-29-9 60-35-5 103-90-2 968-81-0 18523-69-8 75-05-8 127-06-0 65724-28-5	DTXSID7020001 DTXSID2020004 DTXSID7020005 DTXSID2020006 DTXSID7020007 DTXSID7020008 DTXSID7020009 DTXSID7020009 DTXSID6020010		Acetaldehyde oxime Acetamide Acetaminophen Acetohexamide Acetone[4-(5-nitro- Acetonitrile Acetoxime	2-furyl)-2-thiazoly] hydrazone			

 Various types of data at FTP download site: <u>ftp://newftp.epa.gov/COMPTOX/Sustainable_Chemistry_</u> <u>Data/Chemistry_Dashboard</u>
 51

Open Data Reuse on iOS

Computational Infrastructure

We're not done yet...

Real time predictions

United States Environmental Protection Home Advanced Search Batch Search Lists Downloads		Options 🗸
Chemistry Dashboard		Aa 🗶 Aa 🔺
Chemistry Dashboard D E Search a chemical by systematic name, synonym, CAS number, or InChIKey V E I O P I O O X O O O O O O O O O O O O O O O O	Select properties to predict T.E.S.T. 18 OPERA EPI Suite TOXICITY + - ACTIVITY + - Fathead minnow LC50 (96 hr) 1 Daphnia magna LC50 (48 hr) 1 Daphnia magna LC50 (48 hr) 1 Daphnia magna LC50 (48 hr) 1 T. pyriformis IGC50 (48 hr) 1 Oral rat LD50 Bioaccumulation factor Estrogen Receptor RBA PHYS_CHEM + - Normal boiling point Vapor pressure at 25°C Melting point	Aa 🔻 Aa A3 🔺
	 Prasti point Density Surface tension at 25°C Calculate 	
About/Disclaimer Contact Privacy ACTeR	Destrox Accessibility Help Downloads	

When you have a structure editor...

Environmental Protection

Agency

Structure, **Substructure**, Similarity Searching

Future Work

- Existing dashboards functionality to be added to the "CompTox Chemistry Dashboard"
- Open Application Programming Interface and web services
- Integration to other agency databases
- NEXT Release 1st week of March Society of Toxicology and ACS Spring Meetings

Acknowledgements

EPA-RTP

An enormous team of contributors from NCCT

and collaborators from NERL NHERL NRMRL

Contact

Antony Williams NCCT, US EPA Office of Research and Development, Williams.Antony@epa.gov

ORCID: https://orcid.org/0000-0002-2668-4821

L Williams et al. J Cheminform (2017) 9:61 DOI 10.1186/s13321-017-0247-6

Journal of Cheminformatics

DATABASE

Open Access

DCrossMark

The CompTox Chemistry Dashboard: a community data resource for environmental chemistry

Antony J. Williams^{1*}[®], Christopher M. Grulke¹, Jeff Edwards¹, Andrew D. McEachran², Kamel Mansouri^{1,2,4}, Nancy C. Baker³, Grace Patlewicz¹, Imran Shah¹, John F. Wambaugh¹, Richard S. Judson¹ and Ann M. Richard¹

https://doi.org/10.1186/s13321-017-0247-6