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Synthesis of mixed ligand complexes (1-5)
A solution of 2-(2-Morpholinoethylimino)methyl) phenol Schiff base ligand (LH) (Primary ligand) (0.001 M) in methanol (40 mL) was added slowly to a solution of Metal(II) acetate (0.001 M) [CuII(OAc)2.H2O, CoII(OAc)2.4H2O, MnII(OAc)2.4H2O, NiII(OAc)2.4H2O and  ZnII(OAc)2.2H2O] in 30 mL of absolute methanol and the resulting  mixture was stirred for 30 minutes and the hot mixture of solution was slowly added into methanolic solution of 1,10-phenanthroline as secondary ligand (0.001 M). The obtaining mixture was refluxed for 3 hours. The solid product so formed was separated by filtration and purified by recrystallization using methanol and petroleum ether. Trace of water and solvents were recovered by keeping in vacuum desiccators over anhydrous CaCl2. The preparation of mixed ligand complexes (1-5) was followed by the similar methods and the yield was found to be 71.06 – 83.23 %. The observed molar conductivity values of complexes (1-5) were in the range from 32.71 to 38.74 ohm-1 cm2 mol-1 which shows that they are non electrolytic nature due to lack of dissociation and various analytical and physical data of schiff base ligand (LH) and its complexes (1-5) were listed below in the following order. 

2-(2-Morpholinoethylimino)methyl)phenol Ligand (LH) 
Yield 87.48 %, yellow liquid. FT-IR spectrum, KBr, ν, cm-1: 1635 (H-C=N-), 1278 (C-OAr), 1197, 1114 (C-O), 1342 (C-N-C), 3056 (C-HAr), 2949 (C-H), 2854 (H-C=N-), 3676 (-OHAr). 1H NMR spectrum (300 MHz, CDCl3, δ / ppm): 13.52 (1H, s, (-OHAr), 6.84 - 7.32 (4H, m, C-HAr), 8.35 (1H, s, -HC=N-), 3.72 (4H, t, -O-CH2), 2.44 (4H, t, -N-CH2), 2.22 (-CH2-CH2, p, 2H). UV-vis spectrum, Me-OH, λmax, nm (cm-1): 258 (38,760), 319 (31,348). Molar Conductance (103µM), Me-OH, m, ohm-1cm2 mol-1: 22.66. ESI-MS Mass (m/z), Found: 235.10 (M+1). Anal.Cacld (%) for C13H18N2O2: C, 66.64; H, 07.74; N, 11.95. Found (%): C, 66.90; H, 07.60; N, 11.39.

[CuII(L)(phen)AcO].2H2O Complex (1)
Yield: 83.23 %, green solid, m.p.110 °C. FT-IR spectrum, KBr, ν, cm-1: 1607 (H-C=N-), 1532 (H-C=N-phen), 1654, 1430 (Acetate C=O), 1452 (C=C), 1312 (C-OAr), 1195, 1112 (C-O), 1336 (C-N-C), 3095 (C-HAr), 2962 (C-H), 2858 (H-C=N-), 3446, 848 (H-O-H), 503 (M-O), 467 (M-N). UV-vis spectrum, Me-OH, λmax, nm (cm-1): 650 (15,384). Molar Conductance (103 µM), Me-OH, m, ohm-1cm2 mol-1: 38.74. µeff, BM: 1.75. ESI-MS Mass (m/z), Found: 536.62 (M+1). Anal.Cacld (%) for CuC27H32N4O6: C, 56.68; H, 05.59; N, 09.79; Cu, 11.11. Found (%): C, 56.73; H, 05.63; N, 09.86; Cu, 11.16. 

[CoII(L)(phen)AcO].4H2O Complex (2)
 Yield: 71.78 %, dark brown solid, m.p.115 °C. FT-IR spectrum, KBr, ν, cm-1:1585 (H-C=N-), 1522 (H-C=N-phen), 1641, 1404 (Acetate C=O), 1452 (C=C), 1311 (C-OAr), 1195, 1114 (C-O), 1324 (C-N-C), 3095 (C-HAr), 2975 (C-H), 2885 (H-C=N-),  3433, 844 (H-O-H), 497 (M-O), 464 (M-N). UV-vis spectrum, Me-OH, λmax, nm (cm-1): 646 (15,479), 496 (20,161). Molar Conductance (103 µM), Me-OH, m, ohm-1cm2 mol-1: 34.64. µeff, BM: 4.73. ESI-MS Mass (m/z), Found: 531.98 (M+1). Anal.Cacld (%) for CoC27H36N4O8: C, 53.73; H, 05.97; N, 09.28; Co, 09.77. Found (%): C, 53.78; H, 05.83; N, 09.32; Co, 09.78. 

[MnII(L)(phen)AcO].4H2O Complex (3)
 Yield: 75.86 %, black solid, m.p.190 °C.  FT-IR spectrum, KBr, ν, cm-1: 1593 (H-C=N-), 1518 (H-C=N-phen), 1652, 1410 (Acetate C=O), 1445 (C=C), 1306 (C-OAr), 1197, 1114 (C-O), 1336 (C-N-C), 3095 (C-HAr), 2966 (C-H), 2858 (H-C=N-), 3426, 854 (H-O-H), 512 (M-O), 465 (M-N). Molar Conductance (103µM), Me-OH, m, ohm-1cm2 mol-1:  33.65. ESI-MS Mass (m/z), Found: 527.98 (M+1). Anal.Cacld (%) for MnC27H36N4O8: C, 54.09; H, 06.01; N, 09.44; Mn, 09.17. Found (%): C, 54.64; H, 05.94; N, 09.37; Mn, 09.22. 

[NiII(L)(phen)AcO].4H2O Complex (4)
Yield: 71.06 %, dark green solid, m.p. 95 °C. FTIR spectrum, KBr, ν, cm-1:1588 (H-C=N-), 1518 (H-C=N-phen), 1644, 1414 (Acetate C=O), 1450 (C=C), 1305 (C-OAr), 1193, 1112 (C-O), 1334 (C-N-C), 3099 (C-HAr), 2966 (C-H), 2871 (H-C=N-), 3433, 848 (H-O-H),  518 (M-O), 459 (M-N). UV-Vis spectrum, Me-OH, λmax, nm (cm-1): 910 (10,989), 560 (17,857), 417 (23,980). Molar Conductance (103µM), Me-OH, m, ohm-1cm2 mol-1: 37.89. µeff, BM: 3.18. ESI-MS Mass (m/z), Found: 531.73 (M+1). Anal.Cacld (%) for NiC27H36N4O8: C, 53.75; H, 05.97; N, 09.29; Ni, 09.73. Found (%): C, 54.03; H, 05.81; N, 09.25; Ni, 10.67. 

[ZnII(L)(phen)AcO].2H2O Complex (5)
Yield: 77.86 %, pale brown solid, m.p.70 °C.  FT-IR spectrum, KBr, ν, cm-1: 1582 (H-C=N-), 1515 (H-C=N-phen), 1644,1416 (Acetate C=O), 1446 (C=C), 1310 (C-OAr), 1193, 1114 (C-O), 1330 (C-N-C), 3107 (C-HAr), 2960 (C-H), 2856 (H-C=N-), 3426, 848  (H-O-H), 514 (M-O), 470 (M-N). 1H NMR spectrum (300 MHz, CDCl3, δ / ppm): 8.50 (1H, s, -HC=N-), 9.27 (1H, s, H-C=N-phen), 6.88-7.88 (12H, m, C-HAr), 3.73 (4H, t, -O-CH2), 2.94 (4H, t, -N-CH2), 2.24(-CH2-CH2, p, 2H), 2.04 (3H, s, CH3COO). Molar Conductance (103 µM), Me-OH, m, ohm-1cm2 mol-1: 32.71. ESI-MS Mass (m/z), Found: 538.42 (M+1). Anal.Cacld (%) for ZnC27H32N4O6: C, 56.50; H, 05.58; N, 09.76; Zn, 11.40. Found (%): C, 56.66; H, 05.48; N, 09.84; Zn, 11.35. 

Electro spray ionization mass spectra
ESI-MS spectrum of ligand (LH) shows the molecular ion peak at m/z 235.10 (M+1) corresponding to C13H18N2O2 and complex (1) molecular ion peak at m/z 536.62 (M+1) corresponding to molecular formula CuC27H28N4O4 which is confirmed the formation of MLL′ type stoichiometry (Fig. S1) and other fragmented molecular ion (M+1) peaks in the complex (1) are found at 131.1, 298.1, 338.6 and 476.1 which are responsible for C6H14N2O+, C13H18N2O2Cu2+, C18H13N2OCu2+ and C25H25N4O2Cu2+ molecular ions respectively. The molecular ion peaks of complexes (2-5) were observed at m/z (M+1) with relative abundance 531.98 (2), 527.98 (3), 531.73 (4) and 538.42 (5). 
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Fig. S1 ESI-MS Mass spectrum of complex (1)




 Proton nuclear magnetic resonance spectra 
The 1H NMR spectra of the Schiff base ligand (LH) and its complex (5) show the following signals: δ values of ligand (LH): aromatic protons (m, 4H) at 6.84–7.32 ppm; azomethine proton (-HC=N-) (s, 1H) at 8.35 ppm; morpholinic-OCH2 protons (t, 4H) at 3.72 ppm; morpholinic-N-CH2 (t, 4H) at 2.44 ppm; -CH2-CH2 protons (p, 2H) at 2.22 ppm; phenolic-OH proton (s, 1H) at 13.52 ppm. Complex (5): aromatic protons (m, 12H) at 6.88 – 7.88 ppm; azomethine proton (-HC=N-) (s, 1H) at 8.50 ppm; phen-CH=N proton (s, 2H) at 9.27 ppm; morpholinic-O-CH2 protons (t, 4H) at 3.73 ppm; morpholinic-N-CH2 protons (t, 4H) at 2.94 ppm; acetate protons (s, 3H) at 2.04 ppm. The observed 1H NMR spectra data of the complex (5) assigned that the azomethine proton (-HC=N-) and morpholinic-N-CH2 proton signals are shifted to down field (deshielding) as compared to free ligand signals because of azomethine and morpholinic nitrogen atoms are taking part in complexation (Singh, Pandey, & Sengupta, 2012). The absence of singlet peak at 13.52 ppm in the complex (5) indicates the deprotonation of –OH proton due to complexation and there is no appreciable change in other signals in the complex (5) (Fig. S2).
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Fig. S2 1H-NMR-Spectra of ligand (LH) and its complex (5)





Fourier Transform infrared spectra 
In the FT-IR Spectrum of ligand (LH) a strong sharp band was observed at 1635 cm-1 which is assigned to the azomethine group (-HC=N-) and shifted to lower frequencies in the spectra of the complexes (1-5) indicating the involvement of imino nitrogen in coordination to the central metal ion (Aazam, EL Husseiny, & Al-Amri, 2012) and morpholinic-C-N-C band found at 1342 cm-1 in the ligand (LH) which is shifted to lower frequency in the spectra of the complexes (1-5) indicating the involvement of morpholinic nitrogen in complexation. The observed peak at 3676 cm-1 in the ligand (HL) is responsible for -OH group and it is disappeared in spectra of the complexes (1-5) which indicates the deprotonation of -OH group due to complexation and the peak at 1278 cm-1 for the phenolic C-O group in the ligand (LH) is shifted to higher frequencies in the spectra of the complexes (1-5) confirming deprotonation of the phenolic–OH on chelation. In the spectra of complexes (1-5) a broad diffuse band was identified in the range of 3426–3446 cm-1, followed by another weak band in-plane bending (rocking) at 844–854 cm-1 that suggests the presence of water molecules in the complexes (1-5). In the complexes (1-5) two bands appeared in the region 1641–1654 cm-1 (γasymmetry) and 1402–1430 cm-1 (γsymmetry) which attribute the carboxylate part in the acetate group and also suggest that they are responsible for the consisting of unidentate co-ordination site with the metal ion due to the value of differences (Δγa-s) between asymmetry and symmetry was greater than 200 cm-1 (Gupta, Bansal, & Chandra, 2007). The far IR spectra of the complexes (1-5) show medium bands in the region 459–470 cm-1 and 497–518 cm-1 corresponding to M-N and M-O vibrations respectively (Dede, Karipcin, Arabalı, & Cengiz, 2010). In the FT-IR spectra of complexes (1-5), the peaks corresponding to the ring stretching frequencies γ(C=N), γ(C=C) at 1503, 1422 cm-1 of free phenanthroline were shifted to higher frequencies in the region 1515–1532 cm-1 and 1422–1452 cm-1 respectively which indicate the complexation due to coordination of the heterocyclic nitrogen atoms to the metal ion (Dimitrov & Atanassova, 2003; Singh,1969) and other absorption bands are no significant change in the metal complexes (1-5) (Fig. S3).
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Fig. S3  FT-IR spectra of ligand (LH) and its complexes (1-5)



 
Electronic absorption spectra and magnetic susceptibility
Two intense absorption bands were observed in the electronic absorption spectrum of the ligand (LH). One less intense ILCT band appeared at 319 nm (31348 cm-1) which assigned to n –π* transition and another one more intense LMCT band at 258 nm (38760 cm-1) which attributes π –π* transition and they are responsible for azomethine (–CH=N–) and phenyl ring chromophore respectively (Shakir, Abbasi, Azam, & Khan, 2011) (Fig. S4). The bands for the complexes (1-2) and (4) are shifted to a longer wavelength which are attributed the donation of lone pair electron from the sp2-hybridized orbital of imino nitrogen in the ligand to the metal ion. Complex (1) exhibited only one low intensity broad band d-d transition at 650 nm (15,384 cm-1) corresponding to 2Eg→2T2g transition due to dynamic Jahn–Teller distortion and its observed μeff  value was 1.75 B.M and slightly higher than the spin-only value 1.73 BM, which suggest possibility of distorted octahedral geometry. Complex (2) showed bands at 646 nm (15,479 cm-1) and 496 nm (20,161 cm-1) corresponding to 4T1g (F) → 4A2g (F) (υ2) and 4T1g (F) → 4T1g (P) (υ3) transitions. However, the lowest energy band corresponding to 4T1g (F) → 4T2g (F) (υ1) transition was not observed possibly because it is band outside the range of the spectrometer (IR region >1000 nm) and the observed μeff value of the complex (2) was 4.73 B.M which is higher than the spin-only value due to orbital angular momentum contribution in d7 system and close to the value required for an octahedral structure (Raman, Kulandaisami, Shunmugasundaram, & Jeyasubramanian, 2001). Complex (4) showed three bands at 910 nm (10,989 cm-1), 560 nm (17,857 cm-1) and 417 nm (23,980 cm-1) corresponding to 3A2g (F) → 3T2g (F), 3A2g (F) → 3T1g (F) and 3A2g (F) → 3T1g (P) transitions and μeff value of the complex (4) was observed at 3.18 B.M (Lever, 1968). Complexes (3) and (5) have no absorption in the visible region and crystal field theory does not predict the d-d transitions of the complexes (3) and (5) due to d5 and d10 electronic configurations respectively and the observed magnetic susceptibility value of the complex (5) is zero which indicates the diamagnetic nature (Panchal, Parekh,  Pansuriya, & Patel, 2006). Manganese(II) ion has a high spin d5 electronic configuration with a 6S ground term, which gives no crystal field stabilisation energies for any coordination geometries and they are very weakly coloured due to spin forbidden d-d transition and laporte forbidden. It is very difficult to identify the d-d bands of a manganese(II) complex as these bands are not very well defined  and submerged in the tail of the strong intra ligand transitions or charge transfer bands. However, the broad bands of low intensity may be appeared around 25,000 cm-1 (400 nm) corresponding to the 6A1g (F) → 4T2g (G) transitions (Chandra & Kumar, 2005). On the basis of analytical, the observed spectral and magnetic susceptibility results suggest an octahedral environment around the central metal(II) ion. 
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Fig. S4 Electronic spectra of ligand (LH) and its complexes (1-2 & 4)



Electron paramagnetic resonance spectra
Complex (1) exhibited one intense absorption band at 300 K in the high field region was isotropic due to the tumbling motion of the molecules and another one exhibited at 77 K was anisotropic pattern with well-resolved hyperfine lines (Fig. S5). The spin Hamiltonian parameters have been calculated by Kivelson’s method. The observed gtensor values were in the following order g|| (2.1628) > g⊥ (2.0267) > ge (2.00277) indicating that the unpaired electron lies predominantly in the orbital of Cu(II) (Halli, Sumathi, & Kinni, 2012) and the observed g|| values for complex (1) was less than 2.3 in agreement with the covalent environment character of the M-L bond (Kivelson & Neeman,1961). The covalent nature of the M–L bond in the complex (1) was further supported by the geff value. The observed geff value was 1.40 which was less than 2.00277 (Syamal, 1985). The observed hyperfine constant parameters of the complex (1) were in the following order A|| (124 G) > Aav (98.66 G) > A⊥ (86 G) (1G = 10-4 cm-1). The values were obtained from the following equations (S1– S6).
                                                                            (S1)
                                                                            (S2)
                                                                               (S3)
                                                                             (S4)
                                                                              (S5)
                                                                             (S6)
The observed interaction coupling constant (G) value (6.69) of complex (1) was greater than 4 which suggests that there is no interaction between Cu–Cu centers in the solid state complex and the absence of half field signal at 1600 G corresponding to the ΔMs = ± 2 transition rules out a Cu–Cu interaction (Sharma et al., 2001). The values of molecular orbital coefficient parameters (α2, β2, γ2) were obtained by Kivelson and Neimann formulae (S7– S9).
               (S7)
                                                         (S8)                                                                                                                                             (S9) 
The observed values of in-plane σ-bonding (α2 = 0.55), in-plane π-bonding (β2 = 0.68) and out-plane π-bonding (γ2 = 0.40) were less than 1.0 which point out that the complex (1) has completely covalent character and also orbital reduction factors (K||, K⊥, K) are helpful to measure the covalent character. The observed  (0.37) value was larger than  (0.22) which indicates the presence of out-plane π-bonding in metal-ligand π-bonding and also, K ≥1 denotes ionic environment and K < 1 assigns covalent environment, the observed value of K (0.27) was less than 1.0 which designates the greater covalent character. The values are calculated from the equation (S10 – S14).
                                                           (S10)
                                                           (S11)
                                                                                   (S12)
                                                                 (S13)
                                                                                             (S14)                                                         
Where, Ed-d = 15,503.87 cm-1 which is responsible for d-d transition of complex (1) at 645 nm, the calculated magnetic susceptibility (µeff  = 1.55 B.M) value from the equation (S13) which was less than the observed value (µexp = 1.75 B.M) from the Guoy’s balance experiment, one-electron spin orbit coupling constant of free Cu(II) ion (λ0) = - 828 cm-1 and free ion dipolar term (P) = 0.036 cm-1. The observed Co-factor (f||) value of degree of geometrical distortion for complex (1) was 174.42 cm-1 which is calculated from the equation (S14). The obtained spectral and magnetic susceptibility results of the complex (1) have been proposed an octahedral geometry (Nickless, Power, & Urbach, 1983). 

	[image: C:\Users\elcot\Desktop\333 final esr .jpg]Fig. S5 The EPR spectra of complex (1) at (a) room temperature (300 K) and (b) liquid nitrogen temperature (77 K)



Thermal analysis
Thermogravimetric analysis is an effective and useful technique to assess quantitative of weight changes with respect to temperature and to investigate the thermal stability and composition of complexes. It is an essential dynamic tool for exploring the probability of attachment of solvent molecules (H2O) towards the central atom as a crystal or in a coordinate form / lattice form. Thermogram of the complexes (1-5) has been recorded in the temperature range from 40 °C to 730 °C (Fig. S6). The stages of decomposition, temperature range, decomposition products, the observed mass loss and calculated mass loss percentages of all complexes are summarized in Table S1. The data reveal the following findings: [MII(L)(phen)AcO].nH2O complexes (1-5) were thermally decomposed in three steps. In the endothermic process, the observed weight loss in the first step of decomposition of [CuII(L)(phen)AcO].2H2O complex (1) was 06.32 % (06.29 %) at 120 °C corresponds to the loss of two hydrated lattice water molecules (Kalbende, Tarase, & Zade, 2013). The observed weight loss in the second degradation stage is consistent with the elimination of the acetate at 225 °C and 1,10-phenanthroline moiety at 440 °C was 41.79 % (41.85 %). The obtained weight loss in the third degradation stage is indicated that the elimination of the morpholine substituted ligand at 722 °C was 38.18 % (38.14 %). The obtained final product was 13.85 % (13.91 %) in this complex (1) which may be due to the formation of CuO residue (Farag, Altalbawy, Gehad, El-Ela Sayed, & Mohamed, 2011). Similarly, the observed weight loss in the first step of decomposition of [CoII(L)(phen)AcO].4H2O complex (2) was 12.00 % (11.94 %) at 105 °C corresponds to the loss of four hydrated water molecules. The observed weight loss in the second degradation step corresponding to the elimination of the acetate at 250 °C and 1,10-phenanthroline moiety at 438 °C was 39.71 % (39.67 %). The obtained weight loss in the third degradation step indicating to the elimination of the morpholine based ligand moiety at 718 °C was 36.12 % (36.15 %). The remaining mass loss of was 12.39 % (12.42 %) due to the formation of ZnO residue. The observed weight loss in the first step of decomposition of the complex (3) [MnII(L)(phen)AcO].4H2O was 12.08 % (12.02 %) at 105 °C corresponding to the loss of four lattice water molecules. In the second degradation step, the loss of the acetate at 260 °C and 1,10-phenanthroline moiety at 400 °C was 39.80 % (39.93 %). In the third degradation step, the observed weight loss of the organic part of morpholine based ligand moiety at 728 °C was 36.40 % (36.39 %). The formation of MnO residue weight loss was 11.77 % (11.84 %). In the case of [NiII(L)(phen)AcO].4H2O complex (4), the first step at 95 °C by estimated mass loss of 12.00 % (11.94 %) which may be attributed to the loss of four lattice water molecules. The second decomposition step at 248 °C and 400 °C respectively with an estimated mass loss of 39.72 % (39.68 %), accounting for the expulsion of the acetate and 1,10-phenanthroline moieties. The third decomposition step at 715 °C with an estimated mass loss of 36.14 % (36.17 %), accounting for the expulsion of the total organic part of morpholine based ligand moiety. The remaining mass loss is 12.35 % (12.39 %), regarded as NiO residue. [ZnII(L)(phen)AcO].2H2O complex (5) decomposed in three successive steps. The first step corresponds to the mass loss of two hydrated water molecules with an estimated mass loss of 06.31 % (06.27 %) at 105 °C. The second decomposition step occur with an estimated mass loss of 41.76 % (41.72 %) which may attribute to loss of the acetate at 220 °C and 1,10-phenanthroline moiety at 410 °C. The third decomposition step at 722 °C with an estimated mass loss of 38.07 % (38.02 %), corresponding to the expulsion of the total organic part of morpholine based ligand. The final product obtained was 14.16 % (14.19 %) in this complex which also may be due to the formation of ZnO and the overall thermal degradation steps of complexes (1-5) are possible as in the following flow chart. Based on the above results, the proposed structures of complexes (1-5) have been shown in Scheme 1. 
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	Table S1 Thermal analysis of complexes (1-5) by TGA method

	Complexes
	M.W 
	Step
	Temperature range (°C)
	% Weight loss
[found (calcd)]
	Assignment 

	(1) [CuII(L)(phen) AcO].2H2O   
	571.54
	I
	40–120
	06.32 (06.29)
	2H2O 

	
	
	II
	120–440
	41.79 (41.85)
	C2H3O2 
C12H8N2

	
	
	III
	440–722
	38.18 (38.14)
	C13H18N2O

	
	
	Residue
	>722
	13.85 (13.91)
	CuO

	(2) [CoII(L)(phen) AcO].4H2O   
	602.93
	I
	40–105
	12.00 (11.94)
	4H2O 

	
	
	II
	110–410
	39.71 (39.67)
	C2H3O2 
C12H8N2

	
	
	III
	410–718
	36.12 (36.15)
	C13H18N2O

	
	
	Residue
	>718
	12.39 (12.42)
	CoO

	(3)[MnII(L)(phen) AcO].4H2O   
	598.94
	I
	40–105
	12.08 (12.02)
	4H2O 

	
	
	II
	110–385
	39.80 (39.93)
	C2H3O2 
C12H8N2

	
	
	III
	385–728
	36.40 (36.39)
	C13H18N2O

	
	
	Residue
	>728
	11.77 (11.84)
	MnO

	(4) [NiII(L)(phen) AcO].4H2O   
	602.70
	I
	40–95
	12.00 (11.94)
	4H2O 

	
	
	II
	110–400
	39.72 (39.68)
	C2H3O2 
C12H8N2

	
	
	III
	400–715
	36.14 (36.17)
	C13H18N2O

	
	
	Residue
	>715
	12.35 (12.39)
	NiO

	(5) [ZnII(L)(phen) AcO].2H2O   
	573.37
	I
	40–105
	06.31 (06.27)
	2H2O 

	
	
	II
	110–400
	41.76 (41.72)
	C2H3O2 
C12H8N2

	
	
	III
	400–722
	38.07 (38.02)
	C13H18N2O

	
	
	Residue
	>722
	14.16 (14.19)
	ZnO
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Fig. S6 TG plots of complexes (1-5) recorded under nitrogen atmosphere between the temperature range 40 and 750 °C at a heating rate of 20 °C /min



Cyclic voltammetry 
Cyclic voltammetry is an essential tool to investigate the electron transfer reactions of the complexes. Complexes (1-5) (10-3 M) were recorded in the potential range -1.7 to 1.0 V in methanol at 298 K containing 0.1M n-Bu4NClO4 as supporting electrolyte at scan rate of 100 Mv s-1. The cyclic voltammogram for mononuclear complexes (1-5) revealed that a quasi reversible one step reduction peak (Epc) in the range from -0.73 V to -1.11 V corresponding to M(II) / M(I) and one oxidation peak (Epa) in the range from -0.39 V to -0.66 V corresponding to M(I) / M(II). The values of peak-to-peak separation (ΔEP) for complexes (1-5) were observed in the range of 340 – 530 mV which was greater than the Nernstian value [(EPa–EPc) (or) ΔEP = 2.303RT/nF = 59/n mV] for the M(II) / M(I) redox couple revealing that this process is the best quasi-reversible (Fig. S7). If the peak current ratio is greater or less than unity (ipa / ipc > or < 1) which depicts quasi-reversible one electron transfer process (Shyamala & Chakravarty,1993). The observed current ratio of cathodic to anodic peak height was in the range from 0.11 µA to 0.50 µA and less than unity. The observed values of formal electrode potential (E° or E1/2) were in the range from -0.56 to -0.88 V which indicate that each couple corresponds to one electron transfer process. The observed results are summarized in Table S2. 

	 Table S2 Electrochemical data of complexes (1-5) in methanol medium

	Complexes
	Couple
	Epa
(V)
	Epc
(V)
	ΔEP    (mV)
	E°
(V)
	ipa /ipc µA

	(1)
	Cu(II) / Cu(I)
	-0.43
	-0.79
	360
	-0.61
	0.11

	(2)
	Co(II) / Co(I)
	-0.39
	-0.73
	340
	-0.56
	0.41

	(3)
	Mn(II) / Mn(I)
	-0.42
	-0.86
	440
	-0.64
	0.50

	(4)
	Ni(II) / Ni(I)
	-0.66
	-1.11
	450
	-0.88
	0.16

	(5)
	Zn(II) / Zn(I)
	-0.55
	-1.08
	530
	-0.81
	0.11

	Formal electrode potential E° (or) E1/2 =  ½ (EPa + EPc), ΔEP = (EPa–EPc) Scan rate 100 mV s-1.






	[image: C:\Users\elcot\Desktop\very final cv final phen 1-scheme cv - Copy.jpg]
Fig. S7  Cyclic voltammograms of the complexes (1-5)
 (10-3M) at scan rate 100 mvs-1
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	Table S3  Relative specific viscosity Vs  [Complex] / [DNA]

	Compounds
	Binding ratio (R) = [Complex] / [DNA]

	
	 0.2
	0.4
	0.6
	0.8
	1.0
	Relative specific
 viscosity (η/η0)1/3




	EB (Control)
	0.68
	1.35
	1.63
	1.82
	1.99
	

	Complex (1)
	0.69   
	1.12      
	1.50      
	1.67        
	1.64
	

	Complex (2)
	0.68
	1.08
	1.20
	1.35
	1.53
	

	Complex (3)
	0.67
	0.85
	0.97
	1.10
	1.45
	

	Complex (4)
	0.54
	0.77
	0.90
	1.02
	1.39
	

	Complex (5)
	0.52
	0.69
	0.78
	0.87
	1.18
	

	η  Specific viscosity of DNA in the presence complex,  
η0  Specific viscosity of DNA alone















	Table S4a IC50 values of DPPH radical scavenging assay

	[Complex] 
× 10-5 M
	% Inhibition (IC50)

	
	(1)
	(2)
	(3)
	(4)
	(5)
	(LH)
	Ascorbic acid

	4
	34.5362
	31.5683
	28.5672
	24.5620
	21.6752
	18.6421
	41.6352

	8
	43.8549
	40.6294
	33.6293
	37.6823
	32.6454
	26.5456
	53.7453

	12
	47.6890
	44.7239
	38.8634
	41.6321
	36.3542
	32.5432
	58.9533

	16
	56.8862
	54.7031
	44.5127
	49.6283
	46.7182
	43.5912
	70.8642

	20
	65.7532
	61.4532
	51.2243
	58.4263
	55.4352
	50.0131
	82.7542

	24
	73.6548
	66.3422
	55.4521
	63.5634
	60.4357
	55.4352
	82.7542







	Table S4b IC50 values of hydroxyl radical scavenging assay

	[Complex] 
× 10-5 M
	% Inhibition (IC50)

	
	(1)
	(2)
	(3)
	(4)
	(5)
	(LH)
	Ascorbic acid

	4
	17.7062
	15.8812
	11.0428
	17.7512
	14.3217
	12.9532
	30.7324

	8
	33.6582
	29.3532
	20.5721
	25.8453
	23.1031
	20.8532
	46.4536

	12
	37.7085
	31.9042
	30.6923
	35.5201
	28.4291
	28.4835
	51.8723

	16
	45.5829
	41.7823
	37.7613
	40.4283
	37.6537
	36.3512
	59.6582

	20
	55.8061
	51.6031
	44.6723
	47.4272
	44.4301
	43.6215
	65.6432

	24
	68.6341
	60.4182
	51.1243
	58.5022
	53.7652
	50.6732
	78.8351






	Table S4c IC50 values of super oxide scavenging assay

	[Complex] 
× 10-5 M
	% Inhibition (IC50)

	
	(1)
	(2)
	(3)
	(4)
	(5)
	(LH)
	Ascorbic acid

	4
	19.8532
	15.7812
	13.2453
	14.5432
	15.4362
	12.4562
	29.6422

	8
	25.6524
	19.7437
	18.6423
	19.6531
	18.7432
	18.7483
	41.7293

	12
	43.5432
	35.9743
	27.6313
	33.7223
	31.3436
	26.5752
	55.6349

	16
	51.7623
	43.5732
	37.8543
	41.8268
	39.3842
	34.7753
	66.7532

	20
	60.6543
	50.782
	46.7543
	47.7112
	46.9026
	41.2143
	72.5543

	24
	68.8873
	56.7954
	51.6542
	56.7131
	52.8856
	50.2371
	84.8532







	Table S4d IC50 values of nitric oxide scavenging assay

	[Complex] 
× 10-5 M
	% Inhibition (IC50)

	
	(1)
	(2)
	(3)
	(4)
	(5)
	(LH)
	Ascorbic acid

	4
	17.5437
	11.7823
	12.6557
	15.3563
	12.6342
	10.7236
	28.5523

	8
	25.6732
	21.9354
	16.6386
	19.7743
	16.2456
	15.5673
	35.7543

	12
	33.5123
	27.6528
	21.3902
	25.8148
	21.8732
	18.5531
	43.6573

	16
	42.6723
	37.4214
	26.3293
	33.8251
	37.8842
	29.7303
	52.6853

	20
	53.7283
	48.6643
	41.3652
	47.8843
	42.7622
	40.9532
	63.7217

	24
	62.6632
	57.8521
	50.9871
	56.5321
	52.3526
	50.0953
	72.7342









	Table S4e IC50 values of ferric reducing antioxidant power assay (FRAP)

	[Complex] 
× 10-5 M
	% Inhibition (IC50)

	
	(1)
	(2)
	(3)
	(4)
	(5)
	(LH)
	Ascorbic acid

	4
	17.7241
	15.6453
	11.7432
	14.3563
	12.7583
	13.8352
	28.6843

	8
	23.2341
	22.6271
	14.2381
	20.7743
	16.6543
	18.6342
	37.6453

	12
	30.6327
	28.5332
	20.7435
	25.8148
	24.7762
	24.6329
	51.6453

	16
	40.5428
	35.7632
	30.5632
	38.8251
	37.7322
	33.3520
	68.7563

	20
	54.7283
	51.3462
	41.5621
	50.9013
	48.8435
	50.8821
	79.4561

	24
	63.7242
	58.7623
	56.3583
	56.5321
	57.6634
	55.2944
	88.6743










	Table S5 Frontier molecular orbital energy gap and dipole moment values of  ligand (LH) and its complexes (1-5)

	Compounds
	HOMO  (eV)
	LUMO 
(eV)
	HOMO-LUMO gap
(eV)
	Dipole moment  (Debye)

	(LH)
	-5.71
	-0.91
	4.80
	2.00

	(1)
	-4.40
	-1.71
	2.69
	1.10

	(2)
	-3.73
	-1.69
	2.03
	1.03

	(3)
	-3.19
	-1.70
	1.50
	1.22

	(4)
	-4.87
	-1.74
	3.13
	0.97

	(5)
	-4.36
	-1.53
	2.83
	1.38
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