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Appendix A Regularity Conditions

We impose the following regularity conditions:

(a) C has a finite support BC = [0, τ ] and Pr(C ≥ τ |Z) = Pr(C = τ |Z) is bounded

away from zero.

(b) The function Λ0(t) is twice continuously differentiable in BC and λ(t) > 0 for t ∈ BC

and G0k(c) is twice continuously differentiable in BY for k = 1, . . . , K.

(c) We consider estimating the accuracy measures for t ∈ [τ , τ ] ⊂ BC and c ∈ [c, c] ⊂

BY , such that Pr(T > τ) Pr(T < τ) Pr(Y > c) Pr(T < c) > 0;

(d) There exists a function p(v;x, δ, z) (v = 0, 1) such that
∑1

v=0 p(v;x, δ, z) = 1, p(v =

1;x, δ, z) > c1 almost surely for some positive constant c1, and under the probability

measure associated with
∏n

i=1 p(Vi;Xi, δi, Zi) and conditional on O,

{
log

Pr(V1 = v1, . . . , Vn = rn|O)∏n
i=1 p(Vi;Xi, δi, Zi)

+ w(O)/2

}
/f(O)1/2

is asymptotically standard normal, where w is a positive and measurable function.

Conditions (a) and (b) are standard boundness and smoothness conditions for censored

data. Condition (c) defines the estimable region of accuracy measures. Condition (d)
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was imposed for the application of Le Cam’s third lemma to establish the asymptotic

equivalence of the two-phase sampling mechanism to random sampling such that Oi,

(i = 1, . . . , n) can be treated as i.i.d. observations (Zeng and Lin, 2014).

Appendix B Asymptotic Results of θ̂

Theorem B.1 below summarized the asymptotic results of β̂, Λ̂ and Ĝ and are similar to

those provided in Zeng and Lin (2014).

Theorem B.1. Under conditions (a)-(d), with probability one,

|β̂ − β0|+ sup
t∈[0,τ ]

|Λ̂(t)− Λ0(t)|+
K∑
k=1

sup
c∈[cl,cu]

|Ĝk(c)−G0k(c)| → 0

almost surely. In addition,
√
n(β̂ − β0, Λ̂ − Λ0, Ĝ − G0) weakly converge to a zero-mean

Gaussian process in R × `∞[0, τ ] × `∞[cl, cu]
K, where `∞[0, τ ] and `∞[cl, cu] are normed

spaces consisting of all bounded functions and the norm is defined as the supremum norm

on BC and By respectively.

The proof of the consistency of β̂, Λ̂ and Ĝ follows from the proof of Theorem 1 in

Zeng and Lin (2014) when Z is discrete and is thus omitted here. The weak convergence

could be proved using arguments in the proof of Theorem 2 in Zeng and Lin (2014). The

proof consists of four major steps and are briefly summarized below.

• Step 1: Proving the invertibility of the information operator for θ0.

• Step 2: Deriving the score equation for θ0.

• Step 3: Obtaining the asymptotic linear expansion of the score function for θ0.

• Step 4: Proving the weak convergence of
√
n(θ̂ − θ0).
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Steps 1-3 were proved in Zeng and Lin (2014). Let ‖f(·)‖V [a,b] denote total variation of

f(·) in [a, b]. Let BV[a, b] denote the space of functions with bounded total variation in

[a, b]. Consider the set

H = {(v, q,h) : h = (h1, . . . , hK), |v| ≤ 1, ‖q(t)‖V [0,τ ] ≤ 1, ‖hk(c)‖V [cl,cu] ≤ 1}

where q(·) ∈ BV [0, τ ] and hk ∈ BV [cl, cu], k = 1, . . . , K. We identify (β̂−β0, Λ̂−Λ0, Ĝ−

G0) as a random element in `∞(H) through definition v(β̂ − β0) +
∫ τ

0
q(t)d(Λ̂− Λ0)(t) +∑K

k=1

∫ cu
cl

[hk(c)− Ek{hk(Y )}]d(Ĝk −G0k)(c) where Ek denote conditional expectation of

Y given Z = zk. Let `F (θ) denote the full log-likelihood function of one observation

assuming Y is observed, where

`F (θ) = [δ log {λ(X)}+ δβY − Λ(X) exp(βY ) + log {dG(Y |Z)}] .

Let `(θ) = E{`F (θ)|O} denote the corresponding observed log-likelihood function, ˙̀
β(θ)

be the derivative of `(θ) with respect to β, ˙̀
Λ(θ)[q] be the path-wise derivative along the

path Λ+ ε
∫
qdΛ, and ˙̀

k(θ)[hk] be the derivative along the path dGk + ε{hk−Ek(hk)}dGk

for k = 1, . . . , K. To be specific

˙̀
β(θ) =E [δY − Y Λ(X) exp(βY )|O] ,

˙̀
Λ(θ)[q] =E

[
δq(X)− exp(βY )

∫ X

0

q(t)dΛ(t)|O
]
,

˙̀
k(θ)[hk] =E [hk(Y )− Ek{hk(Y )}|O] ,

(B.1)

where the expression of the expectation given the observed data is given in section 3.1 of

the paper. Let ˙̀(θ)[v, q,h] denote the score operator of θ, mapping a neighborhood of θ0

into `∞(H). Then ˙̀(θ)[v, q,h] = ˙̀
β(θ) + ˙̀

Λ(θ)[q] +
∑K

k=1
˙̀
k(θ)[hk]

Let Pn and P denote empirical measure and true measure, respectively. Since θ̂

maximizes `(θ), ˙̀
β(θ̂) = 0, ˙̀

Λ(θ̂)[q] = 0 and ˙̀
k(θ̂)[hk] = 0, k = 1, . . . , K. Therefore, θ̂
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is the solution of the functional score equation Pn{ ˙̀(θ)} = 0. Using Theorem 2.11.22 of

van der Vaart and Wellner (1996), we could show that

√
nP{ ˙̀(θ̂)} = −

√
n(Pn − P){ ˙̀(θ0)}+ op(1). (B.2)

Let B denote the information operator mapping θ − θ0 to `∞(H), where θ is in the

neighborhood of θ0. On the left-hand side of (B.2), P{ ˙̀(θ̂)} can be linearized around β0,

Λ0, G0 and is asymptotically equivalent to

B(θ̂ − θ0)[v, q,h]

=Bβ[v, q,h](β̂ − β0) + BΛ(Λ̂− Λ0)[v, q,h] + BG(Ĝ−G0)[v, q,h],

where

Bβ[v, q,h] = v

{
῭
ββ + ῭

Λβ[q] +
K∑
k=1

῭
kβ[hk]

}

BΛ(Λ− Λ0)[v, q,h] = ῭
βΛ[Λ− Λ0] + ῭

ΛΛ[q,Λ− Λ0] +
K∑
k=1

῭
kΛ[hk,Λ− Λ0]

BG(G−G0)[v, q,h] =
K∑
k=1

{
v ῭
βk[Gk −G0k] + ῭

Λk[q,Gk −G0k] +
K∑
l=1

῭
kl[hk, Gl −G0l]

}
,

῭
ββ, ῭

Λβ[q] and ῭
kβ[hk] are the derivatives of ˙̀

β, ˙̀
Λ[q], and ˙̀

k[hk] with respect to β evaluated

at θ0; ῭
βΛ[q∗], ῭

ΛΛ[q, q∗] and ῭
kΛ[hk, q

∗] are the path-wise derivative of ˙̀
β, ˙̀

Λ[q], ˙̀
k[hk] with

respect to Λ along q∗ evaluated at θ0; and ῭
βk[hk], ῭

Λk[q, hk] and ῭
lk[hl, hk] are the path-

wise derivative of ˙̀
β, ˙̀

Λ[q], ˙̀
l[hl] with respect to Gk along hk evaluated at θ0. It was

proved by Zeng and Lin (2014) that B is invertible. Therefore,

√
n

[
v(β̂ − β0) +

∫ τ

0

q(t)d{Λ̂(t)− Λ0(t)}+
K∑
k=1

∫ cl

cu

hk(c)d{Ĝk(c)−G0k(c)}

]

=−
√
n(Pn − P)

{
˙̀ ◦ B−1(θ0)[v, q,h]

}
+ op(1)
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The weak convergence of θ̂ is proved. Therefore, for any constant t∗ ∈ (0, τ) and c∗ ∈

(cl, cu)

√
n(β̂ − β0) =

√
nPn(Wβ), Wβ = ˙̀ ◦ B−1(θ0)(1, 0,0);

√
n{Λ̂(t∗)− Λ0(t∗)} =

√
nPn(WΛ), WΛ = ˙̀ ◦ B−1(θ0)(0, q∗,0);

√
n{Ĝk(c

∗)−G0k(c
∗)} =

√
nPn(WGk

), WGk
= ˙̀ ◦ B−1(θ0)(0, 0,h∗k);

where q∗(t) = I(t < t∗) and h∗k(c) is a K-vector of functions with the k-th element equal

to I(c < c∗) and 0 otherwise.

Appendix C Asymptotic property of one-step esti-

mator θ̂
(1)

C.1 Consistency

In the E-step of the one-step estimation, the observed log-likelihood function given the

IPW estimators θ̃ is `(θ, θ̃) = E{`F (θ)|O, θ̃}. In the M-step of the one-step estimation,

we aim to maximize Pn{`(θ, θ̃)} with respect to θ. Using similar notations in Appendix

B, let ˙̀
β(θ, θ̃) be the derivative of `(θ, θ̃) with respect to β, ˙̀

Λ(θ, θ̃)[q] be the path-

wise derivative along the path Λ + ε
∫
qdΛ, and ˙̀

k(θ, θ̃)[hk] be the derivative along the

path dGk + ε{hk − Ek(hk)}dGk for k = 1, . . . , K. The corresponding score function is

˙̀(θ, θ̃)[v, q,h] = ˙̀
β(θ, θ̃) + ˙̀

Λ(θ, θ̃)[q] +
∑K

k=1
˙̀
k(θ, θ̃)[hk], where

˙̀
β(θ, θ̃) =E

[
δY − Y Λ(X) exp(βY )|O, θ̃

]
,

˙̀
Λ(θ, θ̃)[q] =E

[
δq(X)− exp(βY )

∫ X

0

q(t)dΛ(t)|O, θ̃
]
,

˙̀
k(θ, θ̃)[hk] =E

[
hk(Y )− Ek{hk(Y )}|O, θ̃

]
.
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Obviously, ˙̀
β(θ, θ̃), ˙̀

Λ(θ, θ̃)[q] and ˙̀
k(θ, θ̃)[hk] have the same format as their counterparts

in (B.1) for NPMLE, but with the expectation conditioning on both the observed data

O and the initial parameter θ̃. The calculation of the conditional expectation is given in

Section 3.2 of the paper. In addition, ˙̀(θ,θ) = ˙̀(θ) and P{ ˙̀(θ0,θ0)} = P{ ˙̀(θ0)} = 0.

With the consistency of θ̃ to θ0 (Liu et al., 2012), P{ ˙̀(θ0, θ̃)} → P{ ˙̀(θ0,θ0)} = 0.

Therefore, θ̂
(1)

, the solution of Pn{ ˙̀(θ, θ̃)} = 0 is also a consistent estimator of θ0. The

consistency of one-step estimator θ̂
(1)

could be proved iteratively.

C.2 Weak Convergence

Since ˙̀(θ̂
(1)
, θ̃) could be taken as a function indexed by θ(1) and θ̃, using Theorem 2.11.22

of van der Vaart and Wellner (1996), we could show that

√
nP{ ˙̀(θ̂

(1)
, θ̃)} = −

√
n(Pn − P){ ˙̀(θ0,θ0)}+ op(1). (C.1)

Let B1 and B2 be linear operators mapping θ−θ0 to `∞(H), where θ is in the neighborhood

of θ0. On the left-hand side of (C.1), P{ ˙̀(θ̂
(1)
, θ̃)} can be linearized around β0, Λ0, G0

and is asymptotically equivalent to

B1(θ̂
(1)
− θ0)[v, q,h] + B2(θ̃ − θ0)[v, q,h]

=B1β(β̂(1) − β0)[v, q,h] + B1Λ(Λ̂(1) − Λ0)[v, q,h] + B1G(v, q,h)(Ĝ(1) −G0)[v, q,h]

+B2β(β̃ − β0)[v, q,h] + B2Λ(Λ̃− Λ0)[v, q,h] + B2G(G̃−G0)[v, q,h],

where B1β, B1Λ and B1G are the derivative of ˙̀(θ, θ̃)[v, q,h] with respect to θ and B2β,

B2Λ and B2G are the derivative of ˙̀(θ, θ̃)[v, q,h] with respect to θ̃ evaluated at θ = θ0

along [
β − β0,

∫ τ

0

q(t)d{Λ(t)− Λ0(t)},
K∑
k=1

∫ cl

cu

hk(c)d{Gk(c)−G0k(c)}

]
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respectively. Since B1 is the information operator given fixed θ̃, the invertibility of B1

could be proved similarly along the lines of the proof of the invertibility of B in Zeng

and Lin (2014) using the fact that h is orthogonal to ˙̀
β(θ,θ0) and ˙̀

Λ(θ,θ0). Specifically,

by Theorem 4.7 of Rudin (1973), B1 is invertible if it is one to one, or equivalently, is

non-zero along any non-trivial submodel. Suppose B1 is zero along some submodel

[
β + εv,Λ + ε

∫
qdΛ, dG+ ε{h− E(h)}dG

]
,

where E{h(Y )} = 0. Then the score function given fixed θ̃ along this submodel is zero,

i.e. ˙̀(θ, θ̃)[v, q,h] = 0. When V = 1, the score function is

{δ − Λ(X) exp(βY )}Y v + δq(X)− exp(βY )

∫ X

0

q(t)dΛ(t) +
K∑
k=1

hk(Y ) = 0.

Multiplying both sides by hk(Y ) and take the expectation, it follows that h = 0. Further-

more, setting δ = 1 and X = 0 in the above equation, it follows that Y v + q(0) = 0 and

hence v = 0. With h = 0 and v = 0, setting δ = 1 in the above equation, it follows that

q(X)−
∫ X

0
q(t)dΛ(t) = 0 which is a homogeneous equation for q with only zero solution,

implying that q = 0. Therefore B1 is invertible.

It should also be noted that B = B1 + B2. Together with (C.1), it follows that

B1(θ̂
(1)
− θ0)[v, q,h] + B2(θ̃ − θ0)[v, q,h] = −

√
n(Pn − P){ ˙̀(θ0,θ0)}+ op(1),

and thus

√
n

[
v(β̂(1) − β0) +

∫ τ

0

q(t)d{Λ̂(1)(t)− Λ0(t)}+
K∑
k=1

∫ cl

cu

hk(c)d{Ĝ(1)
k (c)−G0k(c)}

]

=−
√
nPn

{
˙̀ ◦ B−1

1 (θ0)[v, q,h] + B2 ◦ B−1
1 (θ̃ − θ0)[v, q,h]

}
+ op(1).

(C.2)
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Therefore

√
n(β̂(1) − β0) =

√
nPn(W(1)

β ), W(1)
β = ˙̀ ◦ B−1

1 (θ0)(1, 0,0) + B2 ◦ B−1
1 (WIPW)(1, 0,0);

√
n{Λ̂(1)(t∗)− Λ0(t∗)} =

√
nPn(W(1)

Λ ), WΛ = ˙̀ ◦ B−1
1 (θ0)(0, q∗,0) + B2 ◦ B−1

1 (WIPW)(0, q∗,0);

√
n{Ĝ(1)

k (c∗)−G0k(c
∗)} =

√
nPn(W(1)

Gk
), W(1)

Gk
= ˙̀ ◦ B−1

1 (θ0)(0, 0,h∗k) + B2 ◦ B−1
1 (WIPW)(0, 0,h∗k),

where WIPW is the expression of the weighted asymptotic linear expansion of θ̃ which was

given in Liu et al. (2012). Let W(1)
G = (W(1)

G1
, . . . ,W(1)

GK
) and W(1) = (W(1)

β ,W(1)
Λ ,W(1)

G ).

Appendix D Asymptotic Results of Parameter-wise

Best Linear Unbiased Estimators

In the following, we will show NPMLE θ̂ is asymptotically equivalent to an estimator

θ̂
pBLUE

which linearly combines θ̂
(1)

and θ̃. Since NPMLE is the most efficient estimators,

θ̂
pBLUE

is the parameter-wise best linear unbiased estimator with minimum variance, i.e.

the same variance as θ̂.

Since ˙̀(θ0,θ0) = ˙̀(θ0), the left-hand sides of B.2 and C.1 are asymptotically equiva-

lent, i.e.

√
nB1(θ̂

(1)
− θ0)[v, q,h] +

√
nB2(θ̃ − θ0)[v, q,h] =

√
nB(θ̂ − θ0)[v, q,h] + op(1),

which suggests a linear combined estimator θ̂
pBLUE

such that

√
n

[
v(β̂pBLUE − β0) +

∫ τ

0

q(t)d{Λ̂pBLUE(t)− Λ0(t)}+
K∑
k=1

∫ cl

cu

hk(c)d{ĜpBLUE
k (c)−G0k(c)}

]

=
√
nB1 ◦ B−1(θ̂

(1)
− θ0)[v, q,h] +

√
nB2 ◦ B−1(θ̃ − θ0)[v, q,h]

Obviously, θ̂ is asymptotically equivalent to θ̂
pBLUE

and θ̂
pBLUE

is the best linear
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unbiased estimators with optimal weight operators B1 ◦ B−1 and B2 ◦ B−1 for θ̂
(1)

and θ̃

respectively.

Appendix E Asymptotic Linear Expansions

Using the results in Appendix B.3 of Liu et al. (2012), with the consistency of F̂ (c) and

Ŝ(t, c), we could show that

√
n{T̂PRt(c)− TPRt(c)} =

√
nPn{WTPRt(c)},

√
n{F̂PRt(c)− FPRt(c)} =

√
nPn{WFPRt(c)},

√
n{P̂PVt(c)− PPVt(c)} =

√
nPn{WPPVt(c)},

√
n{N̂PVt(c)− NPVt(c)} =

√
nPn{WNPVt(c)},

√
n{R̂OCt(c)− ROCt(c)} =

√
nPn{WROCt(c)},

√
n{ÂUCt(c)− AUCt(c)} =

√
nPn{WAUCt(c)},

√
n{D̂MRt(c)−DMRt(c)} =

√
nPn{WDMRt(c)},

where

WTPRt(c) =
TPRt(c)WS(t, cu)−WF (c)−WS(t, c)

1− S(t, cu)
,

WFPRt(c) =
WS(t, c)− FPRt(c)WS(t, cu)

S(t, cu)
,

WPPVt(c) =
{PPVt(c)− 1}WF (c)−WS(t, c)

1− F (c)
,

WNPVt(c) =
WS(t, cu)−WS(t, c)− NPVt(c)WF (c)

F (c)
,

WROCt(c) = WTPRt{FPR−1(c)} − ˙ROCt(c)WFPRt{FPR−1(c)},

WAUCt =

∫ 1

0

WROCt(c)dc,

WDMRt =

∫ cu

cl

{WTPRt(c)−WFPRt(c)}dF (c) +

∫ cu

cl

{TPRt(c)− FPRt(c)}dWF (c),

where WF (c) and WS(t, c) were given in Section 4.1 of the main paper.

The asymptotic properties of
√
n{Â(1)

t (c)−At(c)} could be proved following the same

strategy as the weak convergece of
√
n{Ât(c)− At(c)}.
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