Supporting information

Mechanism of Cp₂ZrCl₂-Catalyzed Olefin Cycloalumination with AlEt₃: Quantum Chemical Approach

Tatyana V. Tyumkina,^{a*} Denis N. Islamov, ^a Lyudmila V. Parfenova, ^a Stanislav G. Karchevsky^b,

Leonard M. Khalilov, ^a Usein M. Dzhemilev ^a

^aInstitute of Petrochemistry and Catalysis of Russian Academy of Sciences, 141 Pr. Oktyabrya, Ufa 450075, Russian Federation

^bInstitute of Petroleum Refining and Petrochemistry of the Republic of Bashkortostan, Iniciativnaya st., 12, 450065 Ufa, Russian Federation

Corresponding author: E-mail address: ttvnmr@gmail.com.

Contents:

Scheme S1. Bimetallic complex 2 and zirconacyclopropane 5 as active sites in the alkene	
cyclometalation. There are ΔG values (298.15 K, 1 atm) above the arrows ($\Delta G^{\#}$ in	
parentheses)	!
Scheme S2. Mechanism of intermediates 2 and 3 formation upon the reaction of AlEt ₃ with	
Cp ₂ ZrEtCl and Cp ₂ ZrEtHS2	
Figure S1. Energy profile of the intermediates 2 and 3 formation by the reaction of AlEt ₃ with	
Cp ₂ ZrEtCl (reaction 4) (a) and AlEt ₃ with Cp ₂ ZrEtH (reaction 8) (b)S3	3
Figure S2. Optimized (PBE/3ζ) structures of intermediates 18a and 18bS3	;
Table S1. Thermodynamic parameters of the catalytic alkene cycloalumination by AlEt ₃ in the	
presence of Cp ₂ ZrCl ₂ calculated by M06-2X/cc-pVDZ(for H, C, Al, and Cl)//cc-pVDZ-PP(for	
Zr) method at T = 298 K (Δ S [cal/(mol K]); Δ H, Δ G [kcal/mol])S4	ŀ
Table S2. Calculated at different DFT levels thermodynamic parameters (298.15 K, 1 atm, [S] =	:
cal/(mol*K);[H] = [G] = kcal/mol) for all the reactants, intermediates, transition states, and	
product considered in the text of the article	

The supplemental file FILENAME contains the computed Cartesian coordinates of all of the molecules reported in this study. The file may be opened as a text file to read the coordinates, or opened directly by a molecular modeling program such as Mercury (version 3.3 or later, <u>http://www.ccdc.cam.ac.uk/pages/Home.aspx</u>) for visualization and analysis.

Scheme S1.

Bimetallic complex 2 and zirconacyclopropane 5 as active sites in the alkene cyclometalation. There are ΔG values (298.15 K, 1 atm) above the arrows ($\Delta G^{\#}$ in parentheses).

Scheme S2.

Mechanism of intermediates 2 and 3 formation upon the reaction of AlEt₃ with $Cp_2ZrEtCl$ and Cp_2ZrEtH .

Figure S1.

Energy profile of the intermediates 2 and 3 formation by the reaction of AlEt₃ with $Cp_2ZrEtCl$ (reaction 4) (a) and AlEt₃ with Cp_2ZrEtH (reaction 8) (b).

Figure S2.

Optimized (PBE/3 ζ) structures of intermediates **18a** and **18b**.

18a

18b

Table S1.

Thermodynamic parameters of the catalytic alkene cycloalumination by AlEt₃ in the presence of Cp₂ZrCl₂ calculated by M06-2X/cc-pVDZ(for H, C, Al, and Cl)//cc-pVDZ-PP(for Zr) method at $T = 298 \text{ K} (\Delta S \text{ [cal/(mol K]); } \Delta H, \Delta G \text{ [kcal/mol]}).$

Reaction	ΔH	ΔG	ΔS	ΔH^{\neq}	ΔG^{\neq}	ΔS^{\neq}
$Cp_2ZrCl_2 + 2AlEt_3 \rightarrow 6$	-25,1	4,3	-98,4			
$6 \rightarrow TS''(6-7) \rightarrow 7$	4,6	4,4	0,4	6,9	9,1	-7,3
$7 \rightarrow 1 + \text{ClAlEt}_2$	9,9	-2,7	42,1			
$1 \rightarrow TS(1-9') \rightarrow 9'$	17,0	19,7	-9,0	17.1	21.0	-12.9
$8' \rightarrow TS(9'\text{-}10) \rightarrow 10$	-7,1	-10,1	10,1	0,1	0,7	-1,8
$10 \rightarrow 11 + \mathrm{ClAlEt}_2$	14,3	1,1	44,2			
$11 \rightarrow TS"(11-12) \rightarrow 12$	28.0	15.8	41.2	31.4	32.0	-1.8
$12 + \mathrm{AlEt}_3 \rightarrow 13$	-21.0	-8.8	-40.7			
$13 \rightarrow TS'(13\text{-}11) \rightarrow 11\text{+} \text{HAlEt}_2$	24.3	12.2	40.6	-	-	-
$11 \rightarrow TS(11-5) \rightarrow 5 + C_2H_6$	12,0	0,9	37,0	24,6	27,0	-8,2
$5 + \text{ClAlEt}_2 \rightarrow 2$	-41,2	-24,9	-54,5			
$5 + \mathrm{HAlEt}_2 \rightarrow 3$	-49,4	-34,7	-49,5			
5 + propene \rightarrow 16	-13,1	1,6	-49,2			
$16 \rightarrow TS(16-17) \rightarrow 17$	-14,5	-14,1	-1,4	4.1	5.1	-3,4
$17 + \mathrm{ClAlEt}_2 \rightarrow \mathbf{22a}$	-14,6	-1,4	81,6			
$22a \rightarrow TS(22a\text{-}23a) \rightarrow 23a$	-6,5	-4,4	-7,2	1,2	2,8	-5,1
$\mathbf{23a} \rightarrow \mathbf{TS}(\mathbf{23a}\textbf{-}\mathbf{18a}) \rightarrow \mathbf{18a}$	1,3	-0,6	6,6	11,3	8,4	9,6
$\mathbf{18a} + \mathrm{ClAlEt}_2 \rightarrow 24$	-13,0	2,0	-50,4			
$24 \rightarrow TS(24\text{-}25) \rightarrow 25$	-9,1	-11,0	6,2	3,3	5,7	-8,0
$25 \rightarrow 20 + \mathrm{Cp}_2\mathrm{ZrCl}_2$	18,1	-0,8	63,3			
$20 \rightarrow TS(20\text{-}29) \rightarrow 29$	-16,9	-7,9	-30,4	-2,6	4,8	-24,7
$29 \rightarrow 21 + \mathrm{AlEt}_3$	24,2	6,0	61,2			

Table S2.

Calculated at different DFT levels thermodynamic parameters (298.15 K, 1 atm, [S] = cal/(mol*K); [H] = [G] = kcal/mol) for all the reactants, intermediates, transition states, and product considered in the text of the article.

Stationary point	$PBE/3\zeta$			M06-2X/cc-pVDZ(for H, C, Al, and Cl)//cc-pVDZ-PP(for Zr)			
	H^0	G^0	S ⁰	H^{0}	G^0	S ⁰	
1	-3103641.3	-3103701.9	203.1	-911659.2	-911714.7	186.1	
2	-3053666.9	-3053716.5	166.4	-861655.5	-861703.0	159.5	
3	-2765318.4	-2765366.4	160.9	-573206.5	-573253.2	156.5	
5	-2513630.7	-2513664.8	114.3	-321394.7	-321428.4	113.2	
6	-3643656.9	-3643736.3	266.2	-1451893.3	-1451966.1	244.3	
7	-3643652.6	-3643730.8	262.2	-1451888.7	-1451961.7	244.7	
8	-2802732.9	-2802770.6	126.2	-610598.9	-610635.6	123.1	
10	-3103632.6	-3103692.5	200.9	-911649.3	-911705.1	187.1	
11	-2563617.9	-2563658.1	134.9	-371415.4	-371454.3	130.6	
12	-2514369.4	-2514404.4	117.5	-322135.0	-322169.8	116.7	
13	-2815284.7	-2815342.1	192.6	-623202.2	-623256.6	182.7	
14	-5555478.8	-5555536.4	192.9	-	-	-	
15	-5555482.9	-5555540.7	193.8	-	-	-	
16	-2587496.6	-2587535.9	131.9	-395302.5	-395340.4	127.2	
17	-2587500.7	-2587539.6	130.7	-395316.9	-395354.4	125.9	
20	-625692.8	-625748.6	187.2	-626003.0	-626058.1	184.8	
21	-324788.2	-324819.2	103.9	-324950.1	-324980.8	102.8	
24	-3667530.6	-3667605.0	249.7	-1475789.1	-1475858.3	232.1	
25	-3667542.6	-3667617.8	252.0	-1475798.2	-1475869.2	238.4	
26	-3667532.6	-3667607.2	250.2	-1475790.9	-1475859.4	229.6	
27	-3667532.3	-3667605.4	245.2	-1475792.5	-1475860.5	228.1	
28	-3667545.3	-3667622.7	259.7	-1475800.5	-1475871.1	236.7	
29	-625704.0	-625752.6	162.8	-626019.9	-626066.0	154.4	
18a	-3127519.6	-3127576.1	189.5	-935556.4	-935610.6	181.8	
18b	-3127525.5	-3127581.6	188.0	-935563.0	-935616.2	178.2	
19a	-3127507.2	-3127562.5	185.2	-935564.0	-935616.5	176.2	
19b	-3127526.8	-3127583.9	191.5	-935562.8	-935616.8	181.0	
22a	-3127515.6	-3127573.3	193.8	-935551.2	-935605.6	182.4	
22b	-3127516.1	-3127574.4	195.8	-935551.4	-935607.0	186.4	
23a	-3127521.1	-3127576.1	184.3	-935557.8	-935610.0	175.2	
23b	-3127523.9	-3127579.5	186.7	-935559.5	-935613.4	180.8	

30	-3127521.9	-3127579.6	193.4	-935556.5	-935611.4	184.0
31a_R=Bu	-2913045.5	-2913106.3	203.7	-721024.7	-721083.1	195.8
31a_R=Ph	-2959344.4	-2959404.3	200.8	-767357.7	-767415.0	192.2
31b_R=Bu	-2913038.8	-2913098.8	201.1	-721020.4	-721077.4	191.0
31b_R=Ph	-2959342.7	-2959401.3	196.5	-767362.5	-767417.1	183.2
9'	-3103622.6	-3103678.4	187.0	-911642.2	-911695.0	177.0
9''	-3103624.7	-3103682.4	193.6	-911645.2	-911698.2	178.0
AlEt ₃	-300901.4	-300934.8	112.0	-301046.2	-301078.0	106.7
C ₂ H ₄	-49227.3	-49243.7	55.2	-	-	-
C ₂ H ₆	-49985.3	-50002.6	58.1	-50008.8	-50025.0	54.4
C ₃ H ₆	-73855.9	-73874.9	63.5	-73894.7	-73913.6	63.2
Cp ₂ ZrCl ₂	-3041843.2	-3041878.6	118.7	-849777.1	-849811.9	116.9
Et ₂ AlCl	-540007.8	-540038.1	101.6	-540219.6	-540249.7	100.8
Et ₂ AlH	-251646.1	-251673.9	93.5	-251762.4	-251790.1	92.7
Hexene-1	-147730.0	-147755.8	86.7	-147812.0	-147837.6	85.9
Styrene	-194030.9	-194055.8	83.4	-194146.3	-194171.1	83.3
TS''(1-2)	-3103603.5	-3103658.1	183.1	-	-	-
TS''(11-12)	-2563590.9	-2563630.2	131.8	-371384.0	-371422.4	128.7
TS''(13-11)	-2815279.4	-2815332.8	178.9	-	-	-
TS''(13-3)	-2815252.7	-2815304.5	173.8	-	-	-
TS''(6-7)	-3643646.5	-3643721.2	250.5	-	-	-
TS'(1-2)	-3103605.9	-3103661.0	184.8	-	-	-
TS'(11-12)	-2563584.5	-2563624.0	132.4	-371380.0	-371417.0	124.2
TS'(13-11)	-2815281.0	-2815334.6	179.7	-	-	-
TS'(13-3)	-2815253.0	-2815306.7	180.2	-	-	-
TS'(6-7)	-3643649.9	-3643725.1	252.2	-1451886.4	-1451957.0	237.0
TS(1-9'')	-3103625.1	-3103679.3	182.0	-	-	-
TS(1-9')	-3103622.9	-3103677.0	181.5	-911642.1	-911693.7	173.2
TS(11-5)	-2563600.6	-2563639.1	128.9	-371390.8	-371427.3	122.4
TS(14-15)	-5555462.8	-5555518.1	185.4	-	-	-
TS(16-17)	-2587488.7	-2587526.7	127.2	-395298.4	-395335.3	123.8
TS(18a-19a)	-3127506.9	-3127560.8	180.8	-	-	-
TS(18b-19b)	-3127521.8	-3127578.4	189.9	-	-	-
TS(19a-30)	-3127503.5	-3127555.0	172.8	-935541.2	-935589.9	163.4
TS(19b-30)	-3127481.2	-3127534.1	177.4	-	-	-
TS(2-31a)_R=Bu	-2913013.9	-2913075.3	205.7	-	-	-
TS(2-31a)_R=Ph	-2959314.5	-2959374.0	199.4	-	-	-

TS(2-31b)_R=Bu	-2912998.3	-2913057.0	196.7	-	-	-
TS(2-31b)_R=Ph	-2959314.8	-2959374.5	200.0	-	-	-
TS(20-29)	-625690.8	-625744.0	178.5	-626005.6	-626053.4	160.0
TS(22a-23a)	-3127514.1	-3127569.6	186.1	-935550.0	-935602.8	177.3
TS(22b-23b)	-3127515.5	-3127571.9	189.3	-3127500.0	-3127554.9	184.4
TS(23a-18a)	-3127511.8	-3127568.4	189.8	-935546.5	-935601.6	184.8
TS(23b-18b)	-3127516.5	-3127573.2	190.3	-	-	-
TS(24-25)	-3667526.2	-3667598.2	241.5	-1475785.8	-1475852.6	224.1
TS(26-27)	-3667522.5	-3667595.4	244.4	-	-	-
TS(27-28)	-3667532.5	-3667604.3	240.8	-1475791.7	-1475859.7	228.0
TS(8-15)	-5605411.3	-5605475.9	216.8	-	-	-
TS(9'-10)	-3103621.7	-3103677.1	186.0	-911642.1	-911694.3	175.2
TS(9''-10)	-3103624.0	-3103680.6	189.9	-911643.2	-911696.8	179.8