Supporting Information

Climatic Influence on Temporal Trends of Polychlorinated Biphenyls and Organochlorine Pesticides in Landlocked Char from Lakes in the Canadian High Arctic

Ana Cabrerizo^{1*}, Derek C.G Muir^{1*}, Günter Köck², Deborah Iqaluk³, Xiaowa Wang¹

¹ Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada

² Institute for Interdisciplinary Mountain Research, A-6020 Innsbruck, Austria;

³ Resolute Bay, Nunavut XOA OVO, Canada

Total number of pages: 41 Total number of figures: 18

Total number of tables: 16

Annex I.

1. Analytical Methods	56
1.1 Extraction and isolation steps for Arctic char (<i>Salvelinus alpinus</i>) samples S	6
1.2 Extraction and isolation steps for soil samples	510
1.3 Water chemistry analyses	S12
List of Tables	
Table S1. List of individual organohalogen analytes along with their MDLs (ng/g wet wt) either GC with high- or low resolution MS, GC-NCIMS, or GC-ECD	using 8

Table	S2.	ASE	Methods	details	for	cleaning	Hydromatrix	and	Soil	Extraction	for
POPs								•••••		S1	1

Annex II. Fish Biology

List of Tables

List of Figures

Figure S1. Relationship between Arctic char fork length and weight (in log) within the set of
data
Figure S2. Box-plot comparing the δ^{15} N isotopic signature for Amituk, Char, Hazen and Resolute lakes through the temporal series of data
Figure S3. Box-plot comparing the δ^{13} C isotopic signature for Amituk, Char, Hazen and Resolute
lakes through the temporal series of data
Figure S4. Geomeans δ^{13} C vs δ^{15} N isotopic signature for Amituk, Char, Hazen and Resolute
lakes

Annex III. Occurrence of legacy POPs in Arctic char

List of Tables:

Table S4. Geometric mean concentration (ng/g wet weight) of Σ PCBs, OCPs (Σ DDTs, Σ HCHs and HCB) and Toxaphene in Resolute, Hazen, Char and Amituk lakes along the temporal series....**S15**

Table S5. Geometric mean concentration (ng/g wet weight) of Toxaphene congeners (P26, P50 and P62) in Resolute, Hazen, Char and Amituk lakes in a subset of years from 2005 to 2015.......**S17**

List of Figures:

Figure S5. Long term trends in proportion of PCBs congeners groups in landlocked Arctic char	
from Resolute Lake, Amituk Lake, Char Lake and Lake Hazen $S24$	

Figure S6. Influence of lipid content on Log DDCBs , OC pesticides (DDDTs, DHCHs and H	ICB)
and Toxaphene (in ng/g wet wt), in Resolute, Amituk, Char and Hazen lakes	525
Figure S7. Influence of lipid content on Log Σ HCHs in Hazen lakes for insectivorous Arctic ch	ar
(δ ¹⁵ N <12‰)	525
Figure S8. Concentration of PCBs and DDTs vs δ^{15} N for Lake Hazen, Resolute, Amituk and	
Char	526

Annex IV. Trends of legacy POPs in Arctic char

List of Tables:

Table S13. Percent annual decline (negative) and increase (positive) in selected POPs in Arctic
Char from from Amituk, Char, Hazen and Resolute lakes using the PIA program. PIA was run
using lipid weight concentrations for each sample

List of Figures

Figure	S9 .	DDE/SDDTs	ratio	versus	years	of	Lake	Hazen,	Amituk,	Resolute	and	Char
lakes											S2	8
Figure S10. Trends in concentrations (ng/g lipid weight) of Parlar 26, 50 and 62 in Arctic char												
muscle f	from	Hazen Lake (2	005 to	2015) a	nd Am	ituk	and R	esolute la	kes from	2012 to 20	15 S	529

Annex V. Influence of climatic oscillations on the occurrence of legacy POPs in Arctic char

List of Figures:

Figure S11. Mean Annual Temperature (°C) versus year of sampling in Hazen, Resolute, Char and
Amituk lakes
Figure S12. Annual Total Snow (cm) versus Sampling years in Resolute, Amituk, Hazen and Cha
lakes

Figur	e S16. R	elatio	nships	s between the	e concer	ntrati	ons o	f ΣPCB, ΣD	DTs a	ind ΣHCF	Is in char	from
Char	Lake,	and	the	predictors:	NAO	in	the	preceding	and	current	summer	and
spring												5
1 0												
Figur	e S17. R	elation	nships	s between the	concen	tratic	ons of	ΣΡCΒ, ΣDΙ	OTs an	d ΣHCHs	in char fro	om
Amituk Lake, and the predictors: NAO in the preceding and current summer and spring												

List of Tables:

Table S14. Influence of year, weight and climatic parameters on the occurrence of $\Sigma PCBs$, $\Sigma DDTs$
and Σ HCHs in Lake Hazen, Amituk, Resolute and Char lakes.*r ² is the amount of variation
explained by the model. Weight = Log W; Year = Yr, NAO (summer, spring or annual NAO), Log
P= Total Annual Precipitation (snow+rain)
Table S15. Results of General Linear Model Analyses and factors affecting the concentration ofPOPs in Arctic char from Lake Hazen, Amituk, Char and Resolute over the long temporal
serie
Table S16. Increments of r ² (in %) when applying equation [1] (which consider climatic parameters) and equation [2] (which does not consider climatic parameters) in the long temporal series of POPs in Arctic char
Cited Literature

ANNEX I:

1. Analytical Methods

1.1. Extraction and isolation steps for Arctic char (Salvelinus alpinus) samples: Extraction and isolation steps generally followed US EPA Method 1699. Prior to the extraction, char muscle+skin samples were homogenized using a hand blender. Briefly, up to 15 g of the homogenized sample were spiked with δ -HCH, and PCBs 30 and 204 prior the extraction for GC-ECD analysis. For GC-MS analysis, samples were spiked with ¹³C- and deuterated OCPs $({}^{13}C_6$ -Pentachlorobenzene, ${}^{13}C_6$ -HCB, ${}^{13}C_6$ -alpha-HCH, ${}^{13}C_6$ -gamma-HCH, ${}^{13}C_{10}$ -heptachlor, ${}^{13}C_{10}$ -oxychlordane, ${}^{13}C_{10}$ -trans-nonachlor, ${}^{13}C_{10}$ -dieldrin, ${}^{13}C_{10}$ -endrin, d₄-Endosulfan, d₈-4,4'-DDE, ${}^{13}C_{12}$ -4,4'-DDT, d₆-methoxychlor, ${}^{13}C_8$ -mirex) and ${}^{13}C_{12}$ -labelled PCBs (CB-1, CB-3, CB-4, CB-9, CB-15, CB-19, CB-37, CB-52, CB-54, CB-77, CB-81, CB-104, CB-105, CB-114, CB-118, CB-123, CB-126, CB-155, CB-156, CB-157, CB-167, CB-169, CB-188, CB-189, CB-202, CB-205, CB-206, CB-208, CB-209). Samples were extracted in a Soxhlet during 24h with dichloromethane (DCM). Extracts were reduced with a roto-vap to 2 ml and then subjected to lipid removal by gel permeation chromatography (GPC) using Biobeads SX3. The percent extractable lipid content was determined $(\pm 0.1\%)$ gravimetrically by evaporating the first GPC fraction (NLET) or by use of approximately ¹/₄ of the extract (ALS Environmental) prior to GPC. ¹³C₁₂-CB-133 was added as a recovery standard for GPC performance. ALS Environmental split the GPC elution into two separate fractions. The OCP fraction was chromatographed on a 2% deactivated silica gel column then reduced to 0.05 mL for analysis using GC high-resolution mass spectrometry (GC-HRMS). The PCB fraction was cleaned up on an acid-silica gel column (45% w/w H₂SO₄ on Silica Gel topped with neutral Silica Gel) then reduced to 0.04 mL for GC-low resolution MS (GC-LRMS) analysis. A laboratory blank consisting of all reagents and a two NIST reference material (fish muscle SRM 1946 or SRM 1947 lake trout) were analyzed with each batch of 9 samples.

PCBs (87 congeners from mono to decachloro PCBs) and OCPs (HCHs, including α -HCH, β -HCH and γ -HCH; DDTs including o,p'-DDE, p,p'-DDE, o,p'-DDD, p,p'-DDD o,p'-DDT, p,p'-DDT and HCB) (Table S1) were analyzed by gas chromatography coupled with electron capture detector (GC-ECD) for samples collected between 1990 to 2010 and by GC-LRMS in electron-ionization mode all others from 2011. GC-high resolution mass spectrometry (HRMS) was used to analyse final extracts of samples from 2011-2015 for HCB as well as HCHs and DDTs related compounds at \geq 8,000 mass resolution. Analyses of toxaphene for all sample years were performed with gas chromatography-low resolution mass spectrometry (GC-LRMS),

using negative chemical ionization (NCI) on an Agilent 7890A GC-5975C MS system run in selective ion monitoring (SIM) mode. Toxaphene was quantified using a technical toxaphene standard (Glassmeyer et al, 1999). Individual toxaphene congeners (P26, P50, P62) were determined in a subset of samples from all four lakes (2012-2015) using authentic external standards of each compound obtained from Ehrenstorfer Labs (www.LGCstandards.com). Further details on individual compounds and GC-ECD and GC-MS conditions are provided below. The analysis of the samples was performed every year after sampling, with the available technology at each moment, which is why different techniques were used in this study.

GC-ECD Analysis: GC-ECD analysis was conducted using an Agilent 6890 gas chromatograph with a 63Ni-electron capture detector (ECD) and a 30 m x 0.25 mm (i.d.) DB-5 column (internal film thickness 0.25 mm; J&W Scientific, Folsom, CA, USA) with H2 carrier gas (constant flow rate 0.91 ml min⁻¹). Ultra-pure N2 was used as the makeup gas for the ECD (detector temperature: 325 C). The GC-ECD quantification of OCs in each sample was performed using a 4 point external standard calibration curve. Calibration standards were quantified after every 10 samples. A list of individual PCB and OCP analytes is given in Table S1.

GC-LRMS and GC-HRMS analysis: Final extracts were analyzed by GC-HRMS for 31 OCPs related compounds (Table S1) using GC-HRMS at \geq 8,000 resolution and for 87 individual + co-eluting PCB congeners GC-LRMS, using isotope dilution. Separation was achieved on a HP-5ms column (30m length x 0.25mm id x 0.25 um film thickness).

Quality assurance: Method detection limits (MDLs) for PCBs and OCPs were calculated for all analytes based on results from 6 laboratory blanks that were analysed in the same laboratory at approximately the same time, where MDL = 3x standard deviation of the blanks. For analytes with non-detectable blank values, the instrument detection limit (IDL), based on a signal to noise of approximately 10:1 was used. Results that were <IDL were replaced with the IDL for statistical calculations.

Analysis of the NIST SRMs 1946 and 1947 showed good agreement with all analytes quantified to within $\pm 25\%$ of certified values of OCPs (17 compounds) and PCBs (29 congeners).

Class	Common name	Chemical or other name	Instrumental analysis	MDL	MDL
				GC-MS	GC-ECD
OCP	Hexachloro-		GC-HRMS, GC-ECD	< 0.026	< 0.002
	benzene				
OCP	α-HCH	α-hexachlorocyclohexane	GC-HRMS, GC-ECD	< 0.059	0.015
OCP	β-НСН	β-hexachlorocyclohexane	GC-HRMS, GC-ECD	< 0.1	0.013
OCP	γ-HCH	Lindane	GC-HRMS, GC-ECD	< 0.075	< 0.002
OCP	24'-DDE		GC-HRMS, GC-ECD	< 0.01	0.001
OCP	44'-DDE		GC-HRMS, GC-ECD	< 0.01	0.021
OCP	24'-DDD		GC-HRMS, GC-ECD	< 0.01	0.014
OCP	44'-DDD		GC-HRMS, GC-ECD	< 0.01	0.02
OCP	24'-DDT		GC-HRMS, GC-ECD	< 0.01	0.02
OCP	44'-DDT		GC-HRMS, GC-ECD	< 0.01	0.02
OCP	Toxaphene	Total toxaphene	GC-NCIMS	<1.0	
OCP	P26	B8-1413	GC- NCIMS	< 0.01	
OCP	P50	B9-1679	GC- NCIMS	< 0.01	
OCP	P62	B9-1025	GC- NCIMS	< 0.01	
PCBs	PCB-1	monochlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	na
PCBs	PCB-3	monochlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	na
PCBs	PCB4/10	dichlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.166
PCBs	PCB7/9	dichlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.158
PCBs	PCB6	dichlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.042
PCBs	PCB8/5	dichlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.078
PCBs	PCB12/13	dichlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	1.11
PCBs	PCB15	dichlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.036
PCBs	PCB19	trichlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	< 0.002
PCBs	PCB18	trichlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.211
PCBs	PCB17	trichlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	na
PCBs	PCB27/24	trichlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.036
PCBs	PCB16/32	trichlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.119
PCBs	PCB26	trichlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.112
PCBs	PCB25	trichlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.019
PCBs	PCB31	trichlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.445
PCBs	PCB28	trichlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.05
PCBs	PCB20/33/21	trichlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.155
PCBs	PCB22	trichlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.097
PCBs	PCB37	trichlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	
PCBs	PCB53	tetrachlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.117
PCBs	PCB45	tetrachlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.136
PCBs	PCB46	tetrachlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.058
PCBs	PCB73/52	tetrachlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.913
PCBs	PCB43/49	tetrachlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.446
PCBs	PCB48/47/75	tetrachlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	5.152
PCBs	PCB44	tetrachlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.554
PCBs	PCB59/42	tetrachlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.21
PCBs	PCB71/41/68/64	tetrachlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.417
PCBs	PCB100	pentachlorobiphenvl	GC-LRMS, GC-ECD	< 0.002	0.052

Table S1. List of individual organohalogen analytes along with their MDLs (ng/g wet wt) using either GC with high- or low resolution MS, GC-NCIMS, or GC-ECD

PCBs PCB74/61 terachlorobiphenyl GC-LRMS, GC-ECD <0.002	PCBs	PCB63	tetrachlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.024
PCBs PCB7076 terachlorobiphenyl GC-LRMS, GC-ECD <0.002 0.663 PCBs PCB80/66 tetrachlorobiphenyl GC-LRMS, GC-ECD <0.002	PCBs	PCB74/61	tetrachlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.241
PCBs PCBs0/66 tetrachlorobiphenyl GC-LRMS, GC-ECD <0.002 0.375 PCBs PCBs6/60 tetrachlorobiphenyl GC-LRMS, GC-ECD <0.002	PCBs	PCB70/76	tetrachlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.663
PCBs PCBs/6/0 tetrachlorobiphenyl GC-LRMS, GC-ECD <0.002 0.239 PCBs PCBs11 tetrachlorobiphenyl GC-LRMS, GC-ECD <0.002	PCBs	PCB80/66	tetrachlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.375
PCBs PCBs1 tetrachlorobiphenyl GC-LRMS, GC-ECD <0.002 0.411 PCBs PCBs9/93 pentachlorobiphenyl GC-LRMS, GC-ECD <0.002	PCBs	PCB56/60	tetrachlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.229
PCBs PCB95/93 pentachlorobiphenyl GC-LRMS, GC-ECD <0.002 0.641 PCBs PCB91 pentachlorobiphenyl GC-LRMS, GC-ECD <0.002	PCBs	PCB81	tetrachlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.413
PCBs PCB91 pentachlorobiphenyl GC-LRMS, GC-ECD <0.002 0.146 PCBs PCB84/90/101/89 pentachlorobiphenyl GC-LRMS, GC-ECD <0.002	PCBs	PCB95/93	pentachlorobiphenvl	GC-LRMS, GC-ECD	<0.002	0.641
PCBs PCBs/PCB92 pentachlorobiphenyl GC-LRMS, GC-ECD <0.002 0.156 PCBs PCBs4/90/101/89 pentachlorobiphenyl GC-LRMS, GC-ECD <0.002	PCBs	PCB91	pentachlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.146
PCBs PCB89-101 pentachlorobiphenyl GC-LRMS, GC-ECD <0.002 0.025 PCBs PCB89-101 pentachlorobiphenyl GC-LRMS, GC-ECD <0.002	PCBs	PCB92	pentachlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.156
PCBs PCBs/PCB PCBs/PCB PCBs/PCB PCBs/PCB PCBs/PCB PCBs/PCB PCB119 pentachlorobiphenyl GC-LRMS, GC-ECD <0.002 0.692 PCBs PCBs119 pentachlorobiphenyl GC-LRMS, GC-ECD <0.002	PCBs	PCB84/90/101/89	pentachlorobiphenyl	GC-LRMS GC-ECD	<0.002	0.26
PCBs PCBy pentachlorobiphenyl GC-LRMS, GC-ECD <0.002 0.319 PCBs PCB19 pentachlorobiphenyl GC-LRMS, GC-ECD <0.002	PCBs	PCB89-101	pentachlorobiphenyl	GC-LRMS GC-ECD	<0.002	0.692
PCBs PCB119 pentachlorobiphenyl GC-LRMS, GC-ECD <0.002 0.002 PCBs PCB37108 pentachlorobiphenyl GC-LRMS, GC-ECD <0.002	PCBs	PCB99	pentachlorobiphenyl	GC-LRMS GC-ECD	<0.002	0.319
PCBs PCBs/PCB37108 pentachlorobiphenyl GC-LRMS, GC-ECD <0.002 0.028 PCBs PCBs7111/125/11 pentachlorobiphenyl GC-LRMS, GC-ECD <0.002	PCBs	PCB119	pentachlorobiphenyl	GC-LRMS GC-ECD	<0.002	0.022
PCBs PCBs/PCB97 PCBs/PCB97 PCBs/PCB97 PCBs/PCB97 PCBs/PCB97 PCBs/PCB97 PCBs/PCB97 PCBs/PCB97 PCBs/PCB97 PCB120/85 Pentachlorobiphenyl GC-LRMS, GC-ECD <0.002 0.172 PCBs PCB120/85 pentachlorobiphenyl GC-LRMS, GC-ECD <0.002	PCBs	PCB83/108	pentachlorobiphenyl	GC-LRMS GC-ECD	<0.002	0.022
TCDS PCBs PCBs/PCB8/PCB8/PCB PCB8/PCB8/PCB11/125/11 pentachlorobiphenyl GC-LRMS, GC-ECD <0.002 na PCBs PCB120/85 pentachlorobiphenyl GC-LRMS, GC-ECD 0.002 0.461 PCBs PCB110 pentachlorobiphenyl GC-LRMS, GC-ECD 0.002 0.461 PCBs PCB136 hexachlorobiphenyl GC-LRMS, GC-ECD 0.002 0.461 PCBs PCB123 pentachlorobiphenyl GC-LRMS, GC-ECD 0.002 0.049 PCBs PCB118/106 pentachlorobiphenyl GC-LRMS, GC-ECD 0.002 0.024 PCBs PCB118/106 pentachlorobiphenyl GC-LRMS, GC-ECD 0.002 0.024 PCBs PCB118/106 pentachlorobiphenyl GC-LRMS, GC-ECD 0.002 0.024 PCBs PCB126 pentachlorobiphenyl GC-LRMS, GC-ECD 0.002 0.141 PCBs PCB126 pentachlorobiphenyl GC-LRMS, GC-ECD 0.002 0.141 PCBs PCB136 hexachlorobiphenyl GC-LRMS, GC-ECD 0.002	PCBs	PCB97	pentachlorobiphenyl	GC-LRMS, GC-ECD	<0.002	0.002
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PCBs	PCB86/111/125/11	pentachlorobiphenyl	GC-LRMS, GC-ECD	<0.002	na
PCBs PCB120/85 pentachlorobiphenyl GC-LRMS, GC-ECD 0.055 0.092 PCBs PCB110 pentachlorobiphenyl GC-LRMS, GC-ECD <0.002	1 CD3	7/87/116/115	pentaemoroorphenyi	OC-LINIS, OC-LCD	<0.002	na
PCBs PCB110 pentachlorobiphenyl GC-LRMS, GC-ECD <0.002 0.461 PCBs PCB136 hexachlorobiphenyl GC-LRMS, GC-ECD <0.002	PCBs	PCB120/85	pentachlorobiphenyl	GC-LRMS, GC-ECD	0.055	0.092
PCBs PCB136 hexachlorobiphenyl GC-LRMS, GC-ECD <0.002 0.114 PCBs PCB82 pentachlorobiphenyl GC-LRMS, GC-ECD <0.002	PCBs	PCB110	pentachlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.461
PCBs PCBs2 pentachlorobiphenyl GC-LRMS, GC-ECD <0.002 0.049 PCBs PCB107/109 pentachlorobiphenyl GC-LRMS, GC-ECD <0.002	PCBs	PCB136	hexachlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.114
PCBs PCB107/109 pentachlorobiphenyl GC-LRMS, GC-ECD <0.002 0.059 PCBs PCB123 pentachlorobiphenyl GC-LRMS, GC-ECD <0.002	PCBs	PCB82	pentachlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.049
PCBs PCB123 pentachlorobiphenyl GC-LRMS, GC-ECD <0.002 0.406 PCBs PCB118/106 pentachlorobiphenyl GC-LRMS, GC-ECD <0.002	PCBs	PCB107/109	pentachlorobiphenvl	GC-LRMS, GC-ECD	< 0.002	0.059
PCBs PCB118/106 pentachlorobiphenyl GC-LRMS, GC-ECD <0.002 0.298 PCBs PCB114 pentachlorobiphenyl GC-LRMS, GC-ECD <0.002	PCBs	PCB123	pentachlorobiphenvl	GC-LRMS, GC-ECD	< 0.002	0.406
PCBs PCB114 pentachlorobiphenyl GC-LRMS, GC-ECD <0.002 0.024 PCBs PCB105/127 pentachlorobiphenyl GC-LRMS, GC-ECD <0.002	PCBs	PCB118/106	pentachlorobiphenyl	GC-LRMS, GC-ECD	<0.002	0.298
PCBsPCB105/127pentachlorobiphenylGC-LRMS, GC-ECD<0.0020.141PCBsPCB126pentachlorobiphenylGC-LRMS, GC-ECD<0.002	PCBs	PCB114	pentachlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.024
PCBsPCB126pentachlorobiphenylGC-LRMS, GC-ECD<0.002naPCBsPCB151hexachlorobiphenylGC-LRMS, GC-ECD<0.002	PCBs	PCB105/127	pentachlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.141
PCBsPCB151hexachlorobiphenylGC-LRMS, GC-ECD <0.002 0.173 PCBsPCB135/144hexachlorobiphenylGC-LRMS, GC-ECD <0.002 0.651 PCBsPCB139/149hexachlorobiphenylGC-LRMS, GC-ECD <0.002 0.021 PCBsPCB131/165/142hexachlorobiphenylGC-LRMS, GC-ECD <0.002 0.021 PCBsPCB131/165/142hexachlorobiphenylGC-LRMS, GC-ECD <0.002 0.021 PCBsPCB133hexachlorobiphenylGC-LRMS, GC-ECD <0.002 0.026 PCBsPCB137hexachlorobiphenylGC-LRMS, GC-ECD <0.002 0.023 PCBsPCB141hexachlorobiphenylGC-LRMS, GC-ECD <0.002 0.068 PCBsPCB137hexachlorobiphenylGC-LRMS, GC-ECD <0.002 0.048 PCBsPCB158/160hexachlorobiphenylGC-LRMS, GC-ECD <0.002 0.044 PCBsPCB129hexachlorobiphenylGC-LRMS, GC-ECD <0.002 0.018 PCBsPCB129hexachlorobiphenylGC-LRMS, GC-ECD <0.002 0.018 PCBsPCB167hexachlorobiphenylGC-LRMS, GC-ECD <0.002 0.013 PCBsPCB157hexachlorobiphenylGC-LRMS, GC-ECD <0.002 0.013 PCBsPCB169hexachlorobiphenylGC-LRMS, GC-ECD <0.002 0.013 PCBsPCB182/187heptachlorobiphenylGC-LRMS, GC-ECD <0.002 0.013 PCBsPCB183heptachlorobiphenylGC-L	PCBs	PCB126	pentachlorobiphenyl	GC-LRMS GC-ECD	<0.002	na
PCBs PCB135/144 hexachlorobiphenyl GC-LRMS, GC-ECD <0.002 0.651 PCBs PCB139/149 hexachlorobiphenyl GC-LRMS, GC-ECD <0.002	PCBs	PCB151	hexachlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.173
PCBsPCB139/149hexachlorobiphenylGC-LRMS, GC-ECD<0.002naPCBsPCB131/165/142hexachlorobiphenylGC-LRMS, GC-ECD<0.002	PCBs	PCB135/144	hexachlorobinhenyl	GC-LRMS GC-ECD	<0.002	0.651
PCBsPCB131/165/142hexachlorobiphenylGC-LRMS, GC-ECD<0.0020.021PCBsPCB146hexachlorobiphenylGC-LRMS, GC-ECD<0.002	PCBs	PCB139/149	hexachlorobiphenyl	GC-LRMS, GC-ECD	<0.002	na
PCBsPCB146hexachlorobiphenylGC-LRMS, GC-ECD<0.0020.021PCBsPCB153hexachlorobiphenylGC-LRMS, GC-ECD<0.002	PCBs	PCB131/165/142	hexachlorobiphenyl	GC-LRMS GC-ECD	<0.002	0.021
PCBPCB153hexachlorobiphenylGC-LRMS, GC-ECD<0.0020.293PCBsPCB132/168heptachlorobiphenylGC-LRMS, GC-ECD<0.002	PCBs	PCB146	hexachlorobiphenyl	GC-LRMS GC-ECD	<0.002	0.056
PCBsPCB132/168heptachlorobiphenylGC-LRMS, GC-ECD<0.0020.135PCBsPCB141hexachlorobiphenylGC-LRMS, GC-ECD<0.002	PCBs	PCB153	hexachlorobiphenyl	GC-LRMS GC-ECD	<0.002	0.293
PCBsPCB12100Ineptenditorio pinelyGC-LRMS, GC-ECD<0.0020.068PCBsPCB141hexachlorobiphenylGC-LRMS, GC-ECD<0.002	PCBs	PCB132/168	heptachlorobiphenyl	GC-LRMS GC-ECD	<0.002	0.135
PCBsPCB111Initial informationGC LRMS, GC ECD<0.0023.971PCBsPCB163/164/138hexachlorobiphenylGC-LRMS, GC-ECD<0.002	PCBs	PCB141	hexachlorobinhenyl	GC-LRMS GC-ECD	<0.002	0.068
PCBsPCB163/164/138hexachlorobiphenylGC LRMS, GC ECD<0.0020.283PCBsPCB158/160hexachlorobiphenylGC-LRMS, GC-ECD<0.002	PCBs	PCB137	hexachlorobiphenyl	GC-LRMS GC-ECD	<0.002	3 971
PCBsPCB158/160hexachlorobiphenylGC-LRMS, GC-ECD<0.0020.044PCBsPCB129hexachlorobiphenylGC-LRMS, GC-ECD<0.002	PCBs	PCB163/164/138	hexachlorobinhenyl	GC-LRMS GC-ECD	<0.002	0.283
PCBsPCB129hexachlorobiphenylGC-LRMS, GC-ECD<0.0020.018PCBsPCB159hexachlorobiphenylGC-LRMS, GC-ECD<0.002	PCBs	PCB158/160	hexachlorobiphenyl	GC-LRMS GC-ECD	<0.002	0.044
PCBsPCB127Including outputing iGC LRMS, GC ECD<0.002naPCBsPCB159hexachlorobiphenylGC-LRMS, GC-ECD<0.002	PCBs	PCB129	hexachlorobinhenyl	GC-LRMS GC-ECD	<0.002	0.018
PCBsPCB128hexachlorobiphenylGC-LRMS, GC-ECD<0.0020.028PCBsPCB167hexachlorobiphenylGC-LRMS, GC-ECD<0.002	PCBs	PCB159	hexachlorobinhenyl	GC-LRMS GC-ECD	<0.002	na
PCBsPCB120InextentiorobiphenylGC LRMS, GC ECD<0.0020.01PCBsPCB167hexachlorobiphenylGC-LRMS, GC-ECD<0.002	PCBs	PCB128	hexachlorobiphenyl	GC-LRMS GC-ECD	<0.002	0.028
PCBsPCB157hexachlorobiphenylGC-LRMS, GC-ECD<0.0020.013PCBsPCB157hexachlorobiphenylGC-LRMS, GC-ECD<0.002	PCBs	PCB167	hexachlorobinhenyl	GC-LRMS GC-ECD	<0.002	0.020
PCBsPCB150Includino objition primelyGC - LRMS, GC - ECD<0.002<0.001PCBsPCB169hexachlorobiphenylGC-LRMS, GC-ECD<0.002	PCBs	PCB156	hexachlorobiphenyl	GC-LRMS GC-ECD	<0.002	0.013
PCBsPCB169hexachlorobiphenylGC-LRMS, GC-ECD<0.002naPCBsPCB182/187heptachlorobiphenylGC-LRMS, GC-ECD<0.002	PCBs	PCB157	hexachlorobinhenyl	GC-LRMS GC-ECD	<0.002	<0.019
PCBsPCB182/187heptachlorobiphenylGC-LRMS, GC-ECD<0.0020.109PCBsPCB183heptachlorobiphenylGC-LRMS, GC-ECD<0.002	PCBs	PCB169	hexachlorobiphenyl	GC-LRMS GC-ECD	<0.002	<u></u> na
PCBsPCB183heptachlorobiphenylGC-LRMS, GC-ECD<0.0020.046PCBsPCB174/181heptachlorobiphenylGC-LRMS, GC-ECD<0.002	PCBs	PCB182/187	heptachlorobinhenvl	GC-LRMS GC-FCD	<0.002	0 109
PCBsPCB174/181heptachlorobiphenylGC-LRMS, GC-ECD<0.0020.072PCBsPCB177heptachlorobiphenylGC-LRMS, GC-ECD<0.002	PCBs	PCB183	heptachlorobinhenvl	GC-LRMS GC-FCD	<0.002	0.046
PCBsPCB177heptachlorobiphenylGC-LRMS, GC-ECD<0.0020.072PCBsPCB171heptachlorobiphenylGC-LRMS, GC-ECD<0.002	PCRs	PCB174/181	heptachlorobinhenyl	GC-LRMS GC-FCD	<0.002	0.072
PCBsPCB171heptachlorobiphenylGC-LRMS, GC-ECD<0.0020.143PCBsPCB171heptachlorobiphenylGC-LRMS, GC-ECD<0.002	PCBs	PCB177	heptachlorobiphenyl	GC-LRMS GC-FCD	<0.002	0.143
PCBs PCB172/192 heptachlorobiphenyl GC-LRMS, GC-ECD <0.002 0.042	PCRs	PCB171	heptachlorobinhenyl	GC-LRMS GC-FCD	<0.002	0.143
	PCBs	PCB172/192	heptachlorobinhenvl	GC-LRMS GC-ECD	<0.002	0.042

PCBs	PCB197	octachloorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.007
PCBs	PCB180	heptachlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.087
PCBs	PCB193	heptachlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.132
PCBs	PCB191	heptachlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	< 0.001
PCBs	PCB170/190	heptachlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.03
PCBs	PCB-202	octachlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	na
PCBs	PCB199	octachlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.008
PCBs	PCB196/203	octachlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.022
PCBs	PCB195	octachlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.015
PCBs	PCB194	octachlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.005
PCBs	PCB205	octachlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	< 0.001
PCBs	PCB208	nonachlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.002
PCBs	PCB207	nonachlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	< 0.001
PCBs	PCB206	nonachlorobiphenyl	GC-LRMS, GC-ECD	< 0.002	0.013
PCBs	PCB209	decachlorobiphenyl	GC-LRMS, GC-ECD	0.08	0.004

1.2 Extraction and isolation steps for soil samples: Approximately 35 g of wet soil samples were homogeneized and mixed with equal parts of ASE-cleaned Hydromatrix using a mortar and a pestle. Hydromatrix (diatomaceous earth; Dionex) was packed in 100 mL ASE cells and cleaned prior to sample extraction. Hydromatrix cleaning consisted of 2 methods run consecutively on the ASE using acetone:hexane and DCM (Table S2). Homogenized soil samples were packed in stainless steel ASE cells with cellulose filters and spiked with ${}^{13}C_{12}$ labelled PCBs (CB-28, CB-52, CB-101, CB-153, CB-138, CB-180, CB-209). All samples were then extracted in an accelerated solvent extractor (ASE 300; Dionex) using the same methods previously used to clean the hydromatrix as described in Table S2. All methods were set to reach a maximum extraction temperature and pressure of 100°C and 1500 psi respectively. After extraction, samples were dried on sodium sulphate, evaporated and clean up on 5 g of activate silica (60-200 mesh silica gel). The fraction containing the PCBs and HCB was eluted with 60 ml of hexane, concentrated on a TurboVap to 0.5 ml and reduced to 100 μ l under N₂. The fraction containing the PCBs and HCB were solvent exchange to isooctane and a mix containing PCB 30 and ${}^{13}C_{12}$ -labelled PCBs (CB-77, CB-81, CB-126, CB-169) were added and used as internal standards.

	Solvent	Pre-Heat	Heat	Static	Purge	Cycles
		(min)	(min)	(min)	(s)	
Cleaning	Acetone:hexane	1	5	5	60	1
Method 1	(1:1)					
Cleaning	DCM	1	5	5	60	1
Method 2						
Soil Samples	Acetone:hexane	1	5	5	60	1
Method 1	(1:1)					
Soil Samples	DCM	1	5	5	60	1
Method 2						

Table S2. ASE Methods details for cleaning Hydromatrix and Soil Extraction for POPs

All solvent lots were quality checked prior to use. Sodium sulphate, silica and glass wool were fired at 450 °C for at least 12 h prior to use. All glassware was thoroughly rinsed with hot tap water, deionized water, and placed in a 6% ExtranTM (Merck) bath for at least 8 h as described in Morris et al, 2014. Glassware was then rinsed and soaked in clean hot water for 1 h, rinsed, air dried, acetone rinsed and fired at 150C for 4-8 h.

Soil water content (SWC) (%): was determined using a known amount of wet soil and freeze dried until soil weight becomes constant.

$$\% SWC = \frac{fw - fd}{fw} * 100$$

where fw and fd are the amount of wet and dry soil respectively. SWC was used to determined the soil dry weight extracted.

GC/MS-MS analysis for soil samples: PCBs (70 congeners from mono to decachloro PCBs) and HCB were analyzed by gas chromatography (Agilent 7890B) coupled to tandem mass spectrometry (Agilent 7000C) (GC-MS/MS) operating in Multiple Reaction Monitoring (MRM) with 60 m × 0.25 mm i.d. (RESTEK Rxi-5Sil MS) column coated with 5% phenyl-95% methylpolysiloxane (film thickness 0.25 μ m). After sample injection (splitless) onto the column (injection port temperature = 250°C), the GC temperature profile was as follows: (1) initial oven temperature was

90°C; held for 2 min (2) ramped at 15°C/min to 190°C, oven held 0.7 min (3) ramped at 3°C/min to 203°C, oven held 5min (4) with the final ramp of 3°C/min to a maximum temperature of 300°C and the oven was held for 5 min. The MS transfer line, source and quadrupoles temperatures were 280 °C, 300°C, 180°C respectively.

Quality assurance: Laboratory blanks were included in every set of samples extractions (1 blank every 5 samples). Soil blanks consisted in a 100 mL ASE cells + ~30 g ASE-cleaned Hydromatrix. Few PCB congeners were detected in blanks at low concentrations and therefore, samples were blank corrected. Method detection limits were calculated for all analytes based on results from 5 laboratory blanks that were analysed, where MDL = 3x standard deviation of the blanks PCBs. MDL ranged from 0.0001-0.012 ng g dw⁻¹. Recoveries were routinely monitored using ${}^{13}C_{12}$ -labelled PCBs and they ranged from 80 to 110 %.

1.3. Water chemistry analyses: Sample were taken at 0.5-1 m depth by boat generally at mid-lake, or open water site if ice was present, in Resolute, Char and Amituk lakes. At Lake Hazen, a much larger system, samples were generally collected at a position mid-way between John's Island and Hazen camp (approx. 71° 49' N, 71° 19'W). Lescord et al (2015) have described the sample processing. In brief, water samples were stored at 4°C and filtered through GF/F (47 mm, pore size 1.2 μ m for CHLa/POC/PON; 25 mm, pore size 0.45 μ m for DOC/DIC) within 24 hrs of collection. Filters were wrapped in aluminum foil and stored at -20C until analysis. Analysis was conducted within 28 days of collection. Chlorophyll a was analysed using NLET method 01-1100 (Environment Canada 2010).

ANNEX II. Fish Biology

List of Tables:

	Age (yrs)			Length (cm)			Weight (g)		
	Ν	Mean±SD	Min-Max	Ν	Mean±SD	Min-Max	Ν	Mean±SD	Min-Max
Amituk	95	19 ± 4	10 - 31	86	44.1 ± 8.1	29.7 - 68.0	96	688 ± 412	200 - 2391
Char	28	18 ± 8	8 - 33	45	41.3 ± 9.4	20.6 - 62.0	44	758 ± 662	216 - 2537
Hazen	143	20 ± 5	10 - 33	141	45.8 ± 10	29.5 - 81.5	129	982 ± 611	230-3148
Resolute	161	20 ± 5	11 - 37	165	40.2 ± 4.7	28.6 - 55.0	165	539 ± 211	200 - 1355

Table S3. Biometric parameters of age, length and weight for Arctic char from each lake.

List of Figures:

Figure S1. Relationship between Arctic char fork length and weight (in log) within the set of data

Figure S2. Box-plot comparing the δ^{15} N isotopic signature for Amituk, Char, Hazen and Resolute lakes through the temporal series of data

Figure S3. Box-plot comparing the δ^{13} C isotopic signature for Amituk, Char, Hazen and Resolute lakes through the temporal series of data

Figure S4. Geomeans $\delta^{13}C$ vs $\delta^{15}N$ isotopic signatures for Amituk, Char, Hazen and Resolute lakes

ANNEX III. Occurrence of legacy POPs in Arctic char

List of Tables:

Table S4. Geometric mean concentration (ng/g wet weight) of ΣPCBs, OCPs (ΣDDTs, ΣHCHs and HCB) and Toxaphene in Resolute, Hazen, Char and Amituk lakes along the temporal series

		*na: not available data								
		ΣPCBs	ΣDDTs	ΣHCHs	HCB	Toxaphene				
1989	Resolute	n.a	n.a	n.a	n.a	n.a				
	Hazen	n.a	n.a	n.a	n.a	n.a				
	Char	n.a	n.a	n.a	n.a	n.a				
	Amituk	125.44	61.12	4.24	4.37	151.52				
1990	Resolute	n.a	n.a	n.a	n.a	n.a				
	Hazen	36.97	11.61	2.05	2.46	124.75				
	Char	n.a	n.a	n.a	n.a	n.a				
	Amituk	n.a	n.a	n.a	n.a	n.a				
1992	Resolute	n.a	n.a	n.a	n.a	n.a				
	Hazen	18.93	5.10	1.08	1.24	39.04				
	Char	n.a	n.a	n.a	n.a	n.a				
	Amituk	63.40	28.97	1.53	3.23	171.53				

1993	Resolute	n.a	n.a	n.a	n.a	n.a
	Hazen	n.a	n.a	n.a	n.a	n.a
	Char	116.03	51.75	1.18	1.69	22.99
	Amituk	n.a	n.a	n.a	n.a	n.a
1997	Resolute	99.08	5.51	0.52	1.23	n.a
	Hazen	n.a	n.a	n.a	n.a	n.a
	Char	n.a	n.a	n.a	n.a	n.a
	Amituk	n.a	n.a	n.a	n.a	n.a
1999	Resolute	84.15	6.08	0.61	1.29	n.a
	Hazen	n.a	n.a	n.a	n.a	n.a
	Char	53.14	27.11	2.75	0.86	4.23
	Amituk	n.a	n.a	n.a	n.a	n.a
2000	Resolute	119.98	7.77	0.66	1.83	n.a
	Hazen	n.a	n.a	n.a	n.a	n.a
	Char	117.67	31.57	0.27	0.97	n.a
	Amituk	n.a	n.a	n.a	n.a	n.a
2001	Resolute	109.32	8.64	0.84	2.41	n.a
	Hazen	12.12	2.80	0.70	0.95	20.78
	Char	127.07	18.64	1.06	2.47	17.29
	Amituk	37.91	15.01	0.83	1.34	24.74
2002	Resolute	74.95	3.67	0.41	1.07	n.a
	Hazen	n.a	n.a	n.a	n.a	n.a
	Char	n.a	n.a	n.a	n.a	n.a
	Amituk	48.26	19.43	0.35	2.44	104.29
2003	Resolute	88.34	2.52	0.38	1.39	1.96
	Hazen	15.96	3.09	0.60	1.02	26.21
	Char	106.98	20.33	0.50	1.61	14.11
	Amituk	31.79	1.06	0.31	1.13	73.74
2004	Resolute	84.36	1.99	0.38	1.40	1.60
	Hazen	12.80	1.44	0.65	0.86	25.16
	Char	n.a	n.a	n.a	n.a	n.a
	Amituk	n.a	n.a	n.a	n.a	n.a
2005	Resolute	96.93	4.57	0.15	1.34	1.70
	Hazen	22.75	2.80	1.08	1.67	16.95
	Char	40.16	13.19	0.10	0.59	4.17
	Amituk	11.67	5.36	0.13	0.53	18.99
2006	Resolute	87.62	4.03	0.14	0.86	2.17
	Hazen	6.47	0.76	0.34	0.70	13.45
	Char	n.a	n.a	n.a	n.a	n.a
	Amituk	37.18	11.47	0.12	1.09	46.67
2007	Resolute	83.78	4.81	0.22	1.51	6.82
	Hazen	11.93	1.39	0.49	0.68	18.17
	Char	76.13	19.87	0.17	1.52	19.25
	Amituk	29.62	8.46	0.12	1.29	71.67
2008	Resolute	77.75	4.62	0.32	1.53	5.46
	Hazen	6.57	0.61	0.22	0.48	10.50
	Char	n.a	n.a	n.a	n.a	n.a
	Amituk	22.07	7.11	0.20	1.05	16.94
2009	Resolute	32.48	4.66	0.27	1.50	3.44
	Hazen	n.a	n.a	n.a	n.a	n.a
	Char	18.04	9.60	0.11	0.69	4.91

Amituk	20.31	9.48	0.21	1.53	62.14
Resolute	78.25	3.92	0.26	1.76	8.61
Hazen	10.68	0.82	0.23	0.90	33.80
Char	63.01	8.49	0.13	1.08	12.00
Amituk	n.a	n.a	n.a	n.a	n.a
Resolute	70.77	4.35	0.31	1.84	11.13
Hazen	4.78	0.54	0.22	0.56	14.79
Char	32.59	10.29	0.14	0.74	7.45
Amituk	18.95	6.83	0.10	1.03	39.49
Resolute	40.62	3.84	0.39	1.69	9.81
Hazen	10.81	2.59	0.29	0.88	51.93
Char	36.50	4.80	0.16	0.88	10.44
Amituk	12.51	4.01	0.13	0.75	22.84
Resolute	42.50	2.72	0.13	1.34	15.39
Hazen	6.53	0.86	0.22	1.21	23.14
Char	n.a	n.a	n.a	n.a	n.a
Amituk	15.22	5.40	0.08	1.46	56.33
Resolute	91.95	4.38	0.12	2.26	15.34
Hazen	7.13	0.96	0.14	1.17	13.01
Char	n.a	n.a	n.a	n.a	n.a
Amituk	15.71	5.96	0.03	1.21	13.01
	Amituk Resolute Char Amituk Resolute Hazen Char Amituk Resolute Hazen Char Amituk Resolute Hazen Char Amituk Resolute Hazen Char	Amituk 20.31 Resolute 78.25 Hazen 10.68 Char 63.01 Amituk n.a Resolute 70.77 Hazen 4.78 Char 32.59 Amituk 18.95 Resolute 40.62 Hazen 10.81 Char 36.50 Amituk 12.51 Resolute 42.50 Hazen 6.53 Char n.a Amituk 15.22 Resolute 91.95 Hazen 7.13 Char n.a Amituk 15.71	Amituk20.319.48Resolute78.253.92Hazen10.680.82Char63.018.49Amitukn.an.aResolute70.774.35Hazen4.780.54Char32.5910.29Amituk18.956.83Resolute40.623.84Hazen10.812.59Char36.504.80Amituk12.514.01Resolute42.502.72Hazen6.530.86Charn.an.aAmituk15.225.40Resolute91.954.38Hazen7.130.96Charn.an.aAmituk15.715.96	Amituk20.319.480.21Resolute78.253.920.26Hazen10.680.820.23Char63.018.490.13Amitukn.an.an.aResolute70.774.350.31Hazen4.780.540.22Char32.5910.290.14Amituk18.956.830.10Resolute40.623.840.39Hazen10.812.590.29Char36.504.800.16Amituk12.514.010.13Resolute42.502.720.13Hazen6.530.860.22Charn.an.an.aAmituk15.225.400.08Resolute91.954.380.12Hazen7.130.960.14Charn.an.an.aAmituk15.715.960.03	Amituk20.319.480.211.53Resolute78.253.920.261.76Hazen10.680.820.230.90Char63.018.490.131.08Amitukn.an.an.an.aResolute70.774.350.311.84Hazen4.780.540.220.56Char32.5910.290.140.74Amituk18.956.830.101.03Resolute40.623.840.391.69Hazen10.812.590.290.88Char36.504.800.160.88Amituk12.514.010.130.75Resolute42.502.720.131.34Hazen6.530.860.221.21Charn.an.an.an.aAmituk15.225.400.081.46Resolute91.954.380.122.26Hazen7.130.960.141.17Charn.an.an.an.aAmituk15.715.960.031.21

Table S5. Geometric mean concentration (ng/g wet weight) of Toxaphene congeners (P26, P50and P62) in Resolute, Hazen, Char and Amituk lakes in a subset of years from 2005 to 2015

		P26	P50	P62
2005	Resolute	n.a	n.a	n.a
	Hazen	4.93	3.90	3.09
	Char	n.a	n.a	n.a
	Amituk	n.a	n.a	n.a
2012	Resolute	0.45	0.40	0.03
	Hazen	7.86	9.33	2.02
	Char	0.66	0.70	0.04
	Amituk	1.01	1.77	0.95
2013	Resolute	0.40	0.20	n.a
	Hazen	3.08	3.41	0.95
	Char	n.a	n.a	n.a
	Amituk	4.56	7.16	3.37
2015	Resolute	0.32	0.20	0.14
	Hazen	1.27	1.32	0.02
	Char	n.a	n.a	n.a
	Amituk	1.46	2.46	0.03

Table S6. Concentrations of Σ PCBs, Σ DDTs, Σ HCHs, HCB and Toxaphene in landlocked Arctic char from this study and comparison with literature available. Concentrations are reported in ng/g wet wt.

*only p,p'-DDE

Lakes or sampling area	Location	Sample	Sampling period	ΣPCBs	ΣDDTs	ΣHCHs	НСВ	Toxaphene	Ref
Resolute Lake	Cornwallis Is. Arctic	Arctic char (Salvelinus alpinus)	1997-2015	33-120 (Σ87PCBs)	2-8.7	0.12-0.84	0.86-2.41	1.60-15.39	This study
Char Lake	Cornwallis Is. Arctic	Arctic char (<i>Salvelinus</i> <i>alpinus</i>)	1993-2012	18-127 (Σ87PCBs)	4.8-52	0.10-2.75	0.59-2.47	4.17-23	This study
Amituk Lake	Cornwallis Is. Arctic	Arctic char (Salvelinus alpinus)	2001-2015	12-125 (Σ87PCBs)	1.06-61.12	0.03-4.24	0.53-4.37	13.01- 171.53	This study
Lake Hazen	Ellesmere Is. Arctic	Arctic char (Salvelinus alpinus)	1990-2015	4.78-37 (Σ87PCBs)	0.54-11.61	0.14-2.05	0.48-2.46	10.50-125	This study
Unnamed lake	Greenland	Arctic char (Salvelinus alpinus)	1994-2008	1.53-16.32 (Σ10PCBs)	0.74-7.51	0.05-0.248	0.245- 0.725		Riget et al 2010
Lake Laberge	Yukon Territory	Lake trout (Salvelinus namaycush)	1993-2010	12-328 (Σ104PCBs)	37.5-391.5	0.10-6.5			Ryan et al 2013
Lake near Isortoq	Southwest Greenland	Arctic char (Salvelinus alpinus)	1986-2012					0.61 (Σ6Toxaphe ne)	Vorkamp et al, 2015
Lake Ellasjoen	Bear Is, Norway, Arctic	Arctic char (Salvelinus alpinus)		694±1009 (Σ7PCBs)	58*				Evenset et al 2004
Lake Oyangen	Bear Is, Norway, Arctic	Arctic char (<i>Salvelinus</i> <i>alpinus</i>)		49(Σ7PCBs)	3.4*				Evenset et al 2004
Lake in Avanersuaq north- west	Greenland	Arctic char (Salvelinus alpinus)	1994-1995	8.2±4.7 (Σ11PCBs)	2.9±1.6	0.52±0.28	1.3±0.95	18±14 (Σ4Toxaphe ne)	Cleemann et al 2000
Lake in Nuuk mid- west	Greenland	Arctic char (Salvelinus alpinus)	1994-1995	8.9±4.8 (Σ11PCBs)	2.5±1.7	0.66±0.43	0.72±0.59	11±9.5 (Σ4Toxaphe ne)	Cleemann et al 2000
Lake in Oaqortoq south	Greenland	Arctic char (<i>Salvelinus</i>	1994-1995	16±16 (Σ11PCBs)	7.5±6.7	0.36±0.17	0.72±1.2	11±6.3 (Σ4Toxaphe	Cleemann et al 2000

		alpinus)						ne)	
Lake in Tassilaq mid-east	Greenland	Arctic char (Salvelinus alpinus)	1994-1995	36±44 (Σ11PCBs)	12±8.8	0.67±0.58	1.8±1.7	49±49 (Σ4Toxaphe ne)	Cleemann et al 2000
Lake Blasjön	Northern Sweden	Arctic char (Salvelinus alpinus)_dwards form	1990	13.6 (Σ41PCBs)	3.8*				Hammar et al, 1993
Lake Blasjön	Northern Sweden	Arctic char (Salvelinus alpinus)_normal form	1990	3.98 (Σ41PCBs)	1.18*				Hammar et al, 1994
Peter Lake	Northwest Territories	Arctic char (Salvelinus alpinus)	1992-1995	9.88±3.19 (Σ102PCBs)	4.62±1.71	1.68±0.80			Kidd et al,1998
Peter Lake	Northwest Territories	Lake trout (Salvelinus namaycush)	1992-1995	81.6±176 (Σ102PCBs)	57.9±148	2.16±4.30			Kidd et al,1998
Great Slave Lake (West basin)	Northwest Territories	Lake trout (Salvelinus namaycush)	2011	8.2 ± 2.0 (Σ87PCBs)	1.2 ± 0.49	0.17 ± 0.05	2.0 ± 0.44	7.2± 2.4	Muir et al. 2013
Great Slave Lake (East arm)	Northwest Territories	Lake trout (Salvelinus namaycush)	2011	26 ± 11 (Σ87PCBs)	2.8 ± 1.3	0.24 ± 0.14	2.5±0.90	11 ± 3.6	Muir et al. 2013
Lac Ste Therese	Northwest Territories	Lake trout (Salvelinus namaycush)	2002	45 ± 13 (Σ87PCBs)	14 ± 4.2	0.41 ± 0.74	1.6 ± 1.2	-	Muir et al. 2013
Great Bear Lake	Northwest Territories	Lake trout (Salvelinus namaycush)	2007	65 ± 33 (Σ87PCBs)	16 ± 10	0.49 ± 0.36	2.1 ± 1.2	134 ± 118	Muir et al. 2013
Makkovik	Labrador	Arctic char (<i>Salvelinus</i> <i>alpinus</i>) sea run		10.7	1.7	1.9			Muir et al, 2000
Nain	Labrador	Arctic char (Salvelinus alpinus) sea run		30.9	2.5	3.1			Muir et al, 2000
Kangirsuk	Nunavik (Quebec)	Arctic char (Salvelinus alpinus) sea run		21.4	1.3	1.2			Muir et al, 2000
Quaqtaq	Nunavik (Quebec)	Arctic char (Salvelinus alpinus) sea run		18.2	1.4	1.2			Muir et al, 2000

	Resolute Lake	Amituk Lake	North Lake
PCB1	0.002	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB3	0.002	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB8	0.003	0.001	0.001
PCB10+4	0.001	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB11	0.002	0.001	0.001
PCB15	0.001	0.001	0.001
PCB18	0.006	0.001	0.001
PCB19	0.001	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB22	0.003	0.001	0.001
PCB28	0.019	0.005	0.005
PCB33	0.005	0.001	0.001
PCB37	0.005	0.001	0.001
PCB41	0.034	0.004	0.005
PCB49	0.023	0.002	0.004
PCB52	0.096	0.009	0.012
PCB54	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB60	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB66	0.019	0.002	0.003
PCB70	0.067	0.006	0.005
PCB74	0.014	0.003	0.002
PCB77	0.018	0.000	0.001
PCB81	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB87	0.104	0.001	0.003
PCB95	0.121	0.005	0.006
PCB99	0.065	0.001	0.002
PCB101	0.174	0.005	0.006
PCB104	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB105	0.084	0.000	0.002
PCB110	0.170	0.003	0.005
PCB114	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB118	0.200	0.002	0.005
PCB119	0.002	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB123	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB126	0.005	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB128	0.048	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB129	0.013	0.000	0.000
PCB137	0.012	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB138	0.209	0.001	0.005
PCB141	0.043	0.000	0.001
PCB149	0.157	0.001	0.005
PCB151	0.051	0.001	0.002
PCB153+168	0.215	0.001	0.005
PCB155	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB156	0.023	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB157	0.005	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>

Table S7. Concentration (ng/g dry weight) of PCBs and HCB in soils from catchment areas of Resolute, Amituk and North lakes (Cornwallis Island). <LOD: below detection limit

PCB158	0.022	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
PCB167	0.013	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB169	0.000	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB170	0.055	<lod< td=""><td>0.001</td></lod<>	0.001
PCB171	0.015	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB177	0.036	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB178	0.021	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB180+193	0.165	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB183	0.052	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB187	0.140	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB188	0.001	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB189	0.002	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB191	0.002	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB194	0.047	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB199	0.089	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB201	0.013	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB202	0.020	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB203	0.083	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB205	0.002	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB206	0.024	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB208	0.008	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
PCB209	0.001	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
HCB	0.134	0.013	0.029
Σ1Cl	0.004	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Σ2Cl	0.006	0.002	0.002
Σ3C1	0.039	0.009	0.010
Σ4Cl	0.272	0.027	0.030
Σ 5Cl	0.926	0.018	0.029
Σ6Cl	0.811	0.005	0.016
Σ7Cl	0.488	<lod< td=""><td>0.001</td></lod<>	0.001
Σ8Cl	0.254	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Σ9Cl	0.032	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
$\Sigma 10C1$	0.001	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Σ_{70} PCBs	2.834	0.061	0.089

Table S8. Correlation coefficients across all char samples and years (n=474) for Σ_{87} PCBs,

	ΣPCBs	ΣDDT	ΣΗCΗ	HCB	Toxaphene
$\Sigma_{87}PCBs$	1.00				
ΣDDT	0.53**	1.00			
ΣΗCΗ	0.09**	0.10**	1.00		
HCB	0.29**	0.28**	0.33**	1.00	
Toxaphene	p>0.05	0.13*	0.19*	0.21*	1.00

OCPs (**DDTs**, **DDTs**, **DDTs**, **HCB**) and Toxaphene

**p<0.001, the data were log-transformed before analysis.

*p<0.05, the data were log-transformed before analysis

Table S9. Influence of Biological Parameters in ΣPCBs, ΣDDTs, ΣHCHs, HCB and Toxaphene Concentrations (in Log ng/g lipid wt) in landlocked char from Resolute Lake over 1997-2015. Table shows regression coefficient (r²) only if r² is >0.1. ** p-value<0.001

	δ ¹³ C	δ^{15} N	Log	Log	Log Age	Log CF	Year
			Length	Weight			
		0.18**					
$Log \Sigma_{87}PCBs$		n=162					
		0.15**					
Log SDDTs		n=161					
							0.48**
Log <i>\Sigma</i>HCHs							n=164
			0.22 **	0.19**			0.45**
Log Toxaphene			n=97	n=97			n=97
Log HCB							

Table S10. Influence of Biological Parameters in $\Sigma PCBs$, $\Sigma DDTs$, $\Sigma HCHs$, HCB and Toxaphene Concentrations (in Log ng/g lipid wt) in landlocked char from Lake Hazen over 1990-2015. Table shows regression coefficient (r²) only if r² is >0.1. ** p-value<0.001

	δ ¹³ C	δ^{15} N	Log	Log	Log Age	Log CF	Year
			Length	Weight			
		0.13**	0.13**				0.26**
$Log \Sigma_{87}PCBs$		n=131	n=141				n=146
		0.20**					0.40**
Log SDDTs		n=131					n=147
							0.52**
Log <i>\Sigma</i>HCHs							n=147
							0.11**
Log Toxaphene							n=139
							0.12**
Log HCB							n=147

Table S11. Influence of Biological Parameters in $\Sigma PCBs$, $\Sigma DDTs$, $\Sigma HCHs$, HCB, and Toxaphene Concentrations (in Log ng/g lipid wt) in landlocked char from Amituk Lake over 1989-2015. Table shows regression coefficient (r²) only if r² is >0.1 * p-value<0.05, ** p-value<0.001

	δ ¹³ C	$\delta^{15}N$	Log	Log	Log Age	Log CF	Year
			Length	Weight			
	0.10*				0.10*		0.39**
$Log \Sigma_{87}PCBs$	n=84				n=95		n=107
							0.37**
Log DDTs							n=107
	0.39**						0.84**
Log <i>\Sigma</i>HCHs	n=84						n=107
	0.14*						0.41**
Log Toxaphene	n=82						n=104
							0.37**
Log HCB							n=107

Table S12. Influence of Biological Parameters in Σ PCBs, Σ DDTs, Σ HCHs, HCB and Toxaphene Concentrations (in Log ng/g lipid wt) in landlocked char from Char Lake over 1993-2012. Table shows regression coefficient (r²) only if r² is >0.1. * p-value<0.05, ** p-value<0.001

	δ ¹³ C	δ^{15} N	Log	Log	Log Age	Log CF	Year
			Length	Weight			
		0.13*		0.11*		0.17*	0.31**
$Log \Sigma_{87}PCBs$		n=42		n=44		n=44	n=55
		0.12*			0.31*	0.14*	0.55**
Log DDTs		n=42			n=28	n=44	n=55
					0.15*		0.74**
Log <i>\Sigma</i>HCHs					n=28		n=55
		0.11*				0.17*	0.38**
Log Toxaphene		n=38				n=40	n=51
		0.14*		0.11*		0.23*	0.34**
Log HCB		n=42		n=44		n=44	n=55

List of Figures:

Figure S5. Long term trends in proportion of PCBs congeners groups in landlocked Arctic char from Resolute Lake, Amituk Lake, Char Lake and Lake Hazen.

Figure S6. Influence of lipid content on Log ΣPCBs, OC pesticides (ΣDDTs, ΣHCHs and HCB) and Toxaphene (in ng/g wet weight), in Resolute, Amituk, Char and Hazen lakes

Figure S7. Influence of lipid content on Log Σ HCHs in Hazen Lake for insectivorous Arctic char ($\delta^{15}N < 12\%$)

Figure S8. Concentration of PCBs and DDTs vs $\delta^{15}N$ for Lake Hazen, Resolute, Amituk and Char

Annex IV. Trends of legacy POPs in Arctic char

List of Tables

Table S13. Percent annual decline (negative) and increase (positive) in selected POPs in Arctic Char from from Amituk, Char, Hazen and Resolute Lakes using the PIA program (Bignert, A. (2007). PIA was run using lipid weight concentrations for each sample.

¹* Indicated statistically significant trend (p<0.05)

² Results for toxaphene have 2 or 3 fewer years than other analytes due to use of retrospective analyses for samples from the 1990s and early 2000s

³ Results for toxaphene in Resolute Lake are from 2003

⁴ Sampling of Char Lake was discontinued after 2012.

	Time period	Sampling Years	Toxaphene	ΣPCBs	PCB153	ΣDDTs	α-HCH	β-НСН	HCB
Amituk	1989-2015	14	-6.4*	-6.7*	-5.5*	-7.1*	-14*	-7.3	-4.1*
	Mid-00s-	8	-0.41						
	2013								
Char	1993-2012	12	-5.2	-7.6*	-8.1*	-11*	-14*	+1.8	-4.7*
	Mid-00s-	7	+0.2						
	2012								
Hazen	1990-2015	14	-7*	-6.9*	-6.5*	-10*	-11*	+6.1*	-4.1 *
	Mid-00s-	8	-0.08						
	2013								
Resolute	1997-2015	17	+19*	-3.5	-2.4	-2.3	-7.8*	-3.1	+1.8*
	Mid-00s-	9	+9*						
	2013								

List of Figures

Figure S9. DDE/ Σ DDTs ratio versus years of Lake Hazen, Amituk, Resolute and Char lakes

Figure S10. Trends in concentrations (ng/g lipid weight) of individual toxaphene congeners (Parlar 26, 50 and 62) in Arctic char muscle from Hazen Lake (2005 to 2015) and Amituk and Resolute lakes from 2012 to 2015.

ANNEX V. Influence of climatic oscillations on the occurrence of legacy POPs in Arctic char

List of Figures

Figure S11. Mean Annual Temperature (C) versus year of sampling in Hazen, Resolute, Char and Amituk lakes

Figure S12. Annual Total Snow (cm) versus Sampling years in Resolute, Amituk, Hazen and Char lakes

Figure S13. Influence of Year of sampling and Summer Mean Temperature (C) on the Concentrations of Chlorophyll-a in Resolute and Amituk lakes

Figure S14. Influence of Chlorophyl-a (µg/L) on the concentrations of PCB31_28, and PCB52 on Arctic char (ng/g lipid wt) at Resolute and Amituk lakes along the temporal series

Figure S15. Relationships between the concentrations of ΣPCB, ΣDDTs and ΣHCHs in char from Lake Hazen, and the predictors: NAO in the preceding and current springs

Figure S16. Relationships between the concentrations of ΣPCB , $\Sigma DDTs$ and $\Sigma HCHs$ in char from Char Lake, and the predictors: NAO in the preceding and current summers and springs

Figure S17. Relationships between the concentrations of ΣPCB, ΣDDTs and ΣHCHs in char from Amituk Lake, and the predictors: NAO in the preceding and current summers and springs

Figure S18. Measured vs predicted concentration of B-HCH in Lake Hazen.

*B-HCH predicted concentration estimated using: Log B-HCH = a + b (year) + c (Log annual Precipitation) + d (NAO spring preceding year)

Table S14. Influence of year, weight and climatic parameters on the occurrence of Σ PCBs, Σ DDTs and Σ HCHs in Lake Hazen, Amituk, Resolute and Char Lakes.*r² is the amount of variation explained by the model. Regression coefficients ± SE are shown for (Weight = Log W; Year = Yr, NAO (summer/spring

explained by the model. Regression coefficients ± SE are shown for (Weight = Log W; Year = Yr, NAO (summer/spi preceding Yr), Log P= Total Annual Precipitation (snow+rain)

	Time Period	Ν	Intercept	Year	Log W	NAO	r ²	Р
Lake Hazen								
ΣΡCBs	1990-2015	129	61±9	-0.029±0.004	0.320±0.105	0.180±0.065	0.40	< 0.001
PCB99	1990-2015	129	30±13	-0.015±0.006	0.639±0.127	0.303±0.084	0.35	< 0.001
Amituk Lake								
ΣPCBs	1989-2015	96	39±10	-0.018±0.005	0.418±0.111	0.187±0.074	0.41	< 0.001
PCB99	1989-2015	96	53±8	-0.026±0.004	0.414±0.094	0.180±0.062	0.59	< 0.001
Resolute								
Lake ΣPCBs	1997-2015	165	30±9	-0.014±0.004	0.398±0.130	0.140±0.044	0.18	< 0.001
PCB99	1997-2015	165	27±8	-0.013±0.004	0.425±0.112	0.113±0.037	0.19	< 0.001
	Time Period	N	Intercept	Year	Log P	NAO	r ²	Р
Lake Hazen								
ΣΗCHs	1990-2015	147	91±8	-0.045±0.004		0.0122±0.056	0.53	< 0.001
Amituk Lake								
ΣΗCHs	1989-2015	107	116±6	-0.057±0.003	0.224±0.053	0.164±0.041	0.87	< 0.001
Char Lake								
ΣΗCHs	1993-2012	55	174±11	-0.086±0.006		-0.425±0.081	0.83	< 0.001
Resolute								
ΣHCHs	1997-2015	165	68±7	-0.034±0.003	0.132±0.042	-0.141±0.030	0.55	< 0.001
	Time Period	Ν	Intercept	Year	Log W	NAO	r ²	Р
Lake Hazen								
ΣDDTs	1990-2015	129	88±9	-0.043±0.005	0.415±0.115	0.261±0.0.071	0.55	< 0.001
Amituk Lake								
ΣDDTs	1989-2015	96	57±10	-0.028±0.005	0.432±0.133	-0.120±0.061	0.33	< 0.001
Char Lake								
ΣDDTs	1993-2012							
1	1	1		1	1	1		1

Resolute Lake								
ΣDDTs	1997-2015	164	29±8	-0.014±0.004	0.327±0.129	-0.094±0.036	0.11	< 0.001

Table S15. Results of General Linear Model Analyses and factors affecting the concentration
of POPs in Arctic char from Lake Hazen, Amituk, Char and Resolute over the long temporal
series r^2 is the amount of variation explained by the model. Weight = W; Year = Y.

	Time Period	Ν	Equation	r ²	р
Lake Hazen	1 01100				
ΣΡCBs	1990-2015	128	70 - 0.034Y + 0.355 Log W	0.36	< 0.001
РСВ99	1990-2015	128	63 - 0.032Y + 0.515 Log W	0.28	< 0.001
PCB153	1990-2015	128	66 - 0.033Y + 0.689 Log W	0.30	< 0.001
ΣDDTs	1990-2015	128	100 - 0.050Y + 0.466 Log W	0.50	< 0.001
p,p'-DDE	1990-2015	128	53 - 0.027Y + 0.697 Log W	0.23	< 0.001
ΣΗCHs	1990-2015	147	98 - 0.048Y	0.52	< 0.001
a-HCH	1990-2015	147	103- 0.051Y	0.49	< 0.001
ү-НСН	1990-2015	147	93 - 0.046Y	0.35	< 0.001
НСВ	1990-2015	147	33 - 0.016Y	0.12	< 0.001
Toxaphene	1990-2015	129	47 - 0.023Y + 0.511 Log W	0.23	< 0.001
Amituk Lake					
ΣΡCBs	1989-2015	96	54 - 0.026Y + 0.421 Log W	0.37	< 0.001
PCB99	1989-2015	96	68 - 0.034Y + 0.417 Log W	0.55	< 0.001
PCB153	1989-2015	96	37 - 0.018Y + 0.491 Log W	0.27	< 0.001
ΣDDTs	1989-2015	96	53 - 0.026Y + 0.452 Log W	0.31	< 0.001
p,p'-DDE	1989-2015	96	38 - 0.018Y + 0.480 Log W	0.18	< 0.001
ΣΗCHs	1989-2015	107	131 - 0.065Y	0.84	< 0.001
а-НСН	1989-2015	107	130- 0.064Y	0.71	< 0.001
ү-НСН	1989-2015	107	151 - 0.075Y	0.76	< 0.001
НСВ	1989-2015	96	82 - 0.016Y + 0.175 Log W	0.28	< 0.001
Toxaphene	1990-2015	94	72 - 0.035Y + 0.356 Log W	0.48	< 0.001
Char Lake					
ΣΡCBs	1993-2012	55	72 - 0.034Y	0.31	< 0.001
PCB99	1993-2012	55	79- 0.039Y	0.44	< 0.001
PCB153	1993-2012	55	81 - 0.039Y	0.39	< 0.001
ΣDDTs	1993-2012	55	99 - 0.048Y	0.51	< 0.001
p,p'-DDE	1993-2012	55	97- 0.047Y	0.43	< 0.001
ΣΗCHs	1993-2012	55	136 - 0.067Y	0.74	< 0.001
а-НСН	1993-2012	55	136 - 0.068Y	0.79	< 0.001
ү-НСН	1993-2012	55	122- 0.061Y	0.56	< 0.001
НСВ	1993-2012	55	47 - 0.022Y	0.34	< 0.001
Toxaphene	1993-2012	51	65 - 0.031 Log W	0.38	< 0.001
Resolute Lake					

ΣΡCBs	1997-2015	166	41 - 0.091Y + 0.358 Log W	0.12	< 0.001
PCB99	1997-2015	166	36 - 0.018Y + 0.392 Log W	0.14	< 0.001
PCB153	1997-2015	166	33 - 0.016Y + 0.482 Log W	0.12	< 0.001
ΣDDTs	1997-2015	166	27 - 0.013Y + 0.318 Log W	0.07	< 0.001
p,p'-DDE	1997-2015				
ΣΗCHs	1997-2015	165	68 - 0.034Y	0.47	< 0.001
а-НСН	1997-2015	165	79- 0.039Y	0.55	< 0.001
ү-НСН	1997-2015	165	105 - 0.052Y	0.36	< 0.001
НСВ	1997-2015				
Toxaphene	2003-2015	117	-150+ 0.075Y+0.402 Log W	0.51	< 0.001

Table S16. Increments of r^2 (in %) when applying equation [1] (which consider climatic parameters) and equation [2] (which does not consider climatic parameters) in the long temporal series of POPs in Arctic char

%	increment r ²	calculated	$as = ((r^2)^2)^2$	Equation	[1] - r ²	² Equation	$[2])/r^{2}$	Equation	[2])*100
---	--------------------------	------------	--------------------	----------	----------------------	-----------------------	--------------	----------	----------

	Time Period	N	Equation [1]	r ²	r ² Equation [2]		% Increment r ²
Lake Hazen			LJ				
ΣΡCBs	1990-2015	129	Y=a+b (Year)+c (Log W or Log P) + d (Log NAO)	0.40	Y=a+b (Year)+c (Log W)	0.36	11
PCB99	1990-2015	129	Y=a+b (Year)+c (Log W or Log P) + d (Log NAO)	0.35	Y=a+b (Year)+c (Log W)	0.28	25
Amituk Lake							
ΣΡCBs	1989-2015	96	Y=a+b (Year)+c (Log W or Log P) + d (Log NAO)	0.41	Y=a+b (Year)+c (Log W)	0.37	11
PCB99	1989-2015	96	Y=a+b (Year)+c (Log W or Log P) + d (Log NAO)	0.59	Y=a+b (Year)+c (Log W)	0.55	7
Resolute Lake							
ΣΡCBs	1997-2015	165	Y=a+b (Year)+c (Log W or Log P) + d (Log NAO)	0.18	Y=a+b (Year)+c (Log W)	0.12	50
PCB99	1997-2015	165	Y=a+b (Year)+c (Log W or Log P) + d (Log NAO)	0.19	Y=a+b (Year)+c (Log W)	0.14	36
	Time Period	N	Equation [1]	r ²	Equation [2]	r ²	% Increment r ²
Lake Hazen							
ΣHCHs	1990-2015	147	Y=a+b (Year)+ b (Log NAO)	0.53	Y=a+b (Year)	0.52	2
Amituk Lake							
ΣHCHs	1989-2015	107	Y=a+b (Year)+c (Log W or Log P) + d (Log NAO)	0.87	Y=a+b (Year)	0.84	4
Char Lake							
ΣHCHs	1993-2012	55	Y=a+b (Year)+ b (Log NAO)	0.83	Y=a+b (Year)	0.74	12

		1					
Resolute							
Lake							
ΣΗCHs	1997-2015	165	Y=a+b (Year)+c (Log W or Log P) + d (Log NAO)	0.55	Y=a+b (Year)	0.47	17
	Time Period	Ν	Equation [1]	r ²	Equation [2]	r ²	% Increment r ²
Lake Hazen							
ΣDDTs	1990-2015	129	Y=a+b (Year)+c (Log W or Log P) + d (Log NAO)	0.55	Y=a+b (Year)+c (Log W)	0.50	10
Amituk Lake							
ΣDDTs	1989-2015	96	Y=a+b (Year)+c (Log W or Log P) + d (Log NAO)	0.33	Y=a+b (Year)+c (Log W)	0.31	6
Char Lake							
ΣDDTs	1993-2012				Y=a+b (Year)	0.51	
Resolute Lake							
ΣDDTs	1997-2015	164	Y=a+b (Year)+c (Log W or Log P) + d (Log NAO)	0.11	Y=a+b (Year)+c (Log W)	0.07	57

Cited literature

Bignert, A. (2007). PIA statistical application developed for use by the Arctic Monitoring and Assessment Programme. Oslo, No, Arctic Monitoring and Assessment Programme: 13

Cleemann, M.; Riget, F.; Paulsen, G. B.; de Boer, J.; Klungsoyr, J.; Aastrup, P., Organochlorines in Greenland lake sediments and landlocked Arctic char (Salvelinus alpinus). *Sci. Total. Environ.* **2000**, *245* (1-3), 173-185.

Environment Canada 2010. Standard operating procedures for water chemistry analysis. National Laboratory for Environmental Testing, Burlington, ON Canada

Evenset, A.; Christensen, G. N.; Skotvold, T.; Fjeld, E.; Schlabach, M.; Wartena, E.; Gregor, D., A comparison of organic contaminants in two high Arctic lake ecosystems, Bjørnøya (Bear Island), Norway. *Sci. Total Environ.* **2004**, *318*, 125-141.

Hammar, J.; Larsson, P.; Klavins, M., Accumulation of persistent pollutants in normal and dwarfed Arctic char (*Salvelinus alpinus* sp. complex). *Can. J. Fish Aquat. Sci.* **1993**, 50 (12): 2574-2580

Glassmeyer, S.; Shanks, K.E.; Hites, R.A. Automated toxaphene quantification by GC-MS. Anal. Chem. **1999**, 71, 1448-1453.

Kidd, K. A.; Hesslein, R. H.; Koczanski, K.; Stephens, G. R.; Muir, D. C. G., Bioaccumulation of Organochlorines through a Remote Freshwater Food Web in the Canadian Arctic. *Environ. Pollut.* **1998**, 102, 91-103.

Lescord, G. L., K. A. Kidd, J. L. Kirk, N. J. O'Driscoll, X. Wang and D. C. G. Muir . Factors affecting biotic mercury concentrations and biomagnification through lake food webs in the Canadian high Arctic." *Science of the Total Environment* **2015** 509-510: 195-205.

Morris, A. D.; Muir, D. C. G.; Solomon, K. R.; Teixeira, C.; Duric, M.; Wang, X., Trophodynamics of current use pesticides and ecological relationships in the Bathurst region vegetation-caribou-wolf food chain of the Canadian Arctic. *Environmental Toxicology and Chemistry* **2014**, 33 (9), 1956-1966

Muir D, Kwan M, Lampe J. Spatial trends and pathways of persistent organic pollutants and metals in fish, shellfish and marine mammals of northern Labrador and Nunavik. In: Kalhok S, editor. Synopsis of research conducted under the 1999–2000 Northern Contaminants Program. Ottawa: Indian and Northern Affairs Canada; **2000**. p. 191–201.

Muir, D.C.G., P. Kurt-Karakus, J. Stow, J. Blais, B. Braune, E. Choy, M. Evans, B. Kelly, N. Larter, R. Letcher, M. McKinney, A. Morris, G. Stern, G. Tomy. 2013. Occurrence and Trends in the Biological Environment. Chapter 4 in Muir, D.C.G., P. Kurt-Karakas and J. Stow (Eds) Canadian Arctic Contaminants Assessment Report On Persistent Organic Pollutants - **2013**. Aboriginal Affairs and Northern Development Canada. Ottawa ON pp 273-422.

National Laboratory for Environmental Testing (NLET). SOP 01-1100. Standard Operating Procedure for the Analysis of Chlorophyll a, b and c in Natural Waters by Spectrophotometric Determination. Environment Canada, Burlington ON 22pp.

Rigét, F.; Vorkamp, K.; Muir, D., Temporal trends of contaminants in Arctic char (Salvelinus alpinus) from a small lake, southwest Greenland during a warming climate. *J. Environ. Monitor.* **2010**, 12 (12), 2252-2258

Ryan, M. J.; Stern, G. A.; Kidd, K. A.; Croft, M. V.; Gewurtz, S.; Diamond, M.; Kinnear, L.; Roach, P., Biotic interactions in temporal trends (1992–2010) of organochlorine contaminants in the aquatic food web of Lake Laberge, Yukon Territory. Sci. Total Environ. **2013**, 443 (0), 80-92

Vorkamp, K.; Rigét, F. F.; Dietz, R., "Toxaphene in the aquatic environment of Greenland." *Environ. Pollut.* **2015**, 200: 140-148.