

Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries: supplementary material

RICHARD WOLF^{1,2,+}, **YUECHEN JIA**^{1,+}, **SEBASTIAN BONAUS**¹, **CHRISTOPH S.** WERNER¹, SIMON J. HERR¹, INGO BREUNIG^{1,3}, KARSTEN BUSE^{1,3,*}, AND HANS ZAPPF²

¹Laboratory for Optical Systems, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Köhler-Allee 102, 79110 Freiburg, Germany

²Gisela and Erwin Sick Chair of Micro-Optics, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Köhler-Allee 102, 79110 Freiburg, Germany

³ Fraunhofer Institute for Physical Measurement Techniques IPM, Heidenhofstraße 8, 79110 Freiburg, Germany

⁺ These authors contributed equally to this work.

*Corresponding author:karsten.buse@ipm.fraunhofer.de

Published 18 July 2018

This document provides supplementary information to "Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries," https://doi.org/10.1364/OPTICA.5.000872.

1. FABRICATION

The fabrication of pp-LNoQ substrates is done basically in four steps: domain inversion of a bulk LN chip by field-assisted poling; surface cleaning and functionalizing of the LN chip and of an α -quartz substrate; thermal bonding of the LN on quartz; and lapping and polishing of LN to the final thin film.

We write calligraphically a linear grating with $23 \,\mu m$ period length and approximately $5 \,\mu m$ domain width into a 300µm-thick 5-mol.%-MgO-doped optically-polished z-cut-LN chip (chip size: $17 \times 18 \text{ mm}^2$). A grating with 50 % duty cycle and a period length of $10 \,\mu$ m would be even better, however due to our fabrication setup this is hard to achieve. That's why we used a higher order grating structure, which allows us to use larger period lengths [1]. A 150-nm-thick chromium layer is sputtered on the +z-side of the crystal and serves as the backelectrode. We write the domains with a tungsten carbide tip moving along the *y*-crystal axis. While writing the domains, the applied high voltage is controlled in a way that a constant poling current of 30 nA flows, and the chip temperature is set to 150 °C. After poling the chromium layer is removed by selective wet-chemical etching.

Next we clean the periodically-poled sample and also a zcut- α -quartz chip with acetone and isopropanol, followed by a further cleaning and surface functionalization procedure. It basically consists of three steps: ultra-sonic-assisted rinsing

of the samples for 10 minutes in a H_2SO_4/H_2O_2 (1:1) solution, then in a $HCl/H_2O_2/H_2O$ (1:1:5) solution and finally in a $H_2O_2/NH_4OH/H_2O$ (1:1:5) solution. Each step is followed by rinsing the samples with deionized water for 5 minutes, and we dry the sample with nitrogen in the end.

1

After bonding of the LN chip on the quartz substrate, we enhance the bonding force by tempering. We heat the sample on a hot plate with 4 K/min to 325 °C and temper the sample for 5 hours.

Subsequently, we reduce the thickness of the periodicallypoled LN to 2 μ m by lapping and polishing with a standard wafer-polishing machine (PM5, Logitech). This is done in three steps. First we use a solution with 9-µm-Al₂O₃ particles and a lapping pressure of 1 N/cm^2 to lap the LN down to a thickness of 12 μ m. Next, we reduce the LN-film thickness to approximately 6 μ m, deploying a solution with 1- μ m-ceroxide particles and a lapping pressure of 2.5 N/cm^2 . Last, to achieve substrates with optical grade surface, we use SF1 Syton (Logitech) and a polishing pressure of 2.5 N/cm^2 to polish the LN-film down to the final thickness of 2 μ m. The film-thickness measurements are done with a profilometer. The WGRs are structured in the middle area $(6 \times 8 \text{ mm}^2)$ where we have a film thickness homogeneity of ± 250 nm.

2. CALCULATION OF EFFECTIVE NONLINEAR-OPTICAL COEFFICIENT

The effective nonlinear optical coefficient is given by $d_{eff} = |S_M|d_{max}$ with the unitless coefficient S_M . In this section we explain how S_M can be calculated according to [2] for three different cases: First, a single domain resonator for birefringent-phase matching (eeo), second, a radially poled resonator for quasi-phase matching (eee) and last, a linearly poled resonator for quasi-phase matching (ooo) (Fig. S1). For one roundtrip in the WGR the spatial variation of the nonlinear-optical coefficient can be described by $d(\varphi) = S(\varphi)d_{max}$ with the unitless function $S(\varphi)$ varying between ± 1 . $S(\varphi)$ can be influenced by two components: A variation S_{QPM} due to the domain pattern and a variation $S_{\text{crystal}}(\varphi) = S_{\text{QPM}}(\varphi) \times S_{\text{crystal}}(\varphi)$.

Fig. S1. Sketches of the three different cases, discussed in this section. (a) Single-domain WGR with birefringent phase matching. (b) Radially poled FGR with (eee)-quasi-phase matching. (c) Linear poled FGR with (ooo)-quasi-phase matching.

The first case with the birefringent-phase-matched singledomain WGR is simple. No domain patten is applied ($S_{\text{QPM}} = 1$) and the nonlinear optical coefficients $d_{311} = d_{322}$ are relevant so that there is no φ -dependence of d ($S_{\text{crystal}} = 1$, Fig. S2).

Fig. S2. Case one: Single-domain WGR with birefringentphase matching. (a) No variation of the nonlinear optical coefficient along the WGR perimeter $d_{eff}(\varphi)$ by S_{QPM} since there is no domain pattern applied. (b) No variation of $d_{eff}(\varphi)$ by $S_{crystal}$ since only $d_{311} = d_{322}$ is employed in birefringentphase matching. (c) Finally variation of $d_{eff}(\varphi)$ described by $S(\varphi) = S_{QPM}(\varphi) \times S_{crystal}(\varphi)$ which is constant in this case.

In the second example *d* is inverted every $\pi/4$, which is described by S_{QPM} like it is shown in Fig. S3 (a). Since only e-polarized light is involved the nonlinear coefficient d_{333} is deployed, which means that $S_{\text{crystal}} = 1$ and thus $S(\varphi) = S_{\text{QPM}}$ Fig. S3.

The third case is the most complex one. Here, $d(\varphi)$ is effected by the linear domain pattern which is described by S_{QPM} in Fig. S4 (a). We neglect the mode extension in radial direction and thus that different radial parts of the modes cross the domain walls at slightly different angles φ . Furthermore, only opolarized light is involved, which means that the nonlinear coefficients $d_{111} = 0$ and $d_{222} = 2.1 \text{ pm/V}$ are of relevance. The nonlinear coefficient varies as $S_{\text{crystal}}(\varphi) = \cos(3\varphi)$ [3] (Fig. S4 (b)) which results in a final variation $S(\varphi)$ shown in Fig. S4 (c).

The coefficients S_M are calculated by a Fouriertransformation of the respective $S(\varphi)$ [2]

$$d_{\rm eff}(M) = \frac{d_{max}}{2\pi} \left| \int_0^{2\pi} e^{iM\varphi} S(\varphi) d\varphi \right| = |S_M| d_{\rm max}.$$
(S1)

The corresponding $|S_M|$ to the three cases are shown in Fig. S5. In the first case there is only one coefficient different from zero with $S_{M=0} = 1$. The radially poled domain pattern provides a coefficient different from zero with $S_{M=4} = 2/\pi$ and at higher orders $M = (2n - 1) \times 4$ with $n \in \mathbb{N}$. This means that we can achieve with a radially poled domain pattern a $(2d_{333}/(\pi/d_{311}))^2 \approx 14$ -times higher efficiency with $d_{311} = 3.4 \text{ pm/V}$ and $d_{333} = 20.3 \text{ pm/V}$. In the case with the linear domain pattern there is a $S_M \neq 0$ for all M. This means that there are many possibilities to compensate for different phasemismatch M to achieve quasi-phase matching. However since the coefficients $|S_M|$ are relatively small this leads to a smaller d_{eff} . According to this procedure the coefficients S_M in Fig. (5c) of the main part are calculated for a domain pattern with 23 μ m period length and 5 μ m domain width for (000)-polarization.

Fig. S3. Case two: Radially poled WGR with quasi-phase matching (eee). (a) Variation of the nonlinear optical coefficient along the WGR perimeter $d_{\text{eff}}(\varphi)$ described by S_{QPM} . (b) No variation of $d_{\text{eff}}(\varphi)$ by S_{crystal} since only d_{333} is employed (c) Finally variation of $d_{\text{eff}}(\varphi)$ described by $S(\varphi) = S_{\text{QPM}}(\varphi) \times S_{\text{crystal}}(\varphi)$.

Fig. S4. Case three: Linearly poled WGR with quasi-phase matching (000). (a) Variation of the nonlinear optical coefficient along the WGR perimeter $d_{\text{eff}}(\varphi)$ described by S_{QPM} . (b) Variation of $d_{\text{eff}}(\varphi)$ in case of o-polarized light due to the fact, that $d_{111} = 0$ and $d_{222} \neq 0$. (c) Finally variation of $d_{\text{eff}}(\varphi)$ described by $S(\varphi) = S_{\text{QPM}}(\varphi) \times S_{\text{crystal}}(\varphi)$.

REFERENCES

- M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631–2654 (1992).
- I. Breunig, "Three-wave mixing in whispering gallery resonators," Laser & Photonics Rev. 10, 569–587 (2016).
- 3. D. N. Nikogosyan, *Nonlinear optical crystals: A complete survey* (Springer-Science, New York, 2005).

Fig. S5. Coefficients $|S_M|$ for the three different cases discussed above.