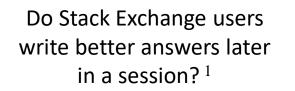


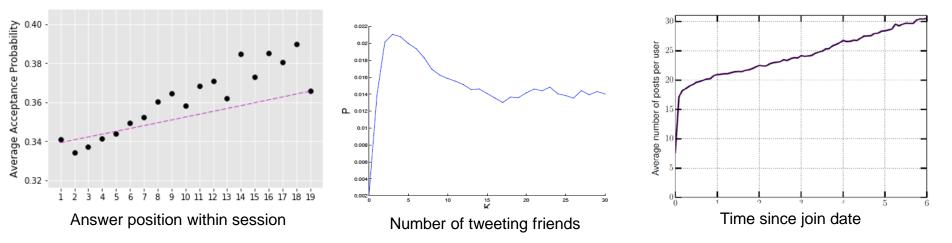


# Using Simpson's Paradox to Discover Interesting Patterns in Behavioral Data

#### **Kristina Lerman**


**USC Information Sciences Institute** 

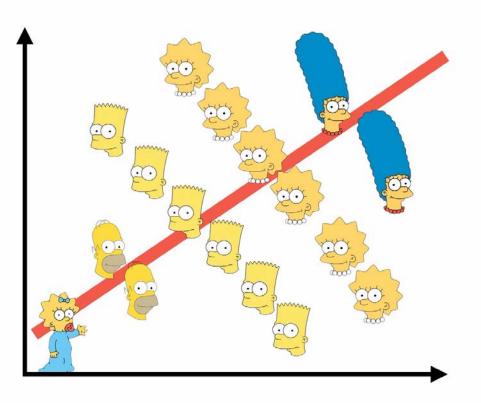
Thanks to Nazanin Alipourfard, Peter G. Fennell, IC2S2 2018 http://


http://www.isi.edu/~lerman



## Can you trust the trend?




Do additional exposures by friends suppress a Twitter user's use of a hashtag?<sup>2</sup> Do Reddit users become more active over time?<sup>3</sup>



- 1. Alipourfard, Fennell, & Lerman (2018) "Can you trust the trend: Discovering simpson's paradoxes in social data" in WSDM.
- 2. Romero, Meeder & Kleinberg (2011) "Differences in the Mechanics of Information Diffusion Across Topics" in *WWW*.
- 3. Barbosa et al. (2016) "Averaging gone wrong: Using time-aware analyses to better understand behavior." in *WWW*.



## **SIMPSON'S PARADOX**



A TREND APPEARS IN DIFFERENT SUB-GROUPS OF DATA BUT DISAPPEARS OR REVERSES WHEN THESE SUB-GROUPS ARE COMBINED.\*

\* Simpson (1951). "The Interpretation of Interaction in Contingency Tables". JRSS



## **SIMPSON'S PARADOX, AN ILLUSTRATION**

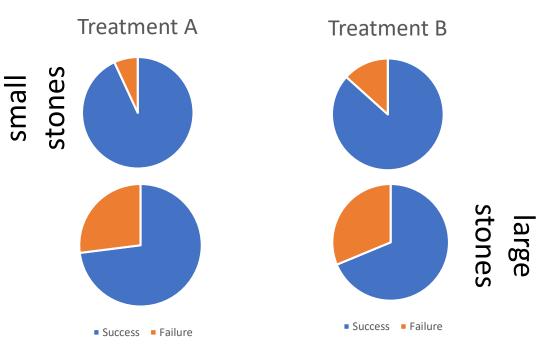
#### Which treatment should doctor recommend for kidney stones\*?

| Treatment A   | Treatment B          |
|---------------|----------------------|
|               |                      |
|               |                      |
| 78% (273/350) | <b>83%</b> (289/350) |

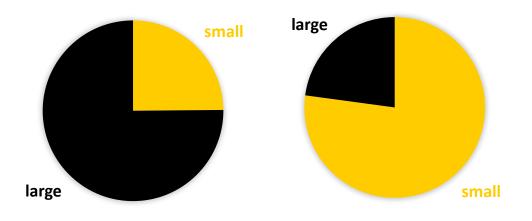
#### \* Wikipedia



## **SIMPSON'S PARADOX , AN ILLUSTRATION**


#### Which treatment should doctor recommend for kidney stones\*? After accounting for the confounder—stone size—the best choice reverses.

|                 | Treatment A          | Treatment B          |
|-----------------|----------------------|----------------------|
| Small<br>Stones | <b>93%</b> (81/87)   | 87% (234/270)        |
| Large<br>Stones | <b>73%</b> (192/263) | 69% (55/80)          |
| All             | 78% (273/350)        | <b>83%</b> (289/350) |




## **WHY SIMPSON'S REVERSAL OCCURS**

 Small stones are more easily treated, especially by treatment A



 But are overwhelmingly assigned to treatment B

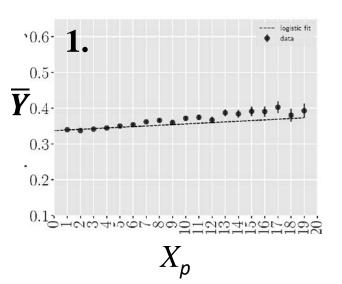




## **Central ideas and papers**

 Simpson's paradox implies that functional differences exist within the population.

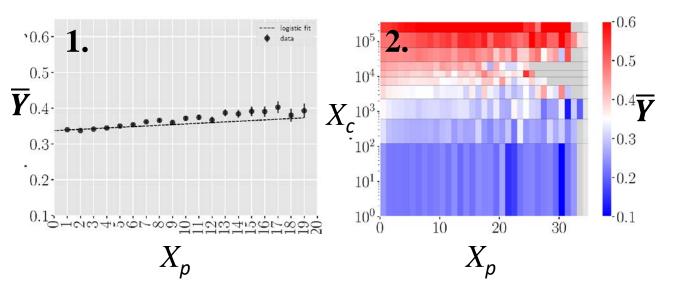
E.g., small kidney stones are easier to treat


- "Computational Social Scientist Beware: Simpson's Paradox in Behavioral Data", in *J. Computational Social* Science 2018
- We developed an algorithm to automatically identify Simpson's paradoxes data.
  - "Using Simpson's paradox to discover interesting behavioral patterns in data" in ICWSM 2018
  - "Can you Trust the Trend? Discovering Simpson's Paradoxes in Social Data" in WSDM 2018



## Method to discover Simpson's paradoxes in data

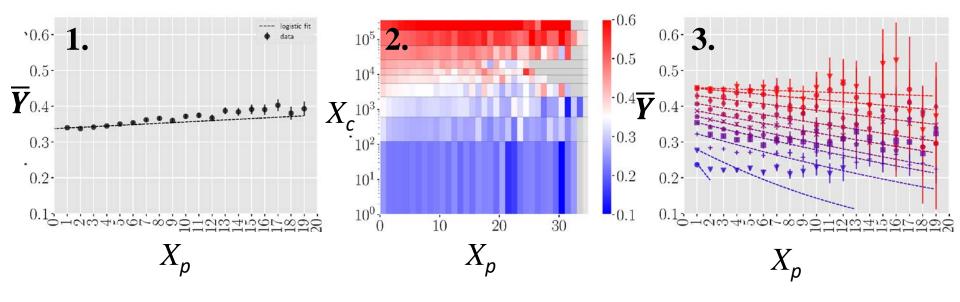
For each covariate  $X_p$ 


• Step 1: Estimate trend of outcome Y with respect to a covariate  $X_p$ 



## Method to discover Simpson's paradoxes in data

#### For each covariate $X_p$


- Step 1: Estimate trend of outcome Y with respect to a covariate  $X_p$ For each remaining covariate  $X_c$ 
  - Step 2: Disaggregate data by conditioning on X<sub>c</sub>



## Method to discover Simpson's paradoxes in data

#### For each covariate $X_p$

- Step 1: Estimate trend of outcome Y with respect to a covariate  $X_p$ For each remaining covariate  $X_c$ 
  - Step 2: Disaggregate data by conditioning on  $X_c$
  - Step 3: Compare trends of the outcome within disaggregated bins to the trend in the aggregated data





## **Empirical validations**



#### Problem solving

- 2 years Outcome Y:
- Is the problem solved correctly on the first attempt?
- 11 features:
- Day, month, first five, number of problems solved, ...



#### **Question answering**

- 6 years Outcome Y:
- Will the answer be accepted as best answer by the asker?
  19 features:
- words, code lines, session length, reputation, tenure, number of answers written, ...

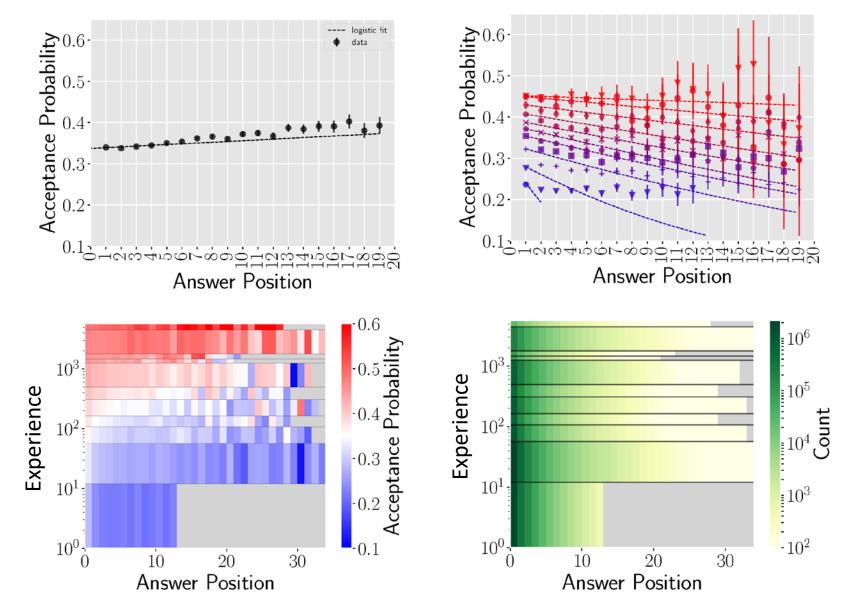


#### Language learning

- 2 weeks Outcome Y:
- Are all words correctly recalled in a lesson
- 22 features:
- Day, month, session length, first five, distinct words, hour24, ...



\*


## **Stack Overflow – Simpson's pairs**

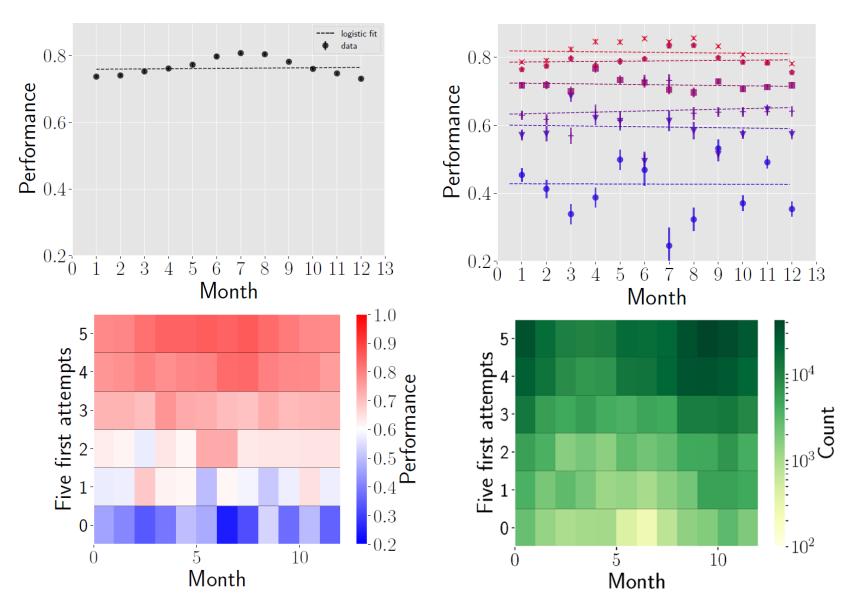
| Pseudo-R <sup>2</sup> | <b>Covariate of Performance</b> | <b>Conditioning variable</b> |
|-----------------------|---------------------------------|------------------------------|
| 0.03                  | Answer Position w/in Session    | Experience (answers written) |
| 0.03                  | Session Length                  | Experience (answers written) |
| 0.02                  | Experience                      | Reputation                   |
| 0.02                  | Answer Position w/in Session    | Reputation                   |
| 0.02                  | Session Length                  | Reputation                   |
| <0.01                 | Answer Position w/in Session    | Session Length               |
| <0.01                 | Time since Previous Answer      | Answer Position w/in Session |

\* Ferrara, et al. (2017) "Dynamics of content quality in collaborative knowledge production" in *ICWSM*.

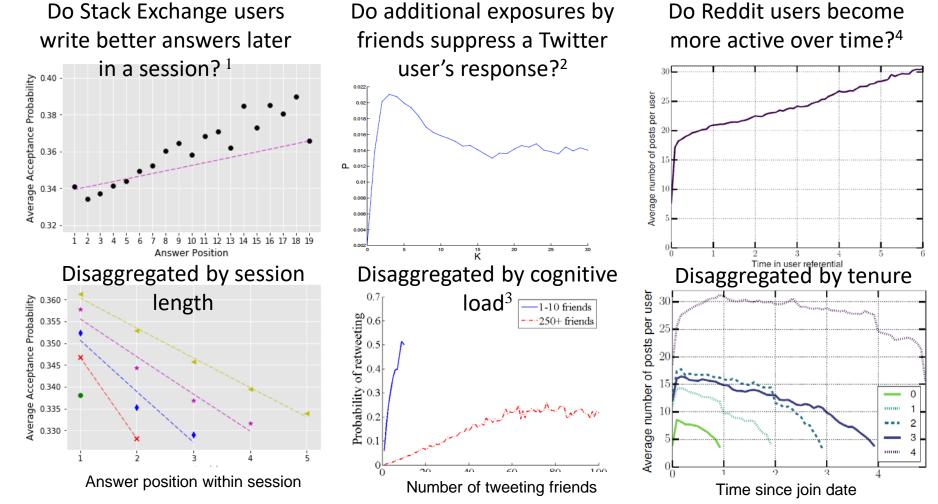


## **Stack Overflow Simpson's Paradox**






## Khan Academy – Simpson's pairs


| Pseudo-R <sup>2</sup> | <b>Covariate of Performance</b> | Conditioning variable |
|-----------------------|---------------------------------|-----------------------|
| 0.04                  | Hour24                          | Problems Correct      |
| 0.03                  | Month                           | Five First Attempts   |
| 0.01                  | Month                           | Session Index         |
| 0.01                  | Month                           | Total Solve Time      |
| 0.02                  | Session Number                  | Number of Problems    |
| 0.01                  | Session Number                  | Tenure                |
| 0.01                  | Session Number                  | Total Solve Time      |



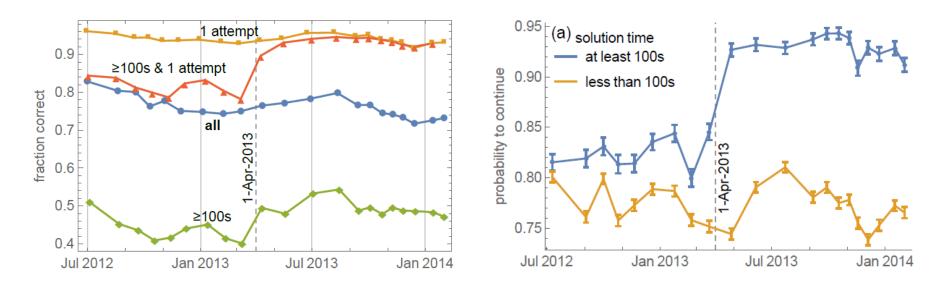
## Khan Academy Simpson's Paradox



## Can you trust the trend?



1. Alipourfard, et al. (2018) "Can you trust the trend: Discovering simpson's paradoxes in social data" in WSDM.


- 2. Romero et al. (2011) "Differences in the Mechanics of Information Diffusion Across Topics" in WWW.
- 3. Hodas & Lerman (2012) "How visibility and divided attention constrain social contagion", in SocialCom.]
- 4. Barbosa et al. (2016) "Averaging gone wrong: Using time-aware analyses to better understand behavior." in WWW.



## Algorithm to find natural experiments in data

Performance over time in Khan Academy:a) performance declines in aggregate; butb) increases for 'slow' users. Subgroupsautomatically identified by our algorithm.

Slow users become more persistent: they are more likely to continue working on problems they got wrong on their first attempt.



Hypothesis: User interface change in Khan Academy in April 2013 made slow users more "gritty": more likely to continue working on a problem they got wrong. As a result, they performance on other problems increases.



## To summarize

### https://github.com/ninoch/Trend-Simpsons-Paradox/

- Simpson's paradox occurs when an association/trend observed in the subgroups disappears or reverses when the subgroups are combined into one.
- Algorithm to automatically identify subgroups with different trends
  - A tool for data-driven discovery
  - And to formulate new hypotheses about data.
- Algorithm available!

https://github.com/ninoch/Trend-Simpsons-Paradox/

Works for binary outcomes, linear models



# **THANK YOU!**

## Sponsors NSF: CIF-1217605 ARO: W911NF-15-1-0142, W911NF-16-1-0306

Questions? lerman@isi.edu