

Photos: Carl Hutter Unless noted

FrogCap: a modular sequence capture probe set for phylogenomics and population genetics for Anurans, assessed across multiple phylogenetic scales

> Carl R. Hutter¹, Kerry A. Cobb², Dan Portik³, Scott Travers¹, Rafe M. Brown¹

¹ University of Kansas ² Auburn University ³ University of Arizona

carl.hutter@gmail.com

Reduced genomic representation

Method	Advantages	Disadvantages	Cost
RADSeq	High variability	Rapid loci drop-off	\$
Ultra-conserved elements (UCE)	Designed for amniotes	Low variability, unknown function	\$\$
Exome capture	Medium variability	Requires taxon-specific design, genomic resources	\$\$\$
Transcriptomes	Sequence many exons, estimate expression levels	Requires fresh tissue, expensive	\$\$\$\$

Major goals

- 200+ Myr radiation (Feng et al. 2017)
- Other frog probe sets
 - UCEs (Streicher et al. 2017)
 - Afrobatrachia (Portik et al. 2016)
 - Anchored (Hime et al., in prep)
- Backwards compatible
 - Sanger, ultra conserved elements, Feng et al. 2017, functional loci

Phylogenomics reveals rapid, simultaneous diversification of three major clades of Gondwanan frogs at the Cretaceous–Paleogene boundary

Yan-Jie Feng^a, David C. Blackburn^b, Dan Liang^a, David M. Hillis^c, David B. Wake^{d, 1}, David C. Cannatella^{c, 1}, and Peng Zhang^{a, 1}

^aState Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China; ^bDepartment of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611; ^cDepartment of Integrative Biology and Biodiversity Collections, University of Texas, Austin, TX 78712; and ^aMuseum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720

Anuran relationships

Archaeobatrachia (~400 species) (e.g. *Xenopus, Bombina*)

Hyloidea lineages (~3600 species) (New World: toads, glassfrogs Poison dart frogs, tree frogs)

Ranoidea lineages (~2800 species) (Old World: ranids, microhylids, flying frogs, mossy frogs)

[®] KA Cobb

Modular probe selection

- Combine UCEs, exome capture, legacy
- Selectable modules
- Different probe sets for different questions
- Bait kit size (20k vs. 40k)
 - Depth of coverage vs. amount of data

Data types

Ultra-conserved elements

- Non-protein coding
- Mostly unknown function
- Conserved through tree of life

• Exons

- Protein coding
- Functional, under selection
- Moderately conserved

• Introns

- Non-protein coding
- Flank the exons
- High variability

Questions

- 1) Do levels of gene discordance vary at different phylogenetic scales?
 - Order, Superfamily, Family, Genus, Species
- 2) Do different data types affect phylogenetic relationships?
 - Exon vs. intron vs. UCE

Probe design

- Based on Nanorana parkeri genome
- Reassembled 25 frog transcriptome datasets published on GenBank
- Pairwise matched frog transcriptomes to genome (w/ BLAT)
- Clustered proximate transcriptome matches together from the same exon

Whole-genome sequence of the Tibetan frog *Nanorana parkeri* and the comparative evolution of tetrapod genomes

Yan-Bo Sun^{a,1}, Zi-Jun Xiong^{b,c,d,1}, Xue-Yan Xiang^{b,c,d,e,1}, Shi-Ping Liu^{b,c,d,f}, Wei-Wei Zhou^a, Xiao-Long Tu^{a,g}, Li Zhong^h, Lu Wang^h, Dong-Dong Wu^a, Bao-Lin Zhang^{a,h}, Chun-Ling Zhu^a, Min-Min Yang^a, Hong-Man Chen^a, Fang Li^{b,d}, Long Zhou^{b,d}, Shao-Hong Feng^{b,d}, Chao Huang^{b,d,f}, Guo-Jie Zhang^{b,d,i}, David Irwin^{a,j,k}, David M. Hillis^{1,2}, Robert W. Murphy^{a,m}, Huan-Ming Yang^{d,n,o}, Jing Che^{a,2}, Jun Wang^{d,n,p,q,r,2}, and Ya-Ping Zhang^{a,h,2}

Probe design

- Gathered statistics to filter:
 - Optimal GC content ~40-50%
 - Parsimony informative sites > 15%
 - Maximize phylogenetic representation
 - No duplicate matches
 - 120bp length baits, 20bp intron buffer

N. parkeri Genome

Final probe sets

- 40k bait Ranoidea set
 - N. parkeri genome
 - 700 UCEs(Alexander et al. 2016)
 - = ~13,000 markers
- 40k bait Hyloidea + Archeobatrachia set
 - Redesigned 2300 UCEs (Streicher et al. 2017)
 - New transcriptome consensus sequences
 - = ~9,500 markers

Libraries and sequencing

- 101 samples
 - 77: Ranoidea (40,000 baits)
 - 24: Hyloidea (40,000 baits)
 - 1 Salamandra
 - 2 Archaeobatrachia
- MYcroarray (Arbor Biosciences) MyBaits, library preparation
- Illumina TruSeq libraries
- Hybridization-based enrichment
- Multiplex 8 samples / pool
- Illumina Hi-Seq 3000 150bp PE

Pre-processing

- Custom pipeline w/ R
- Trimming barcodes, adapter contamination (AfterQC)
- Remove contamination
 - Match reads to genomes (BBMap)
 - (e.g. bacteria, Drosophilia, C. elegans)
- Paired-end read merging (BBTools)
- Assembled with SPADES
 - 10 k-mer values

Alignment and cleaning

- Matched probes to assembled contigs (BLAST)
- Aligned with MAFFT 7.3
- Separated loci into three categories:
 - 1) Exons
 - 2) Introns
 - 3) UCEs
- Trimming and cleanup
 - 1) Maintain open reading frames
 - 2) TRIMAL (automatic1)
 - 3) End trimming

Phylogeny estimation

- Gene trees
 - IQTree w/ ModelFinder
 - 1000 ultrafast bootstrap replicates
- Astral-III summary species trees
 - Used polytomies for poor support (<50 bootstrap)
 - Exon, Intron, UCE separately
- Robinson-Fould's Distance
 - Normalized
 - Compared data type within groups

Scales

- 1) Order: Anura, 48 samples
- 2) Superfamily: Hyloidea, 24 samples
- 3) Superfamily: Ranoidea, 24 samples
- 4) Family: Mantellidae, 12 samples
- 5) Genus: Cornufer, 24 samples
- 6) Species: Cornufer sp., 16 samples

Markers by sample

- Loci captured per sample
- Blue most successful
- Salamander did poorly

Alignment summary

Phylogenetic Scale

- Loci captured for each data type within groups
- 50% Sampled Matrix = Each alignment > 50% taxon sampling

Variability

- Introns most variable
- Exons moderate
- UCEs moderate to low

Support value comparison

- From summary Astral trees
- Most groups greater than 75% of nodes strongly supported
- Species level poor support

Phylogenetic Scale

Robinson-Fould's density plots

Normalized Robinson-Fould's Distance

- Calculated RF from species
 tree to every gene tree
- For species tree from each data type (exon, intron, UCE)
- Differs across phylogenetic scales and data type

Data type tree comparison

Phylogenetic Scale

- From summary Astral trees
- Higher discord at larger scales
- Introns differed strongly from UCE and exons
- Genus and Family very similar

Data type tree comparison

Tree ComparisonExons to IntronsExons to UCEsUCEs to Introns

- From summary Astral trees
- Higher discord at larger scales
- Introns differed strongly from UCE and exons
- Genus and Family very similar

Phylogenetic Scale

Conclusions

- Results summary
 - Informativeness: Intron > Exon > UCE
 - Data type disagreement at larger scales
 - Family and genus level concordant
 - Species level = gene flow
- Future directions
 - Assess in species delimitation context
 - (e.g. Structure, SVDQuartets)
 - Additional sampling for Anuran phylogeny

Probe set and data availability

- The FrogCap Sequence Capture probe set and processing pipeline will soon be available on GitHub
- Contact me if you want to use it now
- github.com/chutter/FrogCap-Sequence-Capture
- All data (Raw reads, contigs, alignments) will be made available upon manuscript acceptance
 - NCBI Sequence Read Archive
 - Open Science Framework
 - https://osf.io/gvbr5/

OPEN SCIENCE

Questions?

Acknowledgements

Advisors: Rafe Brown and Rich Glor Tissues / Samples: Chan Kin Onn, Aaron Bauer, Dave Blackburn, Bill Duellman, Juan Guayasamin, Miguel Vences, Frank Glaw, Rich Glor Funding sources: University of Kansas, NSF GRFP, SSE Rosemary Grant Award

Graduate Research Fellowship Program

www.github.com/chutter

