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Section S1.  Comparison Between MAD and MAFD for Method Assessment 

An import question for assessing the accuracy of a method is: on what basis do 

we judge the its accuracy?  In other words, what indicator(s) do we use?  For 

instance, mean absolution deviation (MAD) and root-mean-square deviation 

(RMSD) are widely used.  However, we do not consider a meaningful distinction 

exists between MAD and RMSD because, at the limit of normally distributed 

deviations, the two are related by a constant factor.1  In this regard, we prefer the 

more straightforward interpretation of MAD. 

A question with less trivial answer is whether to consider the magnitudes of all 

data points having equal importance.  For instance, for the assessment with the 

GMTKN55 set,2 weighted total MADs (WTMADs) were used instead.  Two WTMADs, 

namely WTMAD1 and WTMAD2, have been defined, with WTMAD2 representing a 

more objective gauge.  Regardless of the choice of WTMAD, both take into account 

that a particularly sized deviation would represent different fractional deviations 

for quantities of dissimilar magnitudes, which may lead to a disparity in practical 

implications.  We will consider this aspect in some detail using the raw data 

provided for the MGCDB82 set.3  Specifically, in addition to obtaining unweighted 

MADs, we will also use a simple measure of dividing the magnitude of each 

deviation by its reference value.  We will refer to the sum of these fractional 

deviations as the mean absolute fractional deviation (MAFD). 

Let us first consider these two measures, namely MAD and MAFD, for gauging the 

overall accuracy of a computational chemistry method.  Before we argue for or 

against one or the other, shall we first ask the question: does it matter?  In other 

words, do the two metrics reveal the same information of interest, which in this case 

is the (relative) accuracy of a method for calculating thermochemical quantities.  To 

attempt answering this question, we plot the MADs for all the (~200) methods 

assessed previously against the corresponding MAFDs (Figure S1).  While the R2 

value for a linear regression is just 0.324, visualizing the plot shows a somewhat less 

discouraging picture.  We see several key outliers in the plot above a trend that is 
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qualitatively reasonably clear, though the quantitative correlation seems to be quite 

poor.  Among all the methods assessed, HF is one of the least accurate both in terms 

of MAD and MAFD.  However, its MAD is disproportionally large when considering 

the general trend of most other methods. 

 

Figure S1. Mean absolute deviations (MADs) for MGCDB82 versus the 

corresponding mean absolute fractional deviations (MAFDs) for ~ 200 methods 

assessed previously. 

Several other outliers are related to HF.  The dispersion-corrected4 variants [HF-

D3(0), HF-D3(BJ) and HF-NL] show vastly improved MAFDs.  This is not surprising 

because these corrections are designed to improve the description of non-covalent 

interactions.  These quantities typically have smaller relative energies when 

compared with those for other properties.  We can therefore expect them to 

contribute more significantly to the MAFDs.  However, the improvement in MADs 

achieved by using dispersion corrections are not large.  Overall, the inclusion of 

dispersion corrections brings the points further away from the general trend of the 

plot.  In contrast, when one supplement HF with a correlation functional (PW925 or 

LYP6), one sees improvements in MAD and MAFD to more balanced extents.  These 

two methods are less glaring outliers in the plot. 
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Apart from HF and related methods, we also find the two local-density 

approximation methods (LDAs, specifically S-VWN57,8 and S-PW925,7) to be notable 

outliers in the figure.  An expanded version of Figure S1 is also given (Figure S2), 

with a focus on the region of small MADs and MAFDs.  It shows that, while 

dispersion-corrected functionals are generally more accurate than non-corrected 

ones, some non-corrected ones are competitive with some of the most accurate 

DFTs being assessed, including the dispersion-corrected ones.  We note that the use 

of dispersion corrections is becoming almost ubiquitous in recent years.  While we 

appreciate their use for current generation of approximate functionals, the results in 

Figure S1 remind us of the importance of seeking a balanced improvement across 

the board, rather than relying too heavily on features designed with a narrow focus. 

 

Figure S2. Mean absolute deviations (MADs, kJ mol–1) for MGCDB82 versus the 

corresponding mean absolute fractional deviations (MAFDs). 

If we remove the outliers [HF and related methods and the two LDAs] from the 

linear regression, the R2 become 0.567, which is by no means satisfactory but does 

correspond to a semi-qualitatively usable trend (with a high level of uncertainty).  

When we further put the focus on just the non-dispersion-corrected methods, the R2 
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range of main-group chemical quantities that are diverse and representative, the 

two measures seems to have some correspondence.  The dilemma of using one or 

the other may therefore not be of critical importance.  The two quantities MAD and 

MAFD provide us with different information regarding a particular method, and (in 

our opinion) it would not be wise to argue for or against one or the other with 

absolute conviction.  In the present study, we use MAD as we prefer direct 

inspection of the actual magnitudes of the deviations. 
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Section S2.  Comparison Between MGCDB82 and GMTKN55. 

Another aspect that we will briefly discuss is whether the results of MGCDB82 

and GMTKN55 sets resemble those of each other.  After all, if the observations for a 

large and general compilation are not transferable to another extensive set 

assembled with very similar intended purposes, it may not be realistic to expect a 

substantially smaller set to correspond well with any of these sets in a robust 

manner.  More importantly, if the conclusions drawn from one large set are very 

different to those from another, it would be a rather dubious decision to use one set 

as a target over another.  Both MGCDB82 and GMTKN55 have been used to 

benchmark large collections of DFT methods.2,3  In each case, approximately 200 

functionals have been tested.  Among these, 75 are common to both studies.  They 

are (in alphabetical order): 

B3LYP, B3LYP-D3BJ, B3LYP-NL, B3P86, B3PW91, B3PW91-D3BJ, B97-1, B97-2, 

B97-D3BJ, BLYP, BLYP-D3BJ, BMK, BMK-D3BJ, BP86, BP86-D3BJ, BPBE, BPBE-D3BJ, 

HCTH407, M05, M05-D3, M052X, M052X-D3, M06, M06-D3, M062X, M062X-D3, 

M06L, M06L-D3, M08HX, M11, M11-D3BJ, M11L, M11L-D3, MN12L, MN12L-D3BJ, 

MN12SX, MN12SX-D3BJ, MN15, MN15L, MPWPW91, N12, N12-D3, N12SX, N12SX-

D3BJ, OLYP, OLYP-D3BJ, PBE, PBE-D3BJ, PBE0, PBE0-D3BJ, PKZB, PW6B95, 

PW6B95-D3BJ, PW91, revPBE, revPBE-D3BJ, revTPSS, revTPSSh, RPBE, RPBE-D3BJ, 

rPW86PBE, rPW86PBE-D3BJ, SCAN, SCAN-D3BJ, SOGGA11X, SOGGA11X-D3BJ, 

tHCTH, tHCTHhyb, TPSS, TPSS-D3BJ, TPSSh, TPSSh-D3BJ, VV10, ωB97X-D3, ωB97X-

V. 

We will thus compare the statistical measures of these methods for the two sets.  In 

the assessment with GMTKN55, weighted total MADs (termed WTMAD2) were used 

instead of MAD.  To facilitate a straightforward comparison, for MGCDB82, in 

addition to MADs, we have also obtained WTMAD2 values using the same protocol 

for calculating those for the GMTKN55 set. 

Figure S3 shows the correlation between the MADs and WTMAD2s for MGCDB82 

versus the WTMAD2s for the GMTKN55 set.  We can see that the trends for the two 
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sets correspond reasonably well, with R2 values of 0.901 and 0.935, respectively, for 

the MADs and WTMAD2s for MGCDB82.  While the good R2 values between these 

sets would suggest the observations on MGCDB82 are quite likely to be applicable 

also to GMTKN55, visual inspection of the figure indicates that poor correlations 

may occur.  This can be illustrated by WTMAD2 values of ~ 50 kJ mol–1 for 

GMTKN55 corresponding to a series of WTMAD2s for MGCDB82 spanning a range 

from ~20 to ~70 kJ mol–1.  We note that this is despite the R2 value for WTMAD2 

being larger than that for MAD.  With that being said, all measures agree at the far 

ends of the spectrum, with O-LYP9 being inferred as the least accurate and ωB97X-

V10 being indicated as the most accurate, though some other methods also come 

close to matching its rather remarkable accuracy. 

  

Figure S3.  MADs and WTMAD2s for MGCDB82 versus normalized WTMAD2 values 

for GMTKN55 for a set of 75 DFT methods that have been assessed with both data 

sets.  All values are given in the unit of kJ mol–1. 
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Section S3.  The Use of MAFD versus WTMAD2 

So far, our discussion has been based mainly on three statistical indicators for 

assessing the accuracy of a method (MAD, MAFD and WTMAD2).  Among them, both 

MAFD and WTMAD2 are metrics intended to provide information about the 

accuracy of an assessed method in terms of deviations relative to the magnitudes of 

the quantities being determined.  MAFD is defined as: 

MAFD =���	,��� − �	,����	,��� �
�

	��
 

in which i refers to individual data points.  A more elaborate scheme2 is used to 

obtain the WTMAD2 for an assessed method: 

MAD =���	,��� − �	,����
�

	��
 

WTMAD2 = ��������������
�����∑ ������

� ��
��������������

�
MAD�

�

���
 

in which i refers to data points within a subset and j refers to subsets within the 

overall collection of data sets; N is the number of data points.  MAFD measures the 

relative deviation for each data point directly, whereas WTMAD2 takes a collection 

of data points in a subset as a single unit, and determines the relative deviations 

based on the number of contributing data points to the overall compendium and the 

average energetic magnitudes for these units of subsets.  While the two metrics 

appear to be quite different in their forms, for the data obtained previously for 

MGCDB82, they correlate well for all the assessed methods (Figure S3).  For gaining 

insights about deviations relative to the magnitudes of the quantities, we prefer 

MAFD for its simplicity and more straightforward interpretation. 
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Figure S4.  Mean absolute fractional deviations (MAFDs) for MGCDB82 versus the 

corresponding weighted total mean absolute deviation 2 (WTMAD2, kJ mol–1) 

values. 
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Section S4.  An Alternate Set of Scale Coefficients for the MG8 Model 

The eight data sets in the MG8 model provide, as a single set, the best statistical 

representation of their categories in MGCDB82.  To arrive at a single measure, we 

can sum the weighted MADs of the eight subsets with the weighting coefficients 

determined by the number of data points in the groups that they contribute to the 

overall compendium.  In this way and in conjunction with the regression formula for 

each set (see the MG8 worksheet in the Excel workbook of Supporting Information), 

one can arrive at a definition for EMADMG8 alternative to the one used in the main 

text.  The coefficients obtained by the two approaches are shown in Table S1.  While 

the parameters differ quantitatively, they both yield good correlations between the 

obtained EMADs and the actual MADs for MGCDB82 (R2 of 0.988 and 0.984 with the 

regression and derived coefficients, respectively). 

Table S1.  Data Sets in the MG8 Model, Their Scale Coefficients and Intercepts 

for Obtaining EMAD Values, as Determined by Linear Regression and 

Derivation Based on Number of Contributing Data Points of the Categories 

Group Data set regression derived 

NCEC S66x8 0.4533 0.3261 

NCED H2O20Bind10 0.0078 0.0102 

NCD Bauza30 0.0580 0.0119 

IE YMPJ519 0.2084 0.1827 

ID C20C24 0.0116 0.0034 

TCE TAE140nonMR 0.0720 0.0762 

TCD TAE140MR 0.0232 0.0173 

BH DBH24 0.0278 0.0455 

Intercept (kJ mol–1)  2.5258 3.6461 
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Section S5.  Description of the DFT Methods Used for Cross-Validating MG8 

We have assessed the accuracy of six DFT methods for the purpose of cross-

validating the MG8 model with the independent VM6 and VM9 models.  These 

methods are HSEB-D, EDF2-D, W404-D, APF-D, MBh-D and PGTh.  Here we provide 

a brief overview of the DFT methods and the rationale for their inclusion in our 

assessment. 

The HSEB-D method11 contains a screened-exchange functional based on the 

HSE12,13 method but with the PBEc correlation component14 in HSE replaced by a 

modified B97c functional,15 and it also contains a D216 dispersion term.  This 

method has been shown to provide a better accuracy than that by HSE for a range of 

test sets with a total of more than 800 data points.  In the present study, we use an 

alternative s6 value of 0.8 for the D2 component to yield the smallest EMADMG8.  The 

EDF2 method17 is devised for obtaining accurate vibrational frequencies, while 

WP0418 is designed for the accurate computation of proton chemical shifts.  We 

supplement these methods with D2 dispersion corrections optimized for EMADMG8 

with s6 values of 0.6 and 1.2, respectively.  The APF-D method19 comprises the APF 

exchange–correlation component that is formulated to be “dispersion-free”, and a 

complementary dispersion term developed with a spherical atom model.  We retain 

this original dispersion component in the present study. 

We formulate the MBh-D method by examining the combination of several 

exchange functionals (B88,20 MPW21 and PBE14) with the revised B97c correlation 

component used in HSEB-D, within the context of a global-hybrid DFT with a D2 

dispersion term.  The method that shows the best accuracy, as judged with EMADMG8, 

employs the MPW exchange with 25% Hartree–Fock exchange, and an s6 value of 1.1.  

We devised the PGTh-D method in a similar manner.  In this case, we employ the 

PBE-GX exchange,22 which is based on a finite uniform electron gas and is thus 

distinct from all other commonly used exchange functionals.  We examine its 

combination with two correlation functionals, namely SCANc23 and regTPSSc24, as 

they have been found to yield good accuracy when used in conjunction with PBE-GX 
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for a small set of systems.22  Based on the results of our assessment, we define the 

PGTh method as a global-hybrid DFT with 30% Hartree–Fock exchange using the 

regTPSSc correlation functional.  We have explored the addition of a D2 term to 

PGTh but find that it does not lead to a smaller EMADMG8. 

  



 S13

Section S6.  Assessment of DFT Methods with the SGB13 Model 

The SBG31 set25 has been used regularly for assessing computational chemistry 

methods for the accuracies in calculating semiconductor band gaps.  To down-size 

SBG31 and devise our SBG13 model, we have benchmarked 26 pure and screened-

exchange DFT methods.  The results are shown in Table S2.  With the exception of 

HISS, all methods considered here underestimate these band gaps.  In general, we 

find that the screened-exchange methods provide the best quantitative agreements, 

with typical MADs of ~ 0.3 eV.  In comparison, the MADs for other methods are 

generally in the range of ~ 0.7–1.2 eV. 

Table S2.  Reference and Calculated Band Gaps (eV) for the SBG31 Set 

 AlAs AlP AlSb B-As BP BaS BaSe 

Ref 2.23 2.51 1.68 1.46 2.40 3.88 3.58 

SVWN5 1.35 1.56 1.21 1.13 1.31 2.08 1.77 

BLYP 1.71 1.96 1.42 1.42 1.63 2.42 2.06 

BP86 1.53 1.76 1.34 1.24 1.42 2.33 1.98 

BPW91 1.49 1.73 1.32 1.21 1.39 2.38 2.00 

HCTH147 1.77 2.06 1.52 1.40 1.59 2.61 2.21 

HCTH407 1.88 2.21 1.59 1.46 1.59 2.82 2.36 

HCTH93 1.80 2.09 1.55 1.40 1.55 2.72 2.30 

M06L 1.83 2.10 1.43 1.48 1.80 2.61 2.18 

M11L 2.22 2.41 1.87 1.79 1.68 2.33 2.35 

MN12L 1.72 1.77 1.38 1.41 1.38 2.24 2.01 

MN15L 1.72 1.89 1.32 1.37 1.47 2.38 2.09 

mPW91 1.49 1.73 1.32 1.22 1.39 2.36 1.99 

N12 1.52 1.88 1.28 1.25 1.46 2.42 1.98 

OLYP 1.76 2.02 1.57 1.32 1.44 2.83 2.38 

PBE 1.47 1.70 1.29 1.19 1.36 2.35 1.98 

PKZB 1.50 1.69 1.34 1.12 1.24 2.52 2.21 

PW91 1.48 1.71 1.31 1.21 1.39 2.33 1.97 

revTPSS 1.53 1.69 1.37 1.11 1.28 2.44 2.10 

SOGGA 0.96 1.14 0.95 0.73 1.04 3.02 2.33 

tHCTH 1.81 2.10 1.59 1.41 1.61 2.66 2.25 

TPSS 1.58 1.78 1.43 1.21 1.40 2.50 2.11 

VSXC 1.67 1.75 1.21 1.44 1.63 1.69 1.69 

N12SX 2.25 2.54 1.96 1.93 2.10 3.41 2.95 

MN12SX 2.20 2.36 1.89 1.86 1.95 2.90 2.68 
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HSE 2.13 2.42 1.82 1.88 2.13 3.19 2.74 

HISS 2.40 2.72 2.05 2.15 2.45 3.60 3.09 

 BaTe C CdS CdSe CdTe GaAs GaN 

Ref 3.08 5.48 2.55 1.90 1.92 1.52 3.50 

SVWN5 1.40 4.17 0.97 0.31 0.54 0.04 1.83 

BLYP 1.69 4.50 1.21 0.55 0.70 0.15 1.96 

BP86 1.60 4.24 1.19 0.56 0.73 0.26 1.85 

BPW91 1.62 4.23 1.26 0.62 0.79 0.32 1.86 

HCTH147 1.80 4.33 1.48 0.78 0.86 0.41 2.06 

HCTH407 1.97 4.34 1.71 0.96 1.00 0.52 2.16 

HCTH93 1.90 4.29 1.62 0.93 0.98 0.53 2.12 

M06L 1.51 4.75 1.82 1.22 1.28 1.01 2.09 

M11L 1.98 4.02 1.83 1.91 2.61 1.08 2.23 

MN12L 1.45 4.24 1.46 0.76 1.02 0.78 1.79 

MN15L 1.44 4.14 1.79 1.08 1.12 1.33 1.97 

mPW91 1.60 4.24 1.24 0.60 0.78 0.30 1.86 

N12 1.56 4.33 1.42 0.55 0.68 0.13 1.96 

OLYP 2.01 4.18 1.73 1.06 1.10 0.63 2.06 

PBE 1.59 4.20 1.26 0.63 0.81 0.36 1.86 

PKZB 1.79 3.99 1.53 0.96 1.13 0.76 1.87 

PW91 1.58 4.24 1.22 0.58 0.77 0.29 1.86 

revTPSS 1.69 4.09 1.41 0.86 1.08 0.64 1.70 

SOGGA 1.87 3.95 2.40 1.68 1.73 0.72 1.99 

tHCTH 1.87 4.33 1.50 0.76 0.84 0.33 2.08 

TPSS 1.70 4.24 1.47 0.85 1.05 0.60 1.78 

VSXC 1.34 4.40 1.78 1.29 1.44 0.88 2.13 

N12SX 2.44 5.50 2.50 1.63 1.75 1.06 3.36 

MN12SX 2.17 5.05 2.20 1.62 1.86 1.03 2.95 

HSE 2.21 5.43 2.21 1.48 1.64 1.11 3.08 

HISS 2.49 6.08 2.79 1.98 2.08 1.58 3.97 

 GaNwu GaP GaSb Ge InAs InN InP 

Ref 3.30 2.35 0.73 0.74 0.41 0.69 1.42 

SVWN5 2.18 1.56 0.00 0.00 0.00 0.00 0.74 

BLYP 2.31 1.85 0.00 0.00 0.00 0.00 0.83 

BP86 2.20 1.74 0.08 0.01 0.00 0.00 0.89 

BPW91 2.22 1.75 0.14 0.07 0.00 0.00 0.96 

HCTH147 2.42 1.98 0.16 0.13 0.00 0.00 1.04 

HCTH407 2.53 2.15 0.26 0.26 0.00 0.10 1.22 

HCTH93 2.48 2.05 0.27 0.25 0.00 0.06 1.16 

M06L 2.47 2.11 0.75 0.60 0.59 0.00 1.72 

M11L 2.57 2.05 1.15 0.67 1.07 0.37 1.34 

MN12L 2.14 1.78 0.58 0.56 0.20 0.00 1.60 

MN15L 2.33 1.82 0.79 0.73 0.52 0.00 1.87 



 S15

mPW91 2.22 1.75 0.13 0.05 0.00 0.00 0.95 

N12 2.32 1.93 0.00 0.00 0.00 0.00 1.14 

OLYP 2.43 2.07 0.37 0.34 0.12 0.07 1.24 

PBE 2.22 1.74 0.19 0.13 0.00 0.00 0.99 

PKZB 2.22 1.76 0.54 0.42 0.22 0.00 1.31 

PW91 2.21 1.73 0.12 0.04 0.00 0.00 0.94 

revTPSS 2.05 1.73 0.44 0.33 0.13 0.00 1.18 

SOGGA 2.34 1.10 0.76 0.16 0.44 0.15 1.19 

tHCTH 2.44 1.99 0.08 0.02 0.00 0.01 0.98 

TPSS 2.15 1.83 0.39 0.32 0.08 0.00 1.19 

VSXC 2.45 1.58 0.59 0.53 0.33 0.07 1.59 

N12SX 3.76 2.59 0.87 0.74 0.62 1.06 2.07 

MN12SX 3.33 2.29 0.80 0.64 0.57 0.63 1.69 

HSE 3.48 2.39 0.90 0.80 0.57 0.72 1.77 

HISS 4.37 2.67 1.32 1.10 0.98 1.43 2.24 

 InSb MgS MgSe MgTe SiC Si ZnO 

Ref 0.23 5.40 2.47 3.60 2.42 1.17 3.40 

SVWN5 0.00 3.37 1.64 2.41 1.34 0.53 0.75 

BLYP 0.00 3.75 1.86 2.67 1.72 0.85 1.00 

BP86 0.00 3.65 1.86 2.66 1.47 0.68 0.87 

BPW91 0.00 3.68 1.88 2.69 1.42 0.65 0.90 

HCTH147 0.00 4.01 2.16 2.87 1.71 0.89 1.29 

HCTH407 0.00 4.29 2.19 3.01 1.70 0.95 1.46 

HCTH93 0.00 4.15 2.18 2.96 1.63 0.89 1.38 

M06L 0.36 4.27 2.46 3.18 1.62 1.04 0.93 

M11L 1.31 3.92 3.33 3.32 2.30 1.21 1.45 

MN12L 0.11 3.86 3.28 2.73 1.78 0.74 0.56 

MN15L 0.14 4.03 2.96 2.73 1.58 0.85 0.87 

mPW91 0.00 3.65 1.86 2.67 1.43 0.65 0.89 

N12 0.00 3.86 1.89 2.56 1.39 0.76 1.19 

OLYP 0.00 4.22 2.08 3.03 1.43 0.82 1.33 

PBE 0.00 3.64 1.81 2.65 1.38 0.62 0.87 

PKZB 0.08 3.97 2.35 3.06 1.25 0.61 0.96 

PW91 0.00 3.63 1.83 2.64 1.42 0.64 0.88 

revTPSS 0.04 3.88 2.12 3.09 1.22 0.61 0.77 

SOGGA 0.66 3.77 2.09 3.43 1.22 0.26 0.93 

tHCTH 0.00 4.10 2.39 2.99 1.75 0.94 1.44 

TPSS 0.00 3.90 2.12 3.07 1.34 0.71 0.90 

VSXC 0.09 3.33 3.32 2.35 2.01 0.87 1.20 

N12SX 0.52 5.11 2.84 3.73 2.12 1.30 2.43 

MN12SX 0.47 4.61 3.36 3.55 2.37 1.13 2.43 

HSE 0.47 4.67 2.69 3.54 2.32 1.21 2.44 

HISS 0.83 5.31 3.14 3.91 2.75 1.45 3.48 
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 ZnS ZnSe ZnTe     

Ref 3.66 2.70 2.38     

SVWN5 2.02 1.05 1.11     

BLYP 2.26 1.28 1.25     

BP86 2.24 1.30 1.31     

BPW91 2.29 1.35 1.36     

HCTH147 2.59 1.58 1.49     

HCTH407 2.81 1.73 1.60     

HCTH93 2.72 1.71 1.61     

M06L 2.97 2.05 1.89     

M11L 2.77 2.67 2.94     

MN12L 2.73 1.68 1.75     

MN15L 3.11 2.09 1.93     

mPW91 2.28 1.33 1.35     

N12 2.50 1.27 1.22     

OLYP 2.77 1.79 1.68     

PBE 2.30 1.37 1.39     

PKZB 2.65 1.78 1.79     

PW91 2.26 1.32 1.34     

revTPSS 2.48 1.64 1.69     

SOGGA 2.23 1.53 1.87     

tHCTH 2.63 1.58 1.49     

TPSS 2.53 1.62 1.65     

VSXC 2.86 2.13 2.02     

N12SX 3.68 2.41 2.34     

MN12SX 3.50 2.57 2.59     

HSE 3.44 2.38 2.34     

HISS 4.13 2.97 2.88     
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Section S6.  The XE6 Model for Assessing Computed Excitation Energies 

In addition to the MOR13, SBG5 and MB13 models discussed in the main text, we 

have further formulated the XE6 model for evaluating the accuracy of theoretical 

methods for the calculation of excitation energies.  The XE6 model is based on the 

set of excitation energies of Schreiber et al.,26 which contains 28 molecules and a 

variety of singlet and triplet excitation energies.  Among these, 103 singlet excitation 

energies have been used subsequently for the benchmark of 30 quantum chemistry 

methods.27  We use standard lasso regularization regression to formulate a linear 

combination model of a minimal subset of the 103 excitation energies, for which the 

estimated MADs for the 30 methods correlate with the actual MADs with a criterion 

of R2 > 0.995.  The resulting model, which we term XE6 (Excitation Energy 6), 

contains just six excitation energies from five molecules.  The linear fit has an R2 of 

0.997.  The parameters for obtaining the estimated MAD for the complete set of 103 

energies using the XE6 model (EMADXE6) are shown in Table S3. 

Table S3.  Details for Obtaining EMADXE6 as an Estimation of the MAD for a Set 

of 103 Singlet Excitation Energies 

Molecule Excitation Ref (eV) Coefficient 

E-Butadiene  1 Ag (π → π*) 6.55 0.1436858 

Pyrazine  1 B2u (π → π*) 4.64 0.0977290 

Pyrazine  1 B1g (n → π*) 6.60 0.1055256 

s-Tetrazine  2 Au (n → π*) 5.50 0.0922092 

Cytosine  1 A″ (n → π*) 4.87 0.0070462 

Uracil  2 A″ (n → π*) 6.10 0.1499667 

Intercept (eV)   0.0298189 

As case studies, we use the XE6 model to assess the accuracy of time-dependent 

calculations with two screened-exchange (SX) DFT methods that we have recently 

formulated.  They are HSEB28 and reHISSB.29  It is noteworthy that the set of 30 DFT 
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methods used for deriving XE6 does not contain SX-DFT.  However, the HSE SX-DFT 

method,30 which is closely related to HSEB (and to reHISSB but to a somewhat lesser 

degree), has been independently assessed with the full set of 103 excitation 

energies,31 for which its MAD is 0.23 eV.  Such a performance is on par with some of 

the most accurate hybrid functionals (~ 0.2–0.3 eV) among the 30 methods for this 

set of singlet excitation energies, and is substantially better than typical pure DFT 

methods (> 0.5 eV).  In comparison, the EMADXE6 values for HSEB and reHISSB are 

0.19 and 0.21 eV, respectively, which is what one might expect given their similarity 

to HSE.  This again lends support to our premise that statistically down-sized data 

sets can provide an accurate means for evaluating theoretical methodologies. 
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