
Thesis & Dissertation Data
Clarke Iakovakis

July, 2018

Contents
1 Getting the data 1

1.1 Sierra . 1
1.2 Exporting the data . 3

2 Reading the data 4
2.1 Cleaning author (100) field for ETDs . 4
2.2 Data Cleaning . 6

3 Finished 11

1 Getting the data

1.1 Sierra

Start by downloading the data from Sierra.

1.1.1 General Collection

Start in the general collection. This one is easy: Record type is ITEM. ITEM LOCATION
equal to clthe.

1

1.1.2 Archives

There are also some theses and dissertations in archives that are not in the general collection.
Record type is ITEM. (ITEM LOCATION equal to clua) AND (BIBLIOGRAPHIC
SUBJECT has uh-cl graduate project OR BIBLIOGRAPHIC SUBJECT has uh-cl
theses)

1.1.3 ETDs

Finally we get the ETDs. Note that for this one, Record type is BIBLIOGRAPHIC.
(BCODE1 = t) AND (BIBLIOGRAPHIC LOCATION equal to cin.)

2

1.2 Exporting the data

The export fields include:

• BIBLIOGRAPHIC RECORD #
• BIBLIOGRAPPHIC ITEM #
• BIBLIOGRAPHIC MARC Tag 245|ab
• BIBLIOGRAPHIC MARC Tag 245|c
• BIBLIOGRAPHIC CALL #
• BIBLIOGRAPHIC NOTE
• BIBLIOGRAPHIC SUBJECT
• BIBLIOGRAPHIC IMPRINT
• BIBLIOGRAPHIC ADD NAME (exports from Sierra as ADD AUTHOR)
• ITEM TOTCHKOUT
• BIBLIOGRAPHIC MARC Tag 100 [ETDs only]
• BIBLIOGRAPHIC MARC Tag 856|u [ETDs only]

Important: export with the following parameters:

• Field delimiter: ˆ (carat)
• Text qualifier: ‘ (not a quotation mark. It’s a backquote, or shift + tilde, next to

the 1 key)
• Repeated field delimiter: ~ (tilde)

3

2 Reading the data

Data is downloaded from Sierra in three files: from archives (tds.ua), from the general print
collection (tds.gen), and ETDs (tds.etd). Notice when we read.csv() it in that the sep
argument set to carat, and the quote argument set to backquote. Also, encoding is UTF-8.
#setwd("C:/Users/iakovakis/Documents/Projects/ETDs/Summer18/")
tds.ua <- read.csv(file="./data/raw/tds.ua.txt"

, sep = "^"
, quote = "`"
, na.strings = ""
, stringsAsFactors = F
, encoding= "UTF-8")

tds.gen <- read.csv("./data/raw/tds.clthe.txt"
, sep = "^"
, na.strings = ""
, quote = "`"
, stringsAsFactors = F
, encoding= "UTF-8")

tds.etd <- read.csv(file="./data/raw/tds.etds.txt"
, sep = "^"
, quote = "`"
, na.strings = ""
, stringsAsFactors = F
, encoding= "UTF-8")

tds.etd <- rename(tds.etd, link = X856.u)

2.1 Cleaning author (100) field for ETDs

The 100 field in the ETDs (tds.etd) metadata has some name issues that need to be resolved
right off the bat so we can merge it with the archives and general collection. Specifically,
since ETDs were exported from a Bibliographic rather than an Item level list, the name of
the NOTE field must be changed with rename(). Then, the word “author” appears in a
couple different configurations and need to be removed, as do periods.

Then, ETDs were cataloged with last name, first name. However, last name needs to be
swapped with first name so it matches the rest of the items (use extract() and a regular
expression ([ˆ]+) (.*) putting each name into a different variable). Then get rid of the
comma, and paste() the names together, replace the NA values with the results, and remove
the extra variables so the columns match the other two datasets exactly.
clean.etdAuthor <- function(df) {
df <- rename(df, NOTE = NOTE.BIBLIO.)
df$X100 <- str_replace_all(df$X100, ", author", "")
df$X100 <- str_replace_all(df$X100, " author", "")

4

df$X100 <- str_replace_all(df$X100, "\\.", "")
df <- df %>%

pull last name and first name and paste them together
extract(X100, c("LastName", "FirstName"), "([^]+) (.*)") %>%
mutate(LastName = str_replace_all(LastName, ",", "")) %>%
mutate(author = paste(FirstName, LastName))

df$X245.c[which(is.na(df$X245.c))] <- df$author[which(is.na(df$X245.c))]
df <- select(df, -FirstName, -LastName, -author)

}
tds.etd <- clean.etdAuthor(tds.etd)

2.1.1 Bind it together

Of course, we don’t want to work with three different datasets, so we rbind() them to-
gether since all their variables match. Then rename() the columns into something more
comprehensible.

The next two expressions are to deal with items that have more than one copy with possibly
more than one checkout per copy. We don’t want duplicate records, but we do want to
account for all checkouts. So we group_by() bibRecord, then sum the total checkouts and
return that to bibGroup. Then we get rid of duplicate bibliographic records in the primary
dataset (tds), deselect the existing total checkouts column, and join it with bibGroup, which
has the summed checkouts per bibliographic record.
tds.gen$format <- rep("print", nrow(tds.gen))
tds.ua$format <- rep("print", nrow(tds.ua))
tds.etd$format <- rep("electronic", nrow(tds.etd))
tds.gen$link <- rep(NA, nrow(tds.gen))
tds.ua$link <- rep(NA, nrow(tds.ua))

tds <- rbind(tds.ua, tds.gen, tds.etd)
tds <- rename(tds

, bibRecord = RECORD...BIBLIO.
, itemRecord = RECORD...ITEM.
, title = X245.ab
, author = X245.c
, callNumber = CALL...BIBLIO.)

bibGroup <- tds %>%
group_by(bibRecord) %>%
summarise(TOT.CHKOUT = sum(TOT.CHKOUT))

tds <- tds %>%
filter(!duplicated(bibRecord)) %>%
select(-TOT.CHKOUT) %>%

5

left_join(bibGroup, by = "bibRecord") %>%
arrange(desc(TOT.CHKOUT))

2.2 Data Cleaning

This data needs a lot of cleaning.

2.2.1 Create Type

The create.type function creates a variable called type in the main theses & dissertations
dataframe (tds) which includes three values: thesis, graduate project, and dissertation.

It works by first creating an empty vector, type, of mode = character that has as many
elements as whatever dataframe is fed into it (length = nrow(df)). It then contains four
expressions that build the vector piece by piece. This is called “growing a vector.”

The first expression looks through the SUBJECT column for mention of the word “theses”–if
it detects the word (str_detect(df$SUBJECT, "theses")), it creates a new value in the
type vector in the same place that the item was detected, with the word “thesis”. This is
done by subsetting type using [] brackets and assigning the new value to which element
the detection was found in. It does the same thing looking for the word “Thesis” in the
NOTE variable, the word “graduate project” in SUBJECT, and the word “dissertation” in
SUBJECT.
create.type <- function(df){

cleans and makes consistent the different types of graduate works in
the type variable.
#
Arg:
A dataframe of theses, dissertations, and graduate projects exported
from Sierra including the BIBLIOGRAPHIC SUBJECT
and BIBLIOGRAPHIC TYPE variables
#
Returns:
The same dataframe with a clean and consistent type variable
type <- vector(mode="character", length=nrow(df)) # create empty vector
type[which(str_detect(df$SUBJECT, "theses"))] <- "thesis"
type[which(str_detect(df$NOTE, "Thesis"))] <- "thesis"
type[which(str_detect(df$SUBJECT, "graduate project"))] <- "graduate project"
type[which(str_detect(df$SUBJECT, "dissertation"))] <- "dissertation"
df$type <- type
return(df)

}

6

run the function
tds <- create.type(tds)

2.2.2 Create College

The create.college function creates a variable called College in the main theses & disser-
tations dataframe which includes four values: College of Science and Computer Engineering,
College of Human Sciences & Humanities, College of Education, and College of Business.

It works by growing a vector–two actually. The first scans through the ADD.AUTHOR
variable looking for unique portions of the college name from past and present in the
ADD.AUTHOR field. When those portions are detected, the full, current college name is
added to the College variable. For any items in which nothing was found, it adds an NA. The
second takes those NA values and looks through the NOTE field for the same information.
Those are then integrated into the final College variable, which is returned.
create.college <- function(df) {

Creates a clean College variable to include which Colleges the items come from
#
Arg: A dataframe of theses, dissertations, and graduate projects exported from Sierra including the ADD.AUTHOR
and NOTE variables
#
Returns:
The same dataframe with a clean and consistent College variable
#
create empty vector
College <- vector(mode = "character", length = nrow(df))
#
Scan through the ADD.AUTHOR variable for key unique portions of a college name, and when detected, add the full name of the College to the number in the variable corresponding to the detection
College[which(str_detect(df$ADD.AUTHOR, "of Natural"))] <- "College of Science and Engineering"
College[which(str_detect(df$ADD.AUTHOR, "of Human Sciences"))] <- "College of Human Sciences and Humanities"
College[which(str_detect(df$ADD.AUTHOR, "of Human Science"))] <- "College of Human Sciences and Humanities"
College[which(str_detect(df$ADD.AUTHOR, "of Education"))] <- "College of Education"
College[which(str_detect(df$ADD.AUTHOR, "and Computer"))] <- "College of Science and Engineering"
College[which(str_detect(df$ADD.AUTHOR, "and Engineering"))] <- "College of Science and Engineering"
College[which(str_detect(df$ADD.AUTHOR, "of Business"))] <- "College of Business"
College[which(str_detect(df$ADD.AUTHOR, "Sciences and Tech"))] <- "College of Science and Engineering"
#
Attach it to the main data frame
df$College <- College
#
Replace the blank spaces in the College variable with NA)
df$College[which(df$College == "")] <- NA
Since a College was not found for all items, it is now necessary to

7

check in the NOTE field to see if we can detect one there
#
create a subset based on the number of elements that are NA in the
just-created College variable
College.na <- df[is.na(df$College),]
a new empty vector to grow
College2 <- vector(mode = "character", length = nrow(College.na))
#
College2[which(str_detect(df$NOTE, "of Natural"))] <- "College of Science and Engineering"
College2[which(str_detect(df$NOTE, "of Human Sciences"))] <- "College of Human Sciences and Humanities"
College2[which(str_detect(df$NOTE, "of Human Science"))] <- "College of Human Sciences and Humanities"
College2[which(str_detect(df$NOTE, "of Education"))] <- "College of Education"
College2[which(str_detect(df$NOTE, "and Computer"))] <- "College of Science and Engineering"
College2[which(str_detect(df$NOTE, "and Engineering"))] <- "College of Science and Engineering"
College2[which(str_detect(df$NOTE, "of Business"))] <- "College of Business"
College2[which(str_detect(df$NOTE, "Sciences and Tech"))] <- "College of Science and Engineering"
#
College2[which(College2 == "")] <- NA
#
Create an index of NA values in the College variable
College.repl <- which(is.na(df$College))
Replace that index with the same items from the College 2 variable
df$College[College.repl] <- College2[College.repl]
return(df)

}
run the function
tds <- create.college(tds)

View(filter(tds, is.na(TOT.CHKOUT)))

2.2.3 Create Date

We create a date column with the create.date function. This function takes the IMPRINT
variable, removes extraneous information such as the university name, periods, and quotation
marks.
clean.date <- function(df) {

Remove quotation marks and periods from IMPRINT field & convert it to integer
#
get that junk out
df$IMPRINT <- str_trim(df$IMPRINT)
df$IMPRINT <- str_replace_all(df$IMPRINT, fixed("University of Houston-Clear Lake "), "")
df$IMPRINT <- str_replace_all(df$IMPRINT, fixed("University of Houston--Clear Lake, "), "")
df$IMPRINT <- str_replace_all(df$IMPRINT, '\\"|\\.', "")

8

df$IMPRINT <- str_replace_all(df$IMPRINT, fixed("[Houston, Tex] : University of Houston-Clear Lake, ©"), "")
df$IMPRINT <- str_replace_all(df$IMPRINT, "University of Houston-Clear Lake, ", "")
coerce to integer
df$IMPRINT <- as.integer(df$IMPRINT)
return(df)

}
run the function
tds <- clean.date(tds)

2.2.4 Clean author

We next clean the author column. First, the words “by” and “prepared” are removed. Then
whitespace is trimmed off with str_trim(). The next is a bit sloppy, but works for the
moment. It creates three subsets and then binds them together. The first subset dfx gets all
items in the author column with a period at the end, and removes the period. The next dfy
simply gathers those items without a period at the end from the outset, and the last dfz are
the NA values. The three are then bound together with rbind().
clean.author <- function(df) {

df <- mutate(df, author = str_replace_all(author, "by |prepared ", ""))
df <- mutate(df, author = str_trim(author))
table(is.na(df$author)) # 70 NA values
sloppy way to do this. get a period at the end, then take it away,
then bind the three together
dfx <- df %>%

filter(str_sub(author, nchar(author), nchar(author)) == ".") %>%
mutate(author = str_sub(author, 1, nchar(author) - 1))

dfy <- df %>%
filter(str_sub(author, nchar(author), nchar(author)) != ".")

dfz <- df[is.na(df$author),]
df <- rbind(dfx, dfy, dfz)
return(df)

}
tds <- clean.author(tds)

2.2.5 Create hyperlink

Next a hyperlink is created by adding the base URL to the bibliographic record, minus the
last character.
create.hyperlink <- function(df) {

dfx <- filter(df, is.na(df$link))
dfy <- filter(df, !is.na(df$link))

9

record <- str_sub(dfx$bibRecord, 1, nchar(dfx$bibRecord) - 1)
dfx$link <- paste0("https://library.uh.edu/record=", record)
df <- rbind(dfx, dfy)
return(df)

}
tds <- create.hyperlink(tds)

2.2.6 Clean chair

This is the most difficult field to clean because consistent name authority control was not
applied across time. The create.chair function starts by extracting any and all text after
the words chair, chairs,advisor, director, and supervisor. It then extracts all text before the
appearance of a tilde (remember this was the Repeated Fields delimiter selected in the Sierra
export). It then attempts to remove all titles such as Dr, Drs, PhD, EdD, MSW, JD, and so
on. It finally removes all punctuation.
create.chair <- function(df) {

faculty <- str_extract(df$NOTE, "(?<=chair\\: |advisor\\: |chairs\\: |director\\: |co-chairs\\: |supervisor\\: |chair |director\\, |Chair\\:).*")
faculty[which(str_detect(faculty, "\\~"))] <- str_extract(faculty[which(str_detect(faculty, "\\~"))], "^.*?(?=\\~)")
faculty[which(str_detect(faculty, "\\,"))] <- str_extract(faculty[which(str_detect(faculty, "\\,"))], "^.*?(?=\\,)") # this is to get the ETDs, see View(filter(df, is.na(TOT.CHKOUT)))
faculty <- str_replace_all(faculty, "Dr\\. |Drs\\. |Ph\\.D\\.| PhD|Ed\\.D\\.|M\\.S\\.W\\.|M\\.F\\.A\\.|Ph\\. D|M\\. F\\. A|M\\.A|Ed\\/D|P\\.E\\.|Ed\\|J\\.D\\.|M\\. F\\. A|\\, \\(|M\\.A", "")
faculty <- str_trim(faculty)
faculty <- str_replace_all(faculty, "[[:punct:]]?$", "")
faculty <- str_trim(faculty)
faculty <- str_replace(faculty, "[[:punct:]]?$", "")
faculty <- str_trim(faculty)

df$chair <- faculty
df <- arrange(df, chair)
return(df)

}
tds <- create.chair(tds)

I messed up and didn’t pull in the latest batch of ETDs from Spring 2018 which don’t have
records in Sierra yet. I did some cleanup in Excel for this one, then ran a function to clean
up the names, as I did with the above cleanETDAuthor function.
this is the latest batch from Spring 2018
tds.vireo <- read.csv(file="./data/raw/vireoExport.csv"

, na.strings = ""
, stringsAsFactors = F)

cleantds.vireo <- function(df) {
df$author <- str_remove_all(df$author, "[[:digit:]]")
df$author <- str_remove_all(df$author, "\\-")
df$author <- str_trim(df$author)

10

df <- df %>%
pull last name and first name and paste them together
extract(author, c("LastName", "FirstName"), "([^]+) (.*)") %>%
mutate(LastName = str_replace_all(LastName, ",", "")) %>%
mutate(author = paste(FirstName, LastName)) %>%
select(-FirstName, -LastName) %>%
extract(chair, c("LastName", "FirstName"), "([^]+) (.*)") %>%
mutate(LastName = str_replace_all(LastName, ",", "")) %>%
mutate(chair = paste(FirstName, LastName)) %>%
select(-FirstName, -LastName)

}
tds.vireo <- cleantds.vireo(tds.vireo)

2.2.6.1 Clean chair in OpenRefine

Some of the cleanup is just too extensive to do in R, and I had to use OpenRefine. See the
below video for how I did that. I can’t remember what the point of the below code is, and if
you’ve followed me this far, hopefully you can parse it out :-)
write.csv(tds
, "./data/processed/tdsV1.csv"
, row.names = F)

tdsOR <- read.csv("./data/processed/tdsV1-OR.csv"
, stringsAsFactors = F)

tdsMerge <- select(tds, bibRecord, format)
tdsOR2 <- left_join(tdsOR, tdsMerge, by = "bibRecord")
names(tdsOR2) <- tolower(names(tdsOR2))
names(tds.vireo) <- tolower(names(tds.vireo))
tdsx <- rbind(tdsOR2, tds.vireo)

write.csv(tdsx, "./data/results/tdsFinal.csv", row.names = F)

3 Finished

Now we have a dataset with relatively clean faculty names. Here’s how to read it in. All
work at this point was finished in Tableau, and that story won’t be told here. But you can
view it at http://uhcl.libguides.com/thesesdissertations/visualization.
all <- read.csv("./data/results/tdsFinal.csv"

, stringsAsFactors = F
, encoding = "ASCII") # got converted to ASCII in Excel

11

http://uhcl.libguides.com/thesesdissertations/visualization

I didn’t use this below bit of code, but you can do some Open Refine work in R, so I’m
keeping it here for future reference.

12

	Getting the data
	Sierra
	Exporting the data

	Reading the data
	Cleaning author (100) field for ETDs
	Data Cleaning

	Finished

