
Supplement to “Joint mean and covariance estimation
with unreplicated matrix-variate data”

Michael Hornstein, Roger Fan, Kerby Shedden, Shuheng Zhou

Department of Statistics, University of Michigan

Outline

We provide additional simulation and data analysis results in Section A and B. We state

some preliminary results and notation in Section C. We prove Theorem 1 in Section D

and Corollary 2 in Section D.2. We prove Theorem 3 in Section E, with additional lemmas

proved in Section F. We prove entrywise convergence of the sample correlation matrices

for Algorithm 1 in Section G. We prove Theorem 4 in Section H, and we prove additional

lemmas used in the proof of Theorem 4 in Section I. In Section J we provide additional

comparisons between our method and some related methods on both simulated and real

data.

A Additional simulation results

Figure S1 demonstrates the e↵ect of mean structure on covariance estimation. As expected,

when there is no mean structure Gemini performs competitively. As more mean structure

is added, however, its performance quickly decays to be worse than Algorithm 2. This

also provides evidence that the plug-in estimator p⌧init used in Algorithm 2 is appropriately

selecting genes to group center, as when there are no or very few di↵erentially expressed

genes Algorithm 2 is still never worse than Gemini. Algorithm 1 does not perform as well as

Algorithm 2 but still tends to eventually outperform Gemini as more mean structure is added.

As the sample size increases, the di↵erence between Algorithm 2 and Algorithm 1 decreases

as the added noise from group centering becomes less of a factor. We still recommend using

Algorithm 2 in most realistic scenarios, but this reinforces our theoretical finding that the

two algorithms have the same error rates.
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Figure S1: Performance of Gemini, Algorithm 1, and Algorithm 2 for estimating B under
di↵erent mean and covariance structures. As the sample size increases, we can see that
Algorithm 1 improves relative to Gemini and begins to catch up to Algorithm 2. Gemini’s
performance always degrades as the true di↵erences grow or more di↵erentially expressed
genes are added, while Algorithm 1 and 2 are stable. We set B´1 as Erdős-Rényi (ER)
or star-block with blocks of size 4 (SB). All plots use A from an AR1p0.8q model with
m “ 2000 and are averaged over 200 replications. In the left plot the first 50 genes are
di↵erentially expressed at the level specified on the x-axis. As indicated, the three groups
of lines correspond to n “ 20, 40, and 80. In the right two columns there are m1 number of
genes with exponentially decaying true di↵erences between groups, scaled so that the largest
di↵erence is 5 (resulting in an average di↵erence of approximately 1).

B Additional data analysis

As discussed in Section 3.1, it is particularly important that the design e↵ect is accurately

estimated in order for the test statistics to be properly calibrated. The first plot of Figure S2a

displays the sensitivity of the estimated design e↵ect (21) for Algorithm 2 to the GLasso

penalty parameter and the number of group centered columns. In the case that all columns

are group centered, Algorithm 2 reduces to Algorithm 1. If we group center all genes, the

estimated design e↵ect is sensitive to the penalty parameter, but if we group center a small

proportion of genes, it is less sensitive to the penalty parameter. This is further evidence

that it may be advantageous to avoid over-centering the data when the true mean di↵erence
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(a) The first plot displays the estimated design e↵ect vs. the penalty multiplier for Algorithm 2.

Each curve corresponds to a di↵erent number of columns being group centered. As the curves

go from top to bottom, the number of group centered columns increases from 10 to 2000. The

second plot shows a quantile plot of test statistics from the data vs. simulated test statistics; in the

simulation, the population person-person covariance matrix is pB, as estimated from the UC data.
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(b) Quantile plot and inverse covariance graphs. The first two plots correspond to � “ 0.4 and

128 group centered genes. The third plot corresponds to � “ 0.5 and 128 group centered genes.

Green circles correspond to twins with UC, orange circles to twins without UC. Twins are aligned

vertically.

Figure S2
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vector � may be sparse. The second plot of Figure S2a shows a quantile plot comparing the

distribution of test statistics from the UC data to test statistics from a simulation whose

population correlation structure is matched to the UC data. The quantile plot reveals that

we can reproduce the pattern of overdispersion in the test statistics using simulated data

having person-person as well as gene-gene correlations. Such correlations therefore provide

a possible explanation for the overdispersion of the test statistics.

Figure S2b displays a quantile plot and inverse covariance graph for � “ 0.4 and 128 group

centered genes. Under these settings the test statistics appear correctly calibrated, coinciding

with the central portion of the reference line. Furthermore, the inverse covariance graph is

sparse (38 edges). In the inverse covariance graph, there are more edges between subjects

with UC than between the healthy subjects, which could be explained by the existence

of subtypes of UC inducing correlations between subsets of subjects. The third plot of

Figure S2b displays a sparser inverse covariance graph, corresponding to a larger penalty

� “ 0.5. There are three edges between twin pairs, and there are more edges between

subjects with UC than between those without UC.

B.1 Stability simulation

Table S1 shows the results from a simulation analogous to Table 2, demonstrating stability

across iterations of the procedure. Iteration 1 begins by group centering 1280 genes and

this number is halved in each successive iteration. We can see from the table that the gene

rankings generated by Algorithm 2 are robust to misspecifying the number of di↵erentially

expressed genes. When the number of group centered genes is 160 or below (iterations 4

through 8), the commonly selected genes among the top 20 genes are stable. Furthermore,

the true positives remain stable as we decrease the amount of genes centered, while the false

positives decrease.
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Table S1: Number of genes in common among genes ranked in the top 20 when di↵erent
numbers of genes are group centered. This simulation is analogous to Table 2. Note that the
maximum possible value for any entry of the table is 20; if entry pi, jq is 20, then iterations
i and j selected the same top twenty genes. The first 10 genes have a di↵erence of 1.5 and
the second 10 have a di↵erence of 1. All remaining genes have a true mean di↵erence of
zero. We use B as estimated from the UC data, and A is from an AR1p0.8q model. These
simulations have n “ 20 individuals and 2000 genes and are averaged over 200 replications.
The last two rows display the average number of true and false positives among the genes
ranked in the top 20 of each iteration.

1 2 3 4 5 6 7 8
1 20.0 17.6 15.8 14.8 14.3 14.0 14.0 13.9
2 17.6 20.0 17.9 16.8 16.2 15.9 15.8 15.8
3 15.8 17.9 20.0 18.7 18.1 17.8 17.7 17.6
4 14.8 16.8 18.7 20.0 19.3 19.0 18.9 18.8
5 14.3 16.2 18.1 19.3 20.0 19.6 19.5 19.4
6 14.0 15.9 17.8 19.0 19.6 20.0 19.8 19.7
7 14.0 15.8 17.7 18.9 19.5 19.8 20.0 19.8
8 13.9 15.8 17.6 18.8 19.4 19.7 19.8 20.0

TP 12.7 14.3 15.6 16.4 16.7 16.8 16.8 16.8
FP 7.3 5.7 4.4 3.6 3.3 3.2 3.2 3.2

C Preliminary results

In this section, we refresh notation and introduce propositions that are shared in the proofs

of the theorems. For convenience, we first restate some notation.

D “

»

–1n1 0

0 1n2

fi

fl P Rnˆ2 (S1)

⌦ “ pDTB´1Dq
´1 and ⌦n,m “ pDTB´1

n,mDq
´1 (S2)

� “ B´1

n,m ´ B´1 (S3)

p�p pB´1
q “ pDT pB´1Dq

´1DT pB´1X P R2ˆm (S4)

When D has the form (S1), the singular values are �maxpDq “
?
nmax and �minpDq “

?
nmin.

The condition number is pDq “ �maxpDq{�minpDq “
?
nratio where nratio “ maxpn1, n2q{minpn1, n2q.
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We first state some convenient notation and bounds.

ra :“ amax{amin and rb :“ bmax{bmin;

1{'minpAq “ kA´1k2 § k⇢pAq
´1k2{amin “

1

amin'minp⇢pAqq
, (S5)

1{'minpBq “ kB´1k2 § k⇢pBq
´1k2{bmin “

1

bmin'minp⇢pBqq
, (S6)

1{'minp⇢pAqq “ k⇢pAq
´1k2 § amaxkA´1k2, (S7)

1{'minp⇢pBqq “ k⇢pBq
´1k2 § bmaxkB´1k2 (S8)

kAk2 § amaxk⇢pAqk2, kBk2 § bmaxk⇢pBqk2, (S9)

k⇢pAqk2 § kAk2{amin, and k⇢pBqk2 § kBk2{bmin. (S10)

The eigenvalues of the correlation matrices satisfy

0 † 'minp⇢pAqq § 1 § 'maxp⇢pAqq and 0 † 'minp⇢pBqq § 1 § 'maxp⇢pBqq. (S11)

In the remainder of this section, we state preliminary results and highlight important in-

termediate steps that are used in the proofs of Theorems 1 and 3. First we state propositions

used in mean estimation for Theorems 1 and 3.

C.1 Propositions

We now state propositions used in the proofs of Lemmas S5 and S6. We defer the proof of

Proposition S1 to Section D.5.

Proposition S1. For ⌦ as defined in (S2) and some design matrix D,

k⌦k2 § kBk2{�2

min
pDq

In the case that D is defined as in (S1), we have k⌦k2 § kBk2{nmin.

Furthermore,

�minp⌦q •
�minpBq

nmax

. (S12)

We state the following perturbation bound.
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Theorem S2 (Golub & Van Loan, Theorem 2.3.4). If A is invertible and kA´1Ekp † 1,

then A ` E is invertible and

kpA ` Eq
´1

´ A´1kp §
kEkpkA´1k2p
1 ´ kA´1Ekp

§
kEkpkA´1k2p

1 ´ kA´1kpkEkp
.

In Proposition S3, we provide auxiliary upper bounds that depend on k�k2, kBk2, pDq,

and �minpDq. We defer the proof of Proposition S3 to the end of this section, for clarity of

presentation.

Proposition S3. Let � “ B´1

n,m ´ B´1
.

�0p�q :“ k⌦n,m ´ ⌦k2 §
1

�2

min
pDq

kBk2
2
k�k2

1{2pDq ´ kBk2k�k2
(S13)

�1p�q :“
��⌦DT�

��
2

§ �maxpDqkBk2k�k2{�2

min
pDq “

?
nmax

nmin

kBk2k�k2. (S14)

If kpDTB´1Dq
´1DT�Dk2 † 1, then

�2p�q :“
��p⌦n,m ´ ⌦qDT�

��
2

§
pDq

�minpDq

kBk2
2
k�k2

2

1{2pDq ´ kBk2k�k2
(S15)

�3p�q :“
��p⌦n,m ´ ⌦qDTB´1

��
2

§
pDq

�minpDq

kBk2
2
kB´1k2k�k2

1{2pDq ´ kBk2k2k�k2
(S16)

The following proposition is a corollary of Proposition S3.

Proposition S4. When D has the form (S1), and ⌦ is as defined in (S2),

�0p�q “ k⌦n,m ´ ⌦k2 §
1

nmin

kBk2
2
k�k2

1{nratio ´ kBk2k�k2

�1p�q “

��⌦DT�
��
2

§

?
nratio

?
nmin

kBk2k�k2

�2p�q “

��p⌦n,m ´ ⌦qDT�
��
2

§

?
nratio

?
nmin

kBk2
2
k�k2

2

1{nratio ´ kBk2k�k2

Let K be defined as in Theorem 1. We express the entrywise rates of convergence of the

sample correlation matrices p�pBq and p�pAq, respectively, in terms of the following quantities:

r↵ “ CAK
log1{2

pmq
?
m

ˆ
1 `

kBk
1

n

˙
`

kBk1
nmin

and r⌘ “ CBK
log1{2

pm _ nq
?
n

`
kBk1
n

. (S17)
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D Proof of Theorem 1 and Corollary 2

D.1 Proof of Theorem 1

Let Bn,m P Rnˆn denote a fixed positive definite matrix. Let D be as defined as in (4).

Define �n,m “ B´1

n,m ´ B´1 and

⌦ “ pDTB´1Dq
´1 and ⌦n,m “ pDTB´1

n,mDq
´1. (S18)

Note that we can decompose the error for all j as

kp�jpB´1

n,mq ´ �˚
j k2 § kp�jpB´1

q ´ �˚
j k2 ` kp�jpB´1

n,mq ´ p�jpB´1
qk2 “: I ` II. (S19)

We will use the following lemmas, which are proved in subsections D.4 and D.3, to bound

these two terms on the right-hand side, respectively.

Lemma S5. Let E2 denote the event

E2 “

!
kp�jpB´1

q ´ �˚
j k2 § sn,m

)
, with sn,m “ C3d

1{2

d
logpmqkBk2

nmin

. (S20)

Then P pE2q • 1 ´ 2{md
.

Lemma S6. Let Bn,m P Rnˆn
denote a fixed matrix such that Bn,m ° 0. Let Xj P Rn

denote

the jth column of X, where X is a realization of model (2). Let E3 denote the event

E3 “

!
kp�jpB´1

n,mq ´ p�jpB´1
qk2 § tn,m

)
, with tn,m “ rCn´1{2

min
k�n,mk2. (S21)

for some absolute constant rC. Then P pE3q • 1 ´ 2{md
.

The proof of (18) follows from the union bound P pE2XE3q • 1´P pE2q´P pE3q • 1´4{md.

Next we prove (20). Let rn,m “ sn,m ` tn,m, as defined in (18). Let � “ p1,´1q P R2. Then

|p�jpB´1

n,mq ´ �j| “

ˇ̌
ˇ�T

´
p�jpB´1

n,mq ´ �˚
j

¯ˇ̌
ˇ § k�k2kp�jpB´1

n,mq ´ �˚
j k2 “

?

2kp�jpB´1

n,mq ´ �˚
j k2,

where we used the Cauchy-Schwarz inequality. Hence if kp�jpB´1

n,mq ´ �jk2 § rn,m, it follows

8



that |p�jpB´1

n,mq´�j| §

?

2rn,m. The result holds by applying a union bound over the variables

j “ 1, . . . ,m. l

This completes the proof of Theorem 1.

D.2 Proof of Corollary 2 and Corollary 5

First note that by Proposition S4,

����T pDT pB´1Dq
´1� ´ �T pDTB´1Dq

´1�
��� “

����T
´

pDT pB´1Dq
´1

´ pDTB´1Dq
´1

¯
�
���

§ k�k2
2

���pDT pB´1Dq
´1

´ pDTB´1Dq
´1

���
2

“ 2
���pDT pB´1Dq

´1
´ pDTB´1Dq

´1

���
2

§ 2
kBk2

2
k�k

2

nmin

. (S22)

Note that by Proposition S1,

|�T⌦�| •
�minpBq

nmax

. (S23)

Corollary 2 follows from (S22) and (S23), which provide an upper bound on the numerator

and lower bound on the denominator, respectively.

Corollary 5 holds because by (28) of Theorem 4,

����T
´

p⌦´ ⌦
¯
�
��� § 2

kBk2
2

nmin

¨

˝
C 1�A

b
|B´1|

0,o↵ _ 1

bmin'2

min
p⇢pBqq

˛

‚§ 2C 1pBq

nmin

�A
b
|B´1|

0,o↵ _ 1 (S24)

D.3 Proof of Lemma S5

First, we show that

k⌦1{2kF ` d1{2K2
a
logpmqk⌦k1{2

2
{
?
c § sn,m, (S25)
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with sn,m as defined in (19). Because k⌦1{2kF §

?

2k⌦1{2k2, it follows that

k⌦1{2kF ` d1{2K2
a
logpmqk⌦k1{2

2
{
?
c §

´?

2 ` d1{2K2
a
logpmq{

?
c
¯
k⌦k1{2

2

§ C3d
1{2a

logpmqk⌦k1{2
2

§ C3d
1{2

d
logpmqkBk2

nmin

,

where the last step follows from Proposition S1. Next, we express p�jpB´1
q ´ �˚

j as

p�jpB´1
q ´ �˚

j “ ⌦1{2⌘j, where ⌘j “ ⌦´1{2
´

p�jpB´1
q ´ �˚

j

¯
.

By the bound (S25), event Ec
2
implies tk⌦1{2⌘jk2 ° k⌦1{2kF ` d1{2K2

a
logpmqk⌦k1{2

2
{
?
cu.

Therefore,

P pk⌦⌘jk2 • sn,mq § P
´
k⌦⌘jk2 ° k⌦1{2kF ` d1{2K2

a
logpmqk⌦k1{2

2
{
?
c
¯

§ P
´ˇ̌
k⌦1{2⌘jk2 ´ k⌦1{2kF

ˇ̌
° d1{2K2

a
logpmqk⌦k1{2

2
{
?
c
¯

§ 2 exp

¨

˚̋´c
´
d1{2K2

a
logpmqk⌦k1{2

2
{
?
c
¯2

K4k⌦1{2k2
2

˛

‹‚

“ 2 exp

ˆ
´d logpmqk⌦k2

k⌦1{2k2
2

˙
“ 2 exp p´d logpmqq “ 2{md.

l

D.4 Proof of Lemma S6

The proof will proceed in the following steps. First, we show that p�jpB´1

n,mq ´ p�jpB´1
q can

be expressed as V Zj, where

V “
`
⌦n,mD

TB´1

n,m ´ ⌦DTB´1
˘
B1{2

P R2ˆm

is a fixed matrix, and Zj “ B´1{2Xj. Second, we show that

kV kF ` d1{2K2 log1{2
pmqkV k2{

?
c § rCn´1{2

min
k�k2.

10



Third, we use the first and second steps combined with the Hanson-Wright inequality to

show that with high probability, kV Zjk2 is at most rCn´1{2
min

k�k2.

For the first step of the proof, let Zj “ B´1{2Xj, and note that p�jpB´1

n,mq´ p�jpB´1
q “ V Zj,

where V P R2ˆm is a fixed matrix, because

p�jpB´1

n,mq ´ p�jpB´1
q “

“
pDTB´1

n,mDq
´1DTB´1

n,m ´ ⌦DTB´1
‰
B1{2

pB´1{2Xjq

“
“
pDTB´1

n,mDq
´1DTB´1

n,m ´ ⌦DTB´1
‰
B1{2Zj.

For the second step of the proof, we show that kV kF ` d1{2K2 log1{2
pmqkV k2{

?
c §

rCn´1{2
min

k�k2. First we obtain an upper bound on V . By the triangle inequality,

k⌦n,mD
TB´1

n,m ´ ⌦DTB´1k2 “

��⌦n,mD
TB´1

n,m ´ ⌦DTB´1
��
2

§

��p⌦n,m ´ ⌦qDT
pB´1

n,m ´ B´1
q

��
2

`

��p⌦n,m ´ ⌦qDTB´1
��
2

`

��⌦DT�
��
2

“ �2p�q ` �3p�q ` �1p�q.

We bound each of the three terms using Proposition S3,

�2p�q “

��p⌦n,m ´ ⌦qDT�
��
2

§

?
nratio

?
nmin

kBk2
2
k�k2

2

1{nratio ´ kBk2k�k2

�3p�q “

��p⌦n,m ´ ⌦qDTB´1
��
2

§

?
nratio

?
nmin

kBk2
2
kB´1k2k�k2

1{nratio ´ kBk2k2k�k2

�1p�q “

��⌦DT�
��
2

§

?
nratio

?
nmin

kBk2k�k2.

Applying the above bounds yields

kV k2 §

?
nratio

?
nmin

k�k2kBk1{2
2

ˆ
kBk2

2
k�k2

1{2pDq ´ kBk2k�k2
`

kBk2
2
kB´1k2

1{2pDq ´ kBk2k2k�k2
` kBk2

˙

§ rCn´1{2
min

k�k2.

11



For the third step of the proof, we use the Hanson-Wright inequality to bound kV Zjk2:

P
´
kV Zjk2 ° rCn´1{2

min
k�k2

¯
§ P

´
kV Zjk2 ° kV kF ` d1{2K2 log1{2

pmqkV k2{
?
c
¯

“ P
´
kV Zjk2 ´ kV kF ° d1{2K2 log1{2

pmqkV k2{
?
c
¯

§ P
´

|kV Zjk2 ´ kV kF | ° d1{2K2 log1{2
pmqkV k2{

?
c
¯

§ 2 exp

¨

˚̋
´

c
´
d1{2K2 log1{2

pmqkV k2{
?
c
¯2

K4kV k2
2

˛

‹‚ (Hanson-Wright inequality)

“ 2 exp p´d logpmqq “ 2{md.

l

D.5 Proof of Proposition S1

Let D “ U V T be the singular value decomposition of D, with U P Rnˆ2,  P R2ˆ2, and

V P R2ˆ2. Then pDTB´1Dq
´1

“ pV UTB´1U V T
q

´1
“ V ´1

pUTB´1Uq
´1 ´1V T . Thus

kpDTB´1Dq
´1k2 “ k ´1

pUTB´1Uq
´1 ´1k2 (because V is square, orthonormal)

§ k ´1k2
2
kpUTB´1Uq

´1k2 (sub-multiplicative property)

“ �2

max
p ´1

qkpUTB´1Uq
´1k2

“ kpUTB´1Uq
´1k2{�2

min
p q “ kpUTB´1Uq

´1k2{�2

min
pDq,

where �minpDq “ �minp q, because  is the diagonal matrix of singular values of D. Next,

note that kpUTB´1Uq
´1k2 “ 1{'minpUTB´1Uq and

'minpUTB´1Uq “ min
⌘PR2

⌘TUTB´1U⌘{⌘T⌘.

12



We perform the change of variables � “ U⌘, under which ⌘T⌘ “ �TUTU� “ �T� (that is, U

preserves the length of ⌘ because the columns of U are orthonormal). Hence

'minpUTB´1Uq “ min
�PcolpUq,�‰0

�TB´1�{�T�

• min
�‰0

�TB´1�{�T�

“ 'minpB´1
q “ 1{kBk2.

We have shown that 1{'minpUTB´1Uq § kBk2, which implies that

kpUTB´1Uq
´1k2 § kBk2.

Therefore

kpDTB´1Dq
´1k2 § kBk2{�2

min
pDq.

In the special case of the two-group design matrix, �2

min
pDq “ nmin, so

kpDTB´1Dq
´1k2 § kBk2{nmin.

The proof of (S12) is as follows:

�minp⌦q “
1

�max p⌦´1q
“

1

�max pDTB´1Dq
•

1

kDk2
2
�maxpB´1q

“
�minpBq

kDk2
2

“
�minpBq

nmax

.

l

D.6 Proof of Proposition S3

By the definitions of ⌦n,m in (S2) and � “ B´1

n,m ´ B´1, we have by Theorem S2

k⌦n,m ´ ⌦k2 “ kpDTBn,mDq
´1

´ ⌦k2

“

���
`
DTB´1

n,mD ´ DTB´1D ` DTB´1D
˘´1

´ ⌦
���
2

“

���
`
DTB´1D ` DT�D

˘´1

´ ⌦
���
2

§
kDT�Dk2k⌦k22

1 ´ k⌦k2kDT�Dk2
(by Theorem S2)

§
p�2

max
pDq{�4

min
pDqq kBk2

2
k�k2q

1 ´ 2pDqkBk2k�k2
.

13



In the last step we apply Proposition S1. Thus

k⌦n,m ´ ⌦k2 §
1

�2

min
pDq

2pDqkBk2
2
k�k2

1 ´ 2pDqkBk2k�k2

“
1

�2

min
pDq

kBk2
2
k�k2

p1{2pDqq ´ kBk2k�k2
.

We prove (S14) using the submultiplicative property of the operator norm and Proposition

S1:

��⌦DT�
��
2

§
kBk2
�2

min
pDq

�maxpDqk�k2 “
pDq

�minpDq
kBk2k�k2.

We prove (S15), as follows:

��p⌦n,m ´ ⌦qDT�
��
2

§ k⌦n,m ´ ⌦k
2

��DT
��
2
k�k

2

§

„
1

�2

min
pDq

kBk2
2
k�k2

p1{2pDqq ´ kBk2k�k2

⇢
�maxpDqk�k2 (by Proposition S3)

“
pDq

�minpDq

kBk2
2
k�k2

2

p1{2pDqq ´ kBk2k�k2
.

The proof of (S16) is analogous. l

E Proof of Theorem 3

Note that the proof in the current Section follows exactly the same steps as the proof of

Theorems 3.1 and 3.2 in Zhou (2014a). Theorem 3 Part II is proved in Section E.2. To

prove Theorem 3 Part I, we first state Lemma S7, which establishes rates of convergence

for estimating A´1 and B´1 in the operator and the Frobenius norm. We then state the

auxiliary Lemma S8, which is identical to that for Theorems 11.1 and 11.2 of Zhou (2014a),

except that we plug in r↵ and r⌘ as defined in (S17). Putting these results together proves

Theorem 3, Part I. We prove these auxiliary results in Section F.
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Let X0 denote the event

@i, j

ˇ̌
ˇ̌
ˇ
pei ´ piqTXXT

pej ´ pjq

trpA˚q
a
b˚
iib

˚
jj

´ ⇢ijpBq

ˇ̌
ˇ̌
ˇ § r↵ (S26)

@i, j

ˇ̌
ˇ̌
ˇ
XT

i pI ´ P2qXj

trpB˚q
a
a˚
iia

˚
jj

´ ⇢ijpAq

ˇ̌
ˇ̌
ˇ § r⌘, (S27)

with X0pBq and X0pAq denoting the events defined by equations (S26) and (S27), respectively.

Let r↵ and r⌘ be as defined in (S17). On event X0pAq, for all j, p�jjpAq “ ⇢jjpAq “ 1 and

max
j,k,j �“k

|p�jkpAq ´ ⇢jkpAq| §
2r⌘

1 ´ r⌘ (S28)

On event X0pBq, for all j, p�jjpBq “ ⇢jjpBq “ 1 and

max
j,k,j �“k

|p�jkpBq ´ ⇢jkpBq| §
2r↵

1 ´ r↵ . (S29)

Lemma S7. Suppose (A1) and (A2) hold. Let xW1 and xW2 be as defined in (10). Let pA⇢

and pB⇢ be as defined in (8a) and (8b). For some absolute constants 18 † C,C 1
† 36, the

following events hold with probability at least 1 ´ 2{pn _ mq
2
,

�A,2 :“ kxW1
pA⇢

xW1{ trpBq ´ Ak2 § Camaxp⇢pAqq
2�B

b
|A´1|0,o↵ _ 1 (S30)

�B,2 :“ kxW2
pB⇢

xW2{ trpAq ´ Bk2 § C 1bmaxp⇢pBqq
2�A

b
|B´1|0,o↵ _ 1 (S31)

�A,F :“ kxW1
pA⇢

xW1{ trpBq ´ AkF § Camaxp⇢pAqq
2�B

b
|A´1|0,o↵ _ m (S32)

�B,F :“ kxW2
pB⇢

xW2{ trpAq ´ BkF § C 1bmaxp⇢pBqq
2�A

b
|B´1|

0,o↵ _ n; (S33)
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and for some 10 † C,C 1
† 19,

�´
A,2 :“

����trpBq

´
xW1

pA⇢
xW1

¯´1

´ A´1

����
2

§

C�B
b

|A´1|
0,o↵ _ 1

amin'2

min
p⇢pAqq

�´
B,2 :“

����trpAq

´
xW2

pB⇢
xW2

¯´1

´ B´1

����
2

§
C 1�A

a
|B´1|0,o↵ _ 1

bmin'2

min
p⇢pBqq

�´
A,F :“

����trpBq

´
xW1

pA⇢
xW1

¯´1

´ A´1

����
F

§
C�B

a
|A´1|0,o↵ _ m

amin'2

min
p⇢pAqq

�´
B,F :“

����trpAq

´
xW2

pB⇢
xW2

¯´1

´ B´1

����
F

§
C 1�A

a
|B´1|0,o↵ _ n

bmin'2

min
p⇢pBqq

.

Lemma S8 follows from Theorems 11.1 and 11.2 of Zhou (2014a,b), where we now plug

in r↵ and r⌘ as defined in (S17). For completeness, we provide a sketch in Section F.2.

Lemma S8. Suppose (A1) and (A2) hold. For "1, "2 P p0, 1q, let

�A “ r⌘{"1, �B “ r↵{"2,

for r↵, r⌘ as defined in (S17), and suppose �A,�B † 1. Then on event X0, for 18 † C,C 1
† 36,

k {A b B ´ A b Bk2 §
�A ^ �B

2
kAk2kBk2 ` C�BamaxkBk2p⇢pAqq

2

b
|A´1|0,o↵ _ 1

`C 1�AbmaxkAk2p⇢pBqq
2

b
|B´1|0,o↵ _ 1

`2

„
C 1�Abmaxp⇢pBqq

2

b
|B´1|0,o↵ _ 1

⇢ „
C�Bamaxp⇢pAqq

2

b
|A´1|0,o↵ _ 1

⇢
,

and for 10 † C,C 1
† 19,

k {A b B
´1

´ A´1
b B´1k2 §

�A ^ �B
3

kA´1k2kB´1k2 ` C�BkB´1k2
a

|A´1|0,o↵ _ 1

amin'2

min
p⇢pAqq

` C 1�AkA´1k2
a

|B´1|0,o↵ _ 1

bmin'2

min
p⇢pBqq

`
3

2

«
C�B

a
|A´1|0,o↵ _ 1

amin'2

min
p⇢pAqq

�«
C 1�A

a
|B´1|0,o↵ _ 1

bmin'2

min
p⇢pBqq

�
;
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For 18 † C,C 1
† 36,

k {A b B ´ A b BkF §
�A ^ �B

2
kAkFkBkF ` C�BamaxkBkFp⇢pAqq

2

b
|A´1|0,o↵ _ m

`C 1�AbmaxkAkFp⇢pBqq
2

b
|B´1|0,o↵ _ n

`2

„
C 1�Abmaxp⇢pBqq

2

b
|B´1|0,o↵ _ n

⇢ „
C�Bamaxp⇢pAqq

2

b
|A´1|0,o↵ _ m

⇢
,

and for 10 † C,C 1
† 19,

k {A b B
´1

´ A´1
b B´1kF §

�A ^ �B
3

kA´1k2kB´1kF ` C�BkB´1kF
a

|A´1|0,o↵ _ m

amin'2

min
p⇢pAqq

` C 1�AkA´1kF
a

|B´1|0,o↵ _ n

bmin'2

min
p⇢pBqq

`
7

5

«
C�B

a
|A´1|0,o↵ _ m

amin'2

min
p⇢pAqq

�«
C 1�A

a
|B´1|0,o↵ _ n

bmin'2

min
p⇢pBqq

�
.

E.1 Proof of Theorem 3, Part I

We state additional helpful bounds:

pamin _ 'minpAqq
?
m § kAkF “

˜
mÿ

i“1

'2

i pAq

¸1{2

§
?
mkAk2, (S34)

pbmin _ 'minpBqq
?
n § kBkF “

˜
mÿ

i“1

'2

i pBq

¸1{2

§
?
nkBk2, (S35)

?
m{amax “

ˆ
1

amax

_
1

'maxpAq

˙
?
m § kA´1kF §

?
mkA´1k2, (S36)

and

?
n{bmax “

ˆ
1

bmax

_
1

'maxpBq

˙
?
n § kB´1kF §

?
nkB´1k2. (S37)

Proof of Theorem 3, Part I. We plug in bounds as in (S9) and (S10) into Lemma
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S8 to obtain under (A1) and (A2),
��� {A b B ´ A b B

���
2

§ kAk2kBk2�, where

� “
�A ^ �B

2
`

Crap⇢pAqq

'minp⇢pAqq
�B

b
|A´1|0,o↵ _ 1 `

C 1rbp⇢pBqq

'minp⇢pBqq
�A

b
|B´1|0,o↵ _ 1

` 2

„
Crap⇢pAqq

'minp⇢pAqq
�B

b
|A´1|0,o↵ _ 1

⇢ „
C 1rbp⇢pBqq

'minp⇢pBqq
�A

b
|B´1|0,o↵ _ 1

⇢

“
�A ^ �B

2
` log1{2

pm _ nq

˜c
|A´1|0,o↵ _ 1

m
`

c
|B´1|0,o↵ _ 1

n

¸
` op1q.

For the inverse, we plug in bounds as in (S7) and (S8) into Lemma S8 to obtain under (A1)

and (A2),
��� {A b B

´1

´ A´1
b B´1

���
2

§ kA´1k2kB´1k2�1, where

�1
“
�A ^ �B

3
`

Cra�B
a

|A´1|0,o↵ _ 1

'minp⇢pAqq
`

C 1rb�A
a

|B´1|0,o↵ _ 1

'minp⇢pBqq

`
3

2

«
Cra�B

a
|A´1|0,o↵ _ 1

'minp⇢pAqq

�«
C 1rb�A

a
|B´1|0,o↵ _ 1

'minp⇢pBqq

�

—
�A ^ �B

3
` log1{2

pm _ nq

˜c
|A´1|0,o↵ _ 1

m
`

c
|B´1|0,o↵ _ 1

n

¸
` op1q.

The bounds in the Frobenius norm are proved in a similar manner; see Zhou (2014a) to

finish. l

E.2 Proof of Theorem 3, Part II

Let pB´1
“ xW2

pB⇢
xW2. Let p� “ pB´1

´B´1. Let E0pBq denote the event given by equations

(S34) and (S34), which we know has probability at least 1 ´ 2{pn _ mq
2 from Lemma S7,

and define the event

E4 “

!
kp�jp pB´1

q ´ �˚
j k2 § sn,m ` t1

n,m

)
, (S38)

where sn,m is as defined in (19) and

t1
n,m :“ C�A

d
nratio

`
|B´1

0
|0,o↵ _ 1

˘

nmin

. (S39)
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Under E0pBq, we see that

kp�k2 §
C 1�A

a
|B´1|0,o↵ _ 1

bmin'2

min
p⇢pBqq

“ op1q. (S40)

Using Proposition S1 and the fact that kDk2 “
?
nmax, we get that

k⌦DT p�Dk2 § nratiokBk2kp�k2, (S41)

From (S40) we know that kp�k2 § 1{pnratiokBk2q, which we can plug into (S41) to show that

k⌦DT p�Dk2 † 1. This implies that rCn´1{2
min

kp�k2 § t1
n,m. Therefore, we can apply Theorem 1

to get that the conditional probability of E4 given E0pBq is at least 1 ´ 4{pn _ mq
2.

We can then bound the unconditional probability,

P pEc
4
q § P pEc

4
| E0pBqqP pE0pBqq ` P pE0pBq

c
q

§ P pEc
4

| E0pBqq ` P pE0pBq
c
q

§
4

pn _ mq2
`

2

pn _ mq2
.

l

F More proofs for Theorem 3

The proof of Lemma S7 appears in Section F.1. The proofs of auxiliary lemmas appear in

Section F.2.

F.1 Proof of Lemma S7

In order to prove Lemma S7, we need Theorem S9, which shows explicit non-asymptotic

convergence rates in the Frobenius norm for estimating ⇢pAq, ⇢pBq, and their inverses. The-

orem S9 follows from the standard proof; see Rothman et al. (2008); Zhou et al. (2011) We

also need Proposition S11 and Lemma S10, which are stated below and proved in Section F.2.

Theorem S9. Suppose that (A2) holds. Let pA⇢ and pB⇢ be the unique minimizers defined by

(8a) and (8b) with sample correlation matrices p�pAq and p�pBq as their input.
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Suppose that event X0 holds, with

r⌘
b

|A´1|
0,o↵ _ 1 “ op1q and r↵

b
|B´1|

0,o↵ _ 1 “ op1q.

Set for some 0 † ✏, " † 1, �B “ r↵{" and �A “ r⌘{✏. (S42)

Then on event X0, we have for 9 † C † 18

��� pA⇢ ´ ⇢pAq

���
2

§

��� pA⇢ ´ ⇢pAq

���
F

§ Cp⇢pAqq
2�B

b
|A´1|

0,o↵ _ 1,
��� pB⇢ ´ ⇢pBq

���
2

§

��� pB⇢ ´ ⇢pBq

���
F

§ Cp⇢pBqq
2�A

b
|B´1|

0,o↵ _ 1,

and

��� pA´1

⇢ ´ ⇢pAq
´1

���
2

§

��� pA´1

⇢ ´ ⇢pAq
´1

���
F

†

C�B
b

|A´1|
0,o↵ _ 1

2'2

min
p⇢pAqq

, (S43)

��� pB´1

⇢ ´ ⇢pBq
´1

���
2

§

��� pB´1

⇢ ´ ⇢pBq
´1

���
F

§

C�A
b

|B´1|
0,o↵ _ 1

2'2

min
p⇢pBqq

. (S44)

We now state an auxiliary result, Lemma S10, where we prove a bound on the error in the

diagonal entries of the covariance matrices, and on their reciprocals. The following Lemma

provides bounds analogous to those in Claim 15.1 Zhou (2014a,b).

Lemma S10. Let xW1 and
xW2 be as defined in (10). Let W1 “

a
trpBq diagpAq

1{2
and W2 “

a
trpAq diagpBq

1{2
. Suppose event X0 holds, as defined in (S26), (S27). For ⌘1 :“ r⌘?

1´r⌘
§

�B
6

and ↵1 :“ r↵?
1´r↵ §

�A
6
,

���xW1 ´ W1

���
2

§ r⌘
a
tr pBq

?
amax,

���xW´1

1
´ W´1

1

���
2

§
r⌘

1 ´ r⌘ {

a
tr pBq

?
amin,

���xW2 ´ W2

���
2

§ r↵
a
tr pAq

a
bmax, and

���xW´1

2
´ W´1

2

���
2

§
r↵

1 ´ r↵{

a
tr pAq

a
bmin.

Proposition S11. (Zhou, 2014a). Let xW and W be diagonal positive definite matrices. Let
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p and  be symmetric positive definite matrices. Then

���xW p xW ´ W W
���
2

§

´���xW ´ W
���
2

` kWk2
¯2

���p ´ 
���
2

`

���xW ´ W
���
2

´���xW ´ W
���
2

` 2
¯
k k2

���xW p xW ´ W W
���
F

§

´���xW ´ W
���
2

` kWk2
¯2

���p ´ 
���
F

`

���xW ´ W
���
2

´���xW ´ W
���
2

` 2
¯
k kF .

Proof of Lemma S7. Assume that event X0 holds. The proof follows exactly that

of Lemma 15.3 in Zhou (2014a,b), in view of Theorem S9, Lemma S10 and Proposition 15.2

from Zhou (2014a,b), which is restated immediately above in Proposition S11. l

It remains to prove Lemma S10.

Proof of Lemma S10. Suppose that event X0 holds. Then

max
i“1,...,m

ˇ̌
ˇ̌
ˇ

a
XT

i pI ´ P2qXia
aii trpBq

´ 1

ˇ̌
ˇ̌
ˇ §

´
1 ´

a
1 ´ r⌘

¯™´a
1 ` r⌘ ´ 1

¯
§ r⌘.

Thus for all i,
1a
1 ` r⌘

§

a
aii trpBqa

XT
i pI ´ P2qXi

§
1a
1 ´ r⌘

,

so ˇ̌
ˇ̌
ˇ

a
aii trpBqa

XT
i pI ´ P2qXi

´ 1

ˇ̌
ˇ̌
ˇ §

˜
1 ´

a
1 ´ r⌘a

1 ´ r⌘

¸
™

˜a
1 ` r⌘ ´ 1a
1 ` r⌘

¸
§

r⌘a
1 ´ r⌘

.

l

F.2 Proof of Lemma S8

In order to prove Lemma S8, we state Lemma S12, Lemma S13, and Proposition S14. Let

k¨k denote a matrix norm such that kA b Bk “ kAkkBk. Let

� :“ xW1
pA⇢

xW1 b xW2
pB⇢

xW2{ trpAq trpBq ´ A b B, (S45)

�1 :“ trpAq trpBq

´
xW1

pA⇢
xW1

¯´1

b

´
xW2

pB⇢
xW2

¯´1

´ A´1
b B´1. (S46)
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Lemma S12 is identical to Lemma 15.5 of Zhou (2014a), except that we now plug in quantities

r↵ and r⌘ as defined in (S17). Likewise, Proposition S14 is analogous to (20) in Theorem 4.1

of Zhou (2014a), except that we now use the centered data matrix pI ´P2qX, together with

the rates r↵, r⌘.

Lemma S12. Let {A b B be as in (11). Then for ⌃ “ A b B,

��� {A b B
´1

´ ⌃´1

��� § pr↵ ^ r⌘qkA´1kkB´1k ` p1 ` r↵ ^ r⌘qk�1k (S47)
��� {A b B ´ ⌃

��� §
�A ^ �B

2
kAkkBk ` p1 `

�A ^ �B
2

qk�k. (S48)

Lemma S13 is a helpful bound on the di↵erence of Kronecker products.

Lemma S13. (Zhou, 2014a). For matrices A1 and B1, let �A :“ A1´A and �B :“ B1´B.

Then

kA1 b B1 ´ A b Bk § k�AkkBk ` k�BkkAk ` k�Akk�Bk.

Proposition S14. Under the event X0, as defined in as defined in (S26), (S27),

ˇ̌
kpI ´ P2qXk2F ´ trpAqtrpBq

ˇ̌
§ pr↵ ^ r⌘qtrpAqtrpBq.

Proof of Lemma S8. Assume that event X0 as defined in (S26), (S27) holds. The

proof follows exactly the steps in Theorems 11.1 and 11.2 in Supplementary Material of Zhou

(2014a,b). l

Proof of Lemma S12. By the triangle inequality and the sub-multiplicativity of the

norm k¨k, with � and �1 as defined in (S45) and (S46),

trpAq trpBq

���
´

xW´1

1
pA´1

⇢
xW´1

1

¯
b

´
xW´1

2
pB´1

⇢
xW´1

2

¯��� § kA´1kkB´1k ` k�1k (S49)
���

´
xW1

pA⇢
xW1

¯
b

´
xW2

pB⇢
xW2

¯
{ trpAq trpBq

��� § kAkkBk ` k�k. (S50)

Following proof of Lemma 15.5 Zhou (2014a,b), we have by definition of �1, and Proposition

S14, and (S49),

��� {A b B
´1

´ A´1
b B´1

��� § pr↵ ^ r⌘q
`
kA´1kkB´1k ` k�1k

˘
` k�1k.
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By Proposition S14, we have for �A • 3r↵, �B • 3r⌘, where r↵ ^ r⌘ §
�A^�B

3
,

ˇ̌
ˇ̌ 1

kpI ´ P2qXk2F
´

1

trpAq trpBq

ˇ̌
ˇ̌ “

ˇ̌
ˇ̌kpI ´ P2qXk2F ´ trpAq trpBq

kpI ´ P2qXk2F trpAq trpBq

ˇ̌
ˇ̌

§

ˇ̌
ˇ̌ r↵ ^ r⌘
kpI ´ P2qXk2F

ˇ̌
ˇ̌ §

r↵ ^ r⌘
trpAq trpBqp1 ´ r↵ ^ r⌘q

thus

ˇ̌
ˇ̌ trpAq trpBq

kpI ´ P2qXk2F
´ 1

ˇ̌
ˇ̌ §

r↵ ^ r⌘
1 ´ r↵ ^ r⌘ §

�A ^ �B
2

. (S51)

By the triangle inequality, the definition of � in (S45), and (S50) and (S51),

��� {A b B ´ A b B
��� §

�A ` �B
2

kAkkBk ` p1 `
�A ` �B

2
qk�k;

See the proof of Lemma 15.5 Zhou (2014a,b). l

Proof of Proposition S14. Suppose event X0 holds. Note that

ErkpI ´ P2qXk2F s “ tr
`
pI ´ P2qErXXT

spI ´ P2q
˘

“ trpAqtrp rBq

Decomposing by columns, we obtain the inequality,

ˇ̌
kpI ´ P2qXk2F ´ trpAqtrpBq

ˇ̌
“

ˇ̌
ˇ̌
ˇ

mÿ

j“1

kpI ´ P2qXjk22 ´ ajjtrpBq

ˇ̌
ˇ̌
ˇ

§

mÿ

j“1

ˇ̌
XT

j pI ´ P2qXj ´ ajjtrpBq

ˇ̌
§

mÿ

j“1

r⌘jjajjtrpBq § r⌘trpAqtrpBq.

Decomposing by rows, we obtain the inequality,

ˇ̌
kpI ´ P2qXk2F ´ trpAqtrpBq

ˇ̌
“

ˇ̌
ˇ̌
ˇ

nÿ

i“1

kpei ´ piq
TXk2

2
´ biitrpAq

ˇ̌
ˇ̌
ˇ

§

nÿ

i“1

ˇ̌
pei ´ piq

TXXT
pei ´ piq ´ biitrpAq

ˇ̌
§

nÿ

i“1

r↵iibiitrpAq § r↵trpAqtrpBq.

Therefore |kpI ´ P2qXk2F ´ trpAqtrpBq| § pr↵ ^ r⌘qtrpAqtrpBq. l
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G Entrywise convergence of sample correlations

In this section we prove entrywise rates of convergence for the sample correlation matrices in

Theorem S15. The theorem applies to the Kronecker product model, CovpvecpXqq “ A˚
bB˚,

where for identifiability we define the sample covariance matrices as

A˚
“

m

trpAq
A and B˚

“
trpAq

m
B,

with the scaling chosen so that A˚ has tracem. Let ⇢pAq P Rmˆm and ⇢pBq P Rnˆn denote the

correlation matrices corresponding to covariance matrices A˚ and B˚, respectively. Assume

that that the mean of X satisfies the two-group model (4). Let P2 be as defined in (13).

The matrix I ´P2 is a projection matrix of rank n´2 that performs within-group centering.

The sample covariance matrices are defined as

SpB˚
q “

1

m

mÿ

j“1

pI ´ P2qXjX
T
j pI ´ P2q, (S52)

SpA˚
q “ XT

pI ´ P2qX{n, (S53)

where SpB˚
q has null space of dimension two.

Theorem S15. Consider a data generating random matrix as in (2). Let C be some absolute

constant. Let r↵ and r⌘ be as defined in (S17). Let m _ n • 2. Then with probability at least

1 ´
3

pm_nq2 , for r↵, r⌘ † 1{3, and p�pAq and p�pBq as in (7),

@i �“ j,
���p�ijpBq ´ ⇢ijpBq

��� §
r↵

1 ´ r↵ ` |⇢ijpBq| r↵
1 ´ r↵ § 3r↵,

@i �“ j,
���p�ijpAq ´ ⇢ijpAq

��� §
r⌘

1 ´ r⌘ ` |⇢ijpAq| r⌘
1 ´ r⌘ § 3r⌘.

We state three results used in the proof of Theorem S15: Proposition S16 provides

an entrywise rate of convergence of SpB˚
q, Proposition S17 provides an entrywise rate of

convergence of SpA˚
q, and Lemma S18 states that these entrywise rates imply X0. Let

rB :“ pI ´ P2qB
˚
pI ´ P2q “ CovppI ´ P2qXjq, (S54)
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where Xj is the jth column of X. Let rbij denote the pi, jqth entry of rB.

Proposition S16. Let d ° 2. Then with probability at least 1 ´ 2{md´2
,

@i, j
ˇ̌
SijpB

˚
q ´ b˚

ij

ˇ̌
§ �B,ij, (S55)

with

�B,ij “ C
log1{2

pmq
?
m

kA˚kF
?
m

b
rbiirbjj `

3kB˚k1
nmin

. (S56)

Proposition S17. Let d ° 2. Then with probability at least 1 ´ 2{nd´2
,

@i, j
ˇ̌
SijpA

˚
q ´ a˚

ij tr pB˚
q {n

ˇ̌
° �A,ij, (S57)

with

�A,ij “ pa˚
ij{nq

ˇ̌
ˇtr

´
rB

¯
´ tr pB˚

q

ˇ̌
ˇ ` d1{2K log1{2

pn _ mqp1{nq

b
a˚2
ij ` a˚

iia
˚
jjk rBkF . (S58)

Lemma S18. Suppose that (A2) holds and that m _ n • 2. The event (S57) defined in

Proposition S17 implies that X0pAq holds. Similarly, the event (S55) defined in Proposi-

tion S16 implies X0pBq. Hence P pX0q • 1 ´
3

pm_nq2 .

Proposition S16 is proved in section G.1. Proposition S17 is proved in section G.2.

Lemma S18 is proved in section G.3. Note that Lemma S18 follows from Propositions S16

and S17. We now prove Theorem S15, which follows from Lemma S18.

Proof of Theorem S15. Let qi denote the ith column of I ´ P2, so that qTi XXT qj

is the pi, jqth entry of pI ´ P2qXXT
pI ´ P2q. Under X0pBq, the sample correlation p�pBq
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satisfies the following bound:

ˇ̌
ˇp�ijpBq ´ ⇢ijpBq

ˇ̌
ˇ “

ˇ̌
ˇ̌
ˇ̌

qTi XXT qj
a
qTi XXT qi

b
qTj XXT qj

´ ⇢ijpBq

ˇ̌
ˇ̌
ˇ̌

“

ˇ̌
ˇ̌
ˇ̌

qTi XXT qj{
`
trpA˚

q
a
b˚
iib

˚
jj

˘

a
qTi XXT qi{ pb˚

iitrpA
˚qq

b
qTj XXT qj{

`
b˚
jjtrpA

˚q
˘ ´ ⇢ijpBq

ˇ̌
ˇ̌
ˇ̌

§

ˇ̌
ˇ̌
ˇ̌

qTi XXT qj{
`
trpA˚

q
a
b˚
iib

˚
jj

˘
´ ⇢ijpBq

a
qTi XXT qi{ pb˚

iitrpA
˚qq

b
qTj XXT qj{

`
b˚
jjtrpA

˚q
˘

ˇ̌
ˇ̌
ˇ̌

`

ˇ̌
ˇ̌
ˇ̌

⇢ijpBq

a
qTi XXT qi{ pb˚

iitrpA
˚qq

b
qTj XXT qj{

`
b˚
jjtrpA

˚q
˘ ´ ⇢ijpBq

ˇ̌
ˇ̌
ˇ̌

§
r↵

1 ´ r↵ ` |⇢ijpBq|

ˇ̌
ˇ̌ 1

1 ´ r↵ ´ 1

ˇ̌
ˇ̌

§ 3r↵,

where the first inequality holds by X0pBq and the second inequality holds for r↵ § 1{3.

Similarly, under X0pAq we obtain an entrywise bound on the sample correlation p�pAq:

ˇ̌
ˇp�ijpAq ´ ⇢ijpAq

ˇ̌
ˇ “

ˇ̌
ˇ̌
ˇ̌

XT
i pI ´ P2qXj

a
XT

i pI ´ P2qXi

b
XT

j pI ´ P2qXj

´ ⇢ijpAq

ˇ̌
ˇ̌
ˇ̌

“

ˇ̌
ˇ̌
ˇ̌

XT
i pI ´ P2qXj{

´
trpB˚

q
a
a˚
iia

˚
jj

¯

a
XT

i pI ´ P2qXi{ pa˚
iitrpB

˚qq

b
XT

j pI ´ P2qXj{
`
a˚
jjtrpB

˚q
˘ ´ ⇢ijpAq

ˇ̌
ˇ̌
ˇ̌

§

ˇ̌
ˇ̌
ˇ̌

XT
i pI ´ P2qXj{

´
trpB˚

q
a
a˚
iia

˚
jj

¯
´ ⇢ijpAq

a
XT

i pI ´ P2qXi{ pa˚
iitrpB

˚qq

b
XT

j pI ´ P2qXj{
`
a˚
jjtrpB

˚q
˘

ˇ̌
ˇ̌
ˇ̌

`

ˇ̌
ˇ̌
ˇ̌

⇢ijpAq

a
XT

i pI ´ P2qXi{ pa˚
iitrpB

˚qq

b
XT

j pI ´ P2qXj{
`
a˚
jjtrpB

˚q
˘ ´ ⇢ijpAq

ˇ̌
ˇ̌
ˇ̌

§
r⌘

1 ´ r⌘ ` |⇢ijpAq|

ˇ̌
ˇ̌ 1

1 ´ r⌘ ´ 1

ˇ̌
ˇ̌ § 3r⌘,

where the first inequality holds by X0pAq, and the second inequality holds for r⌘ † 1{3.

By Lemma S18, the event X0 “ X0pBq XX0pAq holds with probability at least 1´3{pn_

mq
2, which completes the proof. l
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G.1 Proof of Proposition S16

We first present Lemma S19 and Lemma S20, which decompose the rate of convergence into

a bias term and a variance term, respectively. We then combine the rates for the bias and

variance terms to prove the entrywise rate of convergence for the sample covariance. Define

BpB˚
q :“ ErSpB˚

qs ´ B˚ and (S59)

�pB˚
q :“ SpB˚

q ´ ErSpB˚
qs. (S60)

We state maximum entrywise bounds on BpB˚
q and �pB˚

q in Lemma S19 and Lemma S20,

respectively. Proofs for these lemmas are provided in Section G.4 and G.5 respectively.

Lemma S19. For BpB˚
q as defined in (S59),

kBpB˚
qkmax §

3kB˚k1
nmin

. (S61)

Lemma S20. Let �pB˚
q be as defined in (S60). With probability at least 1 ´ 2{md

,

|�ijpB
˚
q| “

ˇ̌
SijpB

˚
q ´ b˚

ij

ˇ̌
† C log1{2

pmq
kA˚kF
trpA˚q

b
rbiirbjj.

We now prove the entrywise rate of convergence for the sample covariance SpB˚
q.

Proof of Proposition S16. By the triangle inequality,

ˇ̌
SijpB

˚
q ´ b˚

ij

ˇ̌
§ |SijpB

˚
q ´ ErSijpB

˚
qs| `

ˇ̌
ErSijpB

˚
qs ´ b˚

ij

ˇ̌

“ |BijpB
˚
q| ` |�ijpB

˚
q|

§ �B,ij,

where the last step follows from Lemmas S19 and S20. l

Remark. Note that the first term of (S56) is of order log1{2
pmq{

?
m, and the second

term is of order kB˚k1{nmin.
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G.2 Proof of Proposition S17

We express the pi, jqth entry of SpA˚
q as a quadratic form in order to apply the Hanson-

Wright inequality to obtain an entrywise large deviation bound. Without loss of generality,

let i “ 1, j “ 2. The p1, 2q entry of SpA˚
q can be expressed as a quadratic form, as follows,

S12pA˚
q “ XT

1
pI ´ P2qX2{n

“ p1{2q

”
XT

1
XT

2

ı
»

– 0 pI ´ P2q

pI ´ P2q 0

fi

fl

»

–X1

X2

fi

fl {n

“ p1{2q

”
XT

1
XT

2

ı
¨

˝

»

–0 1

1 0

fi

fl b pI ´ P2q

˛

‚

»

–X1

X2

fi

fl {n.

We decorrelate the random vector pX1, X2q P R2n so that we can apply the Hanson-Wright

inequality. The covariance matrix used for decorrelation is

Cov

¨

˝

»

–X1

X2

fi

fl

˛

‚“

»

–a˚
11

a˚
12

a˚
21

a˚
22

fi

fl b B˚
“: A˚

t1,2u b B˚,

with

A˚
t1,2u “

»

–a˚
11

a˚
12

a˚
21

a˚
22

fi

fl P R2ˆ2.

Decorrelating the quadratic form yields

S12pA
˚
q “ ZT�Z,

where Z P R2n, with ErZs “ 0 and CovpZq “ I2nˆ2n, and

� “ p1{2nq

¨

˝pA˚
t1,2uq

1{2

»

–0 1

1 0

fi

fl pA˚
t1,2uq

1{2

˛

‚b B1{2
pI ´ P2qB

1{2. (S62)

To apply the Hanson-Wright inequality, we first find the trace and Frobenius norm of �.
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For the trace, note that

tr

¨

˝pA˚
t1,2uq

1{2

»

–0 1

1 0

fi

fl pA˚
t1,2uq

1{2

˛

‚“ tr

¨

˝

»

–0 1

1 0

fi

flA˚
t1,2u

˛

‚“ 2a˚
12
. (S63)

For the Frobenius norm, note that

������
pA˚

t1,2uq
1{2

»

–0 1

1 0

fi

fl pA˚
t1,2uq

1{2

������

2

F

“ tr

¨

˝

»

–0 1

1 0

fi

flA˚
t1,2u

»

–0 1

1 0

fi

flA˚
t1,2u

˛

‚

“ tr

¨

˝

»

–a˚2
12

` a˚
11
a˚
22

2a˚
12
a˚
22

2a˚
12
a˚
22

a˚2
12

` a˚
11
a˚
22

fi

fl

˛

‚

“ 2a˚2
12

` 2a˚
11
a˚
22
,

Therefore the trace of � is

tr p�q “ a˚
12
tr

´
rB

¯
{n, (S64)

and the Frobenius norm of � is

k�kF “ p1{nq

b
a˚2
12

` a˚
11
a˚
22
k rBkF . (S65)

Applying the Hanson-Wright inequality yields

P p|S12pA˚
q ´ a˚

12
tr pB˚

q {n| ° �A,12q

§ P
´ˇ̌

ˇS12pA˚
q ´ a˚

12
tr

´
rB

¯
{n

ˇ̌
ˇ ` pa˚

12
{nq

ˇ̌
ˇtr

´
rB

¯
´ tr pB˚

q

ˇ̌
ˇ ° �A,12

¯

“ P
´ˇ̌

ˇS12pAq ´ a˚
12
tr

´
rB

¯
{n

ˇ̌
ˇ ° d1{2K log1{2

pn _ mqk�kF
¯

§ 2{pn _ mq
d.
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By the union bound,

P p@i, j |SijpA
˚
q ´ aij tr pB˚

q {n| † �A,ijq

• 1 ´

mÿ

i“1

mÿ

j“1

P p|SijpA
˚
q ´ aij tr pB˚

q {n| ° �A,ijq

• 1 ´ 2m2
{pn _ mq

d
• 2{pn _ mq

d´2.

l

G.3 Proof of Lemma S18

For the event (S55) from Proposition S16,

ˇ̌
SijpB

˚
q ´ b˚

ij

ˇ̌
† �B,ij “ K2d

log1{2
pmq

?
m

CA

b
rbiirbjj `

ˇ̌
ˇb˚

ij ´ rbij
ˇ̌
ˇ ,

dividing by
a
b˚
iib

˚
jj yields

ˇ̌
ˇ̌
ˇ

qiXXT qj
trpA˚q

a
b˚
iib

˚
jj

´ ⇢ijpBq

ˇ̌
ˇ̌
ˇ † K2dCA

log1{2
pmq

?
m

d
rbiirbjj
b˚
iib

˚
jj

`

ˇ̌
ˇbij ´ rbij

ˇ̌
ˇ

a
b˚
iib

˚
jj

. (S66)

By Lemma S19,

rbij “ bij

„
1 ` O

ˆ
kBk1
n

˙⇢
,

so the right-hand side of (S66) is less than or equal to r↵. Hence event (S55) implies X0pBq.

Therefore, we know that P pX0pBqq • 1 ´ 2{md´2.

Similarly, event (S57) in Proposition S17:

ˇ̌
SijpA

˚
q ´ a˚

ij tr pB˚
q {n

ˇ̌
† �A,ij

“ pa˚
ij{nq

ˇ̌
ˇtr

´
rB

¯
´ tr pBq

ˇ̌
ˇ ` d1{2K log1{2

pn _ mqp1{nq

b
a˚2
ij ` a˚

iia
˚
jjk rBkF ,
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implies that

ˇ̌
ˇ̌
ˇ
XT

j pI ´ P2qXt

trpB˚q
a
a˚
jja

˚
tt

´ ⇢jtpAq

ˇ̌
ˇ̌
ˇ

† |⇢jtpAq|

ˇ̌
ˇtr

´
rB

¯
´ tr pB˚

q

ˇ̌
ˇ

trpB˚q
` d1{2K log1{2

pn _ mq

b
⇢jtpAq2 ` 1

k rBkF
trpB˚q

“ |⇢jtpAq|

ˇ̌
ˇtr

´
rB

¯
´ tr pB˚

q

ˇ̌
ˇ

trpB˚q
` d1{2KCB

k rBkF
kB˚kF

b
⇢jtpAq2 ` 1

log1{2
pn _ mq
?
n

§ r⌘,

which is the event X0pAq. Therefore, we get that P pX0pAqq • 1 ´ 2{pn _ mq
d.

We can obtain the P pX0q by using a union bound put together P pX0pBqq and P pX0pAqq,

completing the proof. l

G.4 Proof of Lemma S19

Recall that rB “ pI ´ P2qB˚
pI ´ P2q. The matrix rB ´ B˚ can be expressed as

rB ´ B˚
“ pI ´ P2qB

˚
pI ´ P2q ´ B˚

“ ´P2B
˚

´ B˚P2 ` P2B
˚P2.

By the triangle inequality, k rB ´ B˚kmax § kP2B˚kmax ` kB˚P2kmax ` kP2B˚P2kmax. We

bound each term on the right-hand side.

First we bound kP2B˚kmax and kB˚P2kmax. Let pi denote the ith column of P2. The

pi, jqth entry satisfies

|pTi b
˚
j | § kB˚pik8 § kB˚k8kpik8 “ kB˚k1kpik8 “ kB˚k1{nmin,

so kP2B˚kmax § kB˚k1{nmin. Because P2 and B˚ are symmetric, kP2B˚kmax “ kB˚P2kmax.

We now bound kP2B˚P2kmax. Let B1{2 denote the symmetric square root of B˚. We can

express pTi B
˚pj as an inner product pB1{2piqT pB1{2pjq, so

|pP2B
˚P2qij| “ |pB1{2piq

T
pB1{2pjq| §

`
pTi B

˚pi
˘1{2 `

pTj B
˚pj

˘1{2
(S67)

§ kpik2kpjk2kBk2 § kB˚k2{nmin, (S68)
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where (S67) follows from the Cauchy Schwarz inequality, and (S68) holds because

kpik2 “

$
’&

’%

1{
?
n1 if i P t1, . . . , n1u

1{
?
n2 if i P tn1 ` 1, . . . , nu.

l

G.5 Proof of Lemma S20

Let B1{2 denote the symmetric square root of B˚. Let Zj “ pa˚
jjB

˚
q

´1{2Xj. We express

SijpB˚
q as a quadratic form in order to use the Hanson-Wright inequality to prove a large

deviation bound. That is, we show that SijpB˚
q “ vecpZq

T�ij vecpZq, with

�ij
“ p1{mqA˚

b B1{2
pej ´ pjqpei ´ piq

TB1{2. (S69)

We express SijpB˚
q as a quadratic form, as follows:

SijpB
˚
q “

1

m

mÿ

k“1

pei ´ piq
TXkX

T
k pej ´ pjq “

1

m

mÿ

k“1

tr
“
pei ´ piq

TXkX
T
k pej ´ pjq

‰

“
1

m

mÿ

k“1

XT
k pej ´ pjqpei ´ piq

TXk

“
1

m
vecpXq

T
`
Imˆm b pej ´ pjqpei ´ piq

T
˘
vecpXq

“ vecpZq
T�ij vecpZq

where

trp�ij
q “ trpB1{2

pej ´ pjqpei ´ piq
TB1{2

q “ pei ´ piq
TB˚

pej ´ pjq “ rbij, (S70)

k�ijkF “
1

m
kA˚kFkB1{2

pej ´ pjqpei ´ piq
TB1{2kF (S71)

“
1

m
kA˚kF

`
pei ´ piq

TB˚
pei ´ piq

˘1{2 `
pej ´ pjq

TB˚
pej ´ pjq

˘1{2
“

1

m
kA˚kF

b
rbiirbjj.
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Therefore, we get that

P
´

@i, j
ˇ̌
ˇSijpB

˚
q ´ rbij

ˇ̌
ˇ § K2d log1{2

pmqk�ijkF {c1
¯

“ P
´

@i, j
ˇ̌
vecpZq

T�ij vecpZq ´ tr
`
�ij

˘ˇ̌
§ K2d log1{2

pmqk�ijkF {c1
¯

• 1 ´ 2m2 exp

˜
´cmin

˜
d2 logpmq{c12,

d log1{2
pmqk�ijkF {c1

k�ijk2

¸¸

• 1 ´ 2{md´2.

If the event
!

@i, j
ˇ̌
ˇSijpB˚

q ´ rbij
ˇ̌
ˇ § K2d log1{2

pmqk�ijkF {c1
)
holds, it follows that

ˇ̌
SijpB

˚
q ´ b˚

ij

ˇ̌
§

ˇ̌
ˇSijpB

˚
q ´ rbij

ˇ̌
ˇ ` |b˚

ij ´ rbij| § K2d log1{2
pmqk�ijkF {c1

` |bij ´ rbij|.

The Lemma is thus proved. l
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H Proof of Theorem 4

H.1 Notation

Notation Meaning

Mean structure

µ P Rm Vector of grand means of each gene

� P Rm Vector of mean di↵erences for each gene

⌫ “
1

2

”
1

n1
1Tn1

1

n2
1Tn2

ıT
P Rn Inner product with ⌫ computes global mean

Outcome of model selection step

J0 Ä t1, 2, . . . ,mu Indices selected for group centering

J1 Ä t1, 2, . . . ,mu Indices selected for global centering

Sizes of gene subsets

m0 “ |J0| Number of group centered genes

m1 “ |J1| Number of globally centered genes

Projection matrices

P1 “ 1n⌫T Projection matrix that performs global centering

P2 (as in (S81)) Projection matrix that performs group centering

Sample covariance matrices

SpB, J0, J1q “
m1
m S1pBq `

m0
m S2pBq Model selection sample covariance matrix

S1pB, J1q “
1

m1

∞
jPJ1pI ´ P1qXjXT

j pI ´ P1q Globally centered sample covariance matrix

S2pB, J0q “
1

m0

∞
jPJ0pI ´ P2qXjXT

j pI ´ P2q Group centered sample covariance matrix

Decomposition of SpB, J0, J1q

SI “ SpB, J0, J1q ´ E rSpB, J0, J1qs Bias

SII “
1

mpI ´ P1qMJ1M
T
J1pI ´ P1q False negatives (deterministic)

SIII “
1

mpI ´ P1qMJ1"
T

pI ´ P1q False negatives (random)

SIV “ m´1
pI ´ P2q"J0"

T
J0pI ´ P2q` True negatives

m´1
pI ´ P1q"J1"

T
J1pI ´ P1q
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H.2 Two-Group Model and Centering

We begin by introducing some relevant notation for the two-group model and centering.

Define the group membership vector �n P Rn as

�n :“
”
1Tn1

´1Tn2

ıT
P Rn. (S72)

In the two-group model, the mean matrix M can be expressed as

M “ 1nµ
T

` p1{2q�n�
T , (S73)

where µ P Rm is a vector of grand means, and � P Rm is the vector of mean di↵erences.

According to (S73), the pi, jqth entry of M can be expressed as

mij “

$
’&

’%

µj ` �j{2 if sample i is in group one

µj ´ �j{2 if sample i is in group two.
(S74)

Define the vector ⌫ P Rn as

⌫ “
1

2

”
1

n1
1Tn1

1

n2
1Tn2

ıT
P Rn, (S75)

so that for the jth column of the data matrix Xj P Rn,

E
`
⌫TXj

˘
“

1

2
E

˜
1

n1

n1ÿ

k“1

Xjk `
1

n2

nÿ

k“n1`1

Xjk

¸
“ µj. (S76)

Note that

⌫T1n “ p1{2qp1 ` 1q “ 1, and ⌫T �n “ p1{2qp1 ´ 1q “ 0. (S77)

Next we define a projection matrix that performs global centering. Define the non-orthogonal

projection matrix

P1 :“ 1n⌫
T

P Rnˆn. (S78)
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Applying the projection matrix to the mean matrix yields

P1M “ 1n⌫
T

`
1nµ

T
` p1{2q�n�

T
˘

“ 1nµ
T

` p1{2qp⌫T �nq1n�
T

“ 1nµ
T , (S79)

with residuals

pI ´ P1qM “ M ´ P1M “ M ´ 1nµ
T

“ p1{2q�n�
T . (S80)

Define

P2 “

»

–n´1

1
1n11

T
n1

n´1

2
1n21

T
n2

fi

fl . (S81)

Note that P21n “ 1n and P2�n “ �n, so

P2M “ P21nµ
T

` p1{2qP2�n�
T

“ 1nµ
T

` p1{2q�n�
T

“ M, (S82)

and therefore pI ´ P2qM “ 0.

Define

qB “ pI ´ P1qBpI ´ P1q “

´
qbij

¯
(S83)

rB “ pI ´ P2qBpI ´ P2q “

´
rbij

¯
(S84)

B̆ “ pI ´ P1qBpI ´ P2q “

´
b̆ij

¯
. (S85)

Let qbmax, rbmax, and b̆max denote the maximum diagonal entries of qB, rB, and B̆, respectively.

H.3 Model Selection Centering

For a subset J Ä t1, . . . ,mu, let XJ denote the submatrix of X consisting of columns indexed

by J . For the fixed sets of genes J0 and J1, define the sample covariance

SpB, J0, J1q “ m´1
ÿ

kPJ0
pI ´ P2qXkX

T
k pI ´ P2q

T
` m´1

ÿ

kPJ1
pI ´ P1qXkX

T
k pI ´ P1q

T
“: I` II .

(S86)

Note that E rSpB, J0, J1qs “ B7, with

B7
“

tr pAJ0q

m
pI ´ P2qBpI ´ P2q `

tr pAJ1q

m
pI ´ P1qBpI ´ P1q. (S87)
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Define the sample correlation matrix,

p�ijpBq “
pSpB, J0, J1qqija

pSpB, J0, J1qqiipSpB, J0, J1qqjj

. (S88)

The baseline Gemini estimators Zhou (2014a) are then defined as follows, using a pair of

penalized estimators for the correlation matrices ⇢pAq “ paij{
?
aiiajjq and ⇢pBq “ pbij{

a
biibjjq:

pA⇢ “ argmin
A⇢°0

!
tr

´
p�pAqA´1

⇢

¯
` log |A⇢| ` �B|A´1

⇢ |1,o↵

)
, (S89a)

pB⇢ “ argmin
B⇢°0

!
tr

´
p�pBqB´1

⇢

¯
` log |B⇢| ` �A|B´1

⇢ |1,o↵

)
. (S89b)

We will focus on pB⇢ using the input as defined in (S88).

The proof proceeds as follows. Lemma S22, the equivalent of Proposition S16 for Algo-

rithm 1, establishes entry-wise convergence rates of the sample covariance matrix for fixed

sets of group and globally centered genes. We use this to prove Theorem S21 below in

Section H.4 and to prove Theorem 4 in Section H.5.

H.4 Convergence for fixed gene sets

We first state a standalone result, Theorem S21, which provides rates of convergence when

SpB, J0, J1q as in (S86) is calculated using fixed sets of group centered and globally centered

genes, J0 and J1, respectively. This result shows how the algorithm used in the preliminary

step to choose which genes to group center can be decoupled from the rest of the estimation

procedure. The proof is presented below in Section H.4.2.

Theorem S21. Suppose that (A1), (A2’), and (A3) hold. Let J0 and J1 denote sets such

that J0 X J1 “ H and J0 Y J1 “ t1, . . . ,mu. Let m0 “ |J0| and m1 “ |J1| denote the sizes of

the sets. Let ⌧global ° 0 satisfy

max
jPJ1

|�j| § ⌧global, (S90)

for ⌧global “ C
a
logpmqkpDTB´1Dq

´1k1{2
2

—

b
logpmq

n .

Consider the data as generated from model (S73) with " “ B1{2ZA1{2
, where A P Rmˆm

and B P Rnˆn
are positive definite matrices, and Z is an n ˆ m random matrix as defined
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in Theorem 1. Let �A denote the penalty parameter for estimating B. Suppose the penalty

parameter �A in (S89b) satisfies

�A • C2
«
CAK

log1{2
pm _ nq

?
m

`
kBk1
nmin

�
. (S91)

where C2
is an absolute constant.

(I) Let E4pJ0, J1q be the event such that

����tr pAq

´
xW2

pB⇢
xW2

¯´1

´ B´1

����
2

§

C 1�A
b
|B´1|

0,o↵ _ 1

bmin'2

min
p⇢pBqq

. (S92)

Then P pE4pJ0, J1qq • 1 ´ C{md
.

(II) With probability at least 1 ´ C 1
{md

, for all j,

kp�jp pB´1
q ´ �˚

j k2 § C1�A

d
nratio p|B´1|0,o↵ _ 1q

nmin

` C2

a
logpmqkpDTB´1Dq

´1k1{2
2

. (S93)

H.4.1 Decomposition of sample covariance matrix

The error in the sample covariance SpB, J0, J1q can be decomposed as

SpB, J0, J1q ´ B “
“
B7

´ B
‰

`
“
SpB, J0, J1q ´ B7‰ , (S94)

where the first term corresponds to bias and the second term to variance. We now further

decompose the variance term. The first term of SpB, J0, J1q in (S86) can be decomposed as,

I “ m´1
pI ´ P2qXJ0X

T
J0pI ´ P2q

“ m´1
pI ´ P2qpMJ0 ` "J0qpMJ0 ` "J0q

T
pI ´ P2q

“ m´1
pI ´ P2q"J0"

T
J0pI ´ P2q ` m´1

pI ´ P2qMJ0"
T
J0pI ´ P2q

` m´1
pI ´ P2q"J0M

T
J0pI ´ P2q ` m´1

pI ´ P2qMJ0M
T
J0pI ´ P2q, (S95)
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and the second term can be decomposed analogously, as

II “ m´1
pI ´ P1q"J1"

T
J1pI ´ P1q ` m´1

pI ´ P1qMJ1"
T
J1pI ´ P1q

` m´1
pI ´ P1q"J1M

T
J1pI ´ P1q ` m´1

pI ´ P1qMJ1M
T
J1pI ´ P1q. (S96)

By the above decompositions, it follows that SpB, J0, J1q can be expressed as

SpB, J0, J1q “ SII ` SIII ` ST
III

` SIV, (S97)

with

SII “ m´1
pI ´ P2qMJ0M

T
J0pI ´ P2q ` m´1

pI ´ P1qMJ1M
T
J1pI ´ P1q. (S98)

SIII “ m´1
pI ´ P2qMJ0"

T
J0pI ´ P2q ` m´1

pI ´ P1qMJ1"
T
J1pI ´ P1q (S99)

SIV “ m´1
pI ´ P2q"J0"

T
J0pI ´ P2q ` m´1

pI ´ P1q"J1"
T
J1pI ´ P1q (S100)

For each of SII, SIII, and SIV, the first term comes from (S96) and the second term comes

from (S97).

The terms SII and SIII can be simplified, as follows. Because pI ´ P2qMJ0 “ 0, it follows

that the first term of SII is zero:

m´1
pI ´ P2qMJ0M

T
J0pI ´ P2q “ 0.

and the first term of SIII is also zero,

m´1
pI ´ P2qMJ0"

T
J0pI ´ P2q “ 0,

Therefore the terms SII and SIII are equal to

SII “ m´1
pI ´ P1qMJ1M

T
J1pI ´ P1q, (S101)

SIII “ m´1
pI ´ P1qMJ1"

T
J1pI ´ P1q. (S102)
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Let SI “ B7
´ B. We have thus decomposed the error in the sample covariance as

SpB, J0, J1q ´ B “ SIloomoon
bias

`
“`
SIV ´ B7˘

` SIII ` SII

‰
looooooooooooooomooooooooooooooon

variance

. (S103)

In Lemma S23, we provide an error bound for each term in the decomposition (S104).

We next state Lemma S22, which establishes the maximum of entry-wise errors for esti-

mating B using the sample covariance for fixed gene sets as defined in (S104). Lemma S22

is used in the proof of Theorem S21. Following, we state Lemma S23, which is used in the

proof of Lemma S22.

Lemma S22. Suppose the conditions of Theorem S21 hold. Let E6pJ0, J1q denote the event

E6pJ0, J1q “

#
kSpB, J0, J1q ´ Bk8 § CAK

log1{2
pm _ nq

?
m

`
kBk1
nmin

+
. (S104)

Then E6pJ0, J1q holds with probability at least 1 ´
8

pm_nq2 .

Lemma S23. Let the model selection-based sample covariance SpB, J0, J1q be as defined

in (S86), where J1 and J0 are fixed sets of variables that are globally centered, and group

centered, respectively. Let m0 “ |J0| and m1 “ |J1|. Define the rates

r1 “
3 kBk

1

nmin

, (S105)

r2 “ p4mq
´1 k�J1k

2

2
, (S106)

r3 “ C3d
1{2K2 log1{2

pmqm´1
`
�TJ1AJ1�J1

˘1{2qb1{2
max

, (S107)

r4 “ C4d
1{2K log1{2

pmqm´1 kAkF kBk
2
. (S108)

(I) Deterministically,

��B7
´ B

��
8 § r1 and kSIIk8 § r2. (S109)

(II) Define the events

EI “
 ��SIV ´ B7��

8 § r4
(

and EII “ tkSIIIk8 § r3u . (S110)
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Then EI and EII occur with probability at least 1 ´ 2{md
.

Lemmas S22 and S23 are proved in Section I. We analyze term SI in Section I.2, term

SII in Section I.3, term SIII in Section I.4, and term SIV in Section I.5.

H.4.2 Proof of Theorem S21

Let us first define the event Eglobal, that is, the GLS error based on the true B´1 is small:

Eglobal “

!��p�pB´1
q ´ �

��
8 †

a
logpmqkpDTB´1Dq

´1k1{2
2

)
. (S111)

Let E4pJ0, J1q be defined as in (S93), denoting small operator norm error in estimating

B´1:

E4pJ0, J1q “

$
&

%

����tr pAq

´
xW2

pB⇢
xW2

¯´1

´ B´1

����
2

§

C 1�A
b
|B´1|

0,o↵ _ 1

bmin'2

min
p⇢pBqq

,
.

- . (S112)

Note that E4pJ0, J1q holds deterministically under event E6pJ0, J1q as defined in (S105) of

Lemma S22.

Define the event bounding the perturbation in mean estimation due to error in estimating

B´1:

E5pJ0, J1q “

!���p�p pB´1
q ´ p�pB´1

q

���
8

† Cn´1{2
min

��� pB´1
´ B´1

���
2

)
. (S113)

Conditional on a fixed matrix pB´1 that satisfies E4pJ0, J1q, event E5pJ0, J1q holds with prob-

ability at least 1 ´ C{md, by Lemma S6 (used in the proof of Theorem 1).

The overall rate of convergence follows by applying the union bound to the events EglobalX

E4pJ0, J1q X E5pJ0, J1q, as follows:

P pEc
global

Y E4pJ0, J1q
c

Y E5pJ0, J1qcq

§ P pEc
global

q ` P pE4pJ0, J1q
c
q ` P pE5pJ0, J1q

c
| E4pJ0, J1qqP pE4pJ0, J1qq

` P pE5pJ0, J1qc | E4pJ0, J1qcqP pE4pJ0, J1q
c
q

§ P pEc
global

q ` P pE4pJ0, J1qcq ` P pE4pJ0, J1qcq ` P pE5pJ0, J1qc | E4pJ0, J1qq

“ P pEc
global

q ` 2P pE4pJ0, J1q
c
q ` P pE5pJ0, J1q

c
| E4pJ0, J1qq,
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where P pEc
global

q and P pE5pJ0, J1qc | E4pJ0, J1qq are bounded in Theorem 1, and P pE4pJ0, J1q
c
q

has high probability under Lemma S22.

H.5 Proof of Theorem 4

Let p�init denote the output from Algorithm 1. By our choice of the threshold parameter ⌧init

as in (16), that is,

⌧init “ C

˜
log1{2

pmq
?
m

`
kBk1
nmin

¸ d
nratio p|B´1|0,o↵ _ 1q

nmin

` C
a
logpmqkpDTB´1Dq

´1k1{2
2

,

we have a partition p rJ0, rJ1q such that rJ0 is the set of variables selected for group centering

and rJ1 is the set of variables selected for global centering. The partition results in a sample

covariance matrix SpB, rJ0, rJ1q as defined in (S86). Define the event that the Algorithm 1

estimate p�init is close to � in the sense that

EA1 “
 ��p�init ´ �

��
8 † ⌧init

(
. (S114)

Note that the event EA1 implies that the false negatives have small true mean di↵erences.

That is, on event EA1, by the triangle inequality,

��� rJ1

��
8 §

���� rJ1 ´ p�initrJ1

���
8

`

���p�initrJ1

���
8

§ ⌧init ` ⌧init “ 2⌧init, (S115)

where
���p�initrJ1

���
8

† ⌧init by definition of EA1, and
���� rJ1 ´ p�initrJ1

���
8

† ⌧init by definition of the

thresholding set rJ1.

Under the assumptions of Theorem S21, ⌧init § ⌧global with ⌧global as defined in (S90), so

condition (S90) of Theorem S21 is satisfied. Under the conditions of Theorem S21, event

E6pJ0, J1q as defined in Lemma S22 holds with high probability; that is, the entrywise error

in the sample covariance matrix is small.

Let EB denote event (28) in Theorem 4. In view of Theorem S9 and Lemma S10, event
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EB holds on E6pJ0, J1q. Hence

P pEc
Bq “ P pE6pJ0, J1q

c
| EA1qP pEA1q ` P pE6pJ0, J1qc | Ec

A1
qP pEc

A1
q

§ P pE6pJ0, J1q
c

| EA1q ` P pEc
A1

q

§ 2{md
` 2{md,

where the first term is bounded in Lemma S22 and the second in Theorem 3.

Recall the event Eglobal as defined in (S112). Event (29) in Theorem 4 holds under the

intersection of events Eglobal X E5p rJ0, rJ1q X EB X EA1. Hence the probability of (29) can be

bounded as follows:

P pEc
global

Y E5p rJ0, rJ1q
c

Y Ec
B Y Ec

A1
q

§ P pEc
global

q ` P pEc
Bq ` P pE5p rJ0, rJ1qc | EBqP pEBq

` P pE5p rJ0, rJ1qc | Ec
BqP pEc

Bq ` P pEc
A1

q

§ P pEc
global

q ` P pEc
Bq ` P pEc

Bq ` P pE5p rJ0, rJ1q
c

| EBq ` P pEc
A1

q

“ P pEc
global

q ` 2P pEc
Bq ` P pE5p rJ0, rJ1qc | EBq ` P pEc

A1
q ,

where P pEc
global

q and P pE5p rJ0, rJ1qc | EBq are bounded in Theorem 1, P pEc
Bq is bounded above,

and P pEc
A1

q is bounded in Theorem 3.

I Proof of Lemmas S22 and S23

We first prove Lemma S22 in Section I.1. The rest of the section contains the proof of Lemma

S23, where part I is proved in Sections I.2 and I.3 and part II in Sections I.4 and I.5.

I.1 Proof of Lemma S22

The entrywise error in the sample covariance matrix (S86) can be decomposed as

kSpB, J0, J1q ´ Bk8 §

��SpB, J0, J1q ´ B7��
8 `

��B7
´ B

��
8 (S116)

§

��SIV ´ B7��
8 ` 2 kSIIIk8 ` kSIIk8 `

��B7
´ B

��
8 . (S117)
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Let rn,m “ r1 ` r2 ` 2r3 ` r4. By parts I and II of Lemma S23,

P pkSpB, J0, J1q ´ Bk8 • rn,mq

§ P
`��SIV ´ B7��

8 ` 2 kSIIIk8 ` kSIIk8 `

��B7
´ B

��
8 • rn,m

˘
(by (S118))

§ P
`��SIV ´ B7��

8 ` 2 kSIIIk8 ` r2 ` r1 • rn,m
˘

(by (S110))

“ P
`��SIV ´ B7��

8 ` 2 kSIIIk8 • r4 ` 2r3
˘

§ P
`��SIV ´ B7��

8 • r4
˘

` P p2 kSIIIk8 • 2r3q (by (S111))

§
2

md
`

2

md
“

4

md
.

We show that under the assumptions of Theorem S21, the entrywise error in terms SII

and SIII is O

ˆ
CA

b
logpmq

m

˙
. Recall that the entrywise rates of convergence of SII and SIII are

stated in equations (S107) and (S108), respectively. Let s “ |suppp�q| denote the sparsity

of �. Let m01 “ |supp p�J1q| denote the number of false negatives.

First, we express the entrywise rate of convergence of SII in terms of ⌧global. By (S90),

k�J1k8 § ⌧global, which implies that k�J1k
2

2
§ m01⌧ 2global § s⌧ 2

global
, where the last inequality

holds because m01 § s by definition. Therefore,

r2 “ p4mq
´1 k�J1k

2

2
§

s⌧ 2
global

4m
§ C

s logpmq

4nm
kBk

2
, (S118)

where the last step holds because ⌧global “ C
a
logpmqkpDTB´1Dq

´1k1{2
2

—

b
logpmq

n kBk1{2
2

by

assumption. Applying (A3) to the right-hand side of (S119) implies that r2 “ O

ˆ
CA

b
logpmq

m

˙
.

Next, consider term SIII. First note that

�TJ1AJ1�J1 § k�J1k
2

2
kAJ1k2 § m01⌧

2

global
kAJ1k2 , (S119)

where the last inequality holds by (S90). This implies that r3 is on the order

log1{2
pmq

m

´
qbmax�

T
J1AJ1�J1

¯1{2
§ qb1{2

max
kAJ1k

1{2
2

˜
log1{2

pmqm1{2
01

m

¸
⌧global

§ C
logpmq

?
n

?
s

m
kAJ1k

1{2
2

kBk1{2
2

qb1{2
max

, (S120)
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where the last inequality holds because m01 § s § m and ⌧global —

b
logpmq

n kBk1{2
2

. Under

(A2’), the right-hand side of (S121) satisfies

logpmq
?
n

?
s

m
kAJ1k

1{2
2

kBk1{2
2

qb1{2
max

§

a
logpmq

?
s

m
CA

kAJ1k
1{2
2

kAk1{2
2

§ CA

c
logpmq

m
, (S121)

where the last inequality holds because s § m.

I.2 Proof of part I of Lemma S23, term I

We bound the entrywise bias,

��B7
´ B

��
max

“

����
tr pAJ0q

m
rB `

tr pAJ1q

m
qB ´ B

����
max

§
tr pAJ0q

m

��� rB ´ B
���
max

`
tr pAJ1q

m

��� qB ´ B
���
max

. (S122)

Note that

��� qB ´ B
���
max

“ kpI ´ P1qBpI ´ P1q ´ Bk
max

“ kP1BP1 ´ P1B ´ BP1kmax

§ kP1BP1kmax
` kP1Bk

max
` kBP1kmax

. (S123)

We bound the first term of (S124) as follows:

���pP1BP1qij

��� §

���pp1q
i

���
2

���pp1q
j

���
2

kBk
2

§
kBk

2

nmin

.

For the second term of (S124),

pP1Bqij “

���bTi p
p1q
j

��� § kbik1
���pp1q

j

���
8

§ kBk
1

���pp1q
j

���
8

§
kBk

1

nmin

,

where
���pp1q

j

���
8

§
1

nmin
by the definition of P1 in (S78). We have shown kBP1kmax

§
kBk1
nmin

.

Likewise, kBP1kmax
§

kBk1
nmin

. Therefore,

��� qB ´ B
���
max

§ 3
kBk

1

nmin

. (S124)
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Because the projection matrix P2 satisfies
���pp2q

j

���
8

§
1

nmin
, an analogous proof shows that

��� rB ´ B
���
max

§
3 kBk

1

nmin

. (S125)

Substituting (S125) and (S126) into (S123) yields

��B7
´ B

��
max

§
tr pAJ0q

m

��� qB ´ B
���
max

`
tr pAJ1q

m

��� rB ´ B
���
max

§

ˆ
tr pAJ0q

m
`

tr pAJ1q

m

˙
3 kBk

1

nmin

“
tr pAq

m

3 kBk
1

nmin

“
3 kBk

1

nmin

. (S126)

I.3 Proof of part I of Lemma S23, term II

In this section we prove a deterministic entrywise bound on SII. By (S80), it follows that

pI ´ P1qMJ1M
T
J1pI ´ P1q “ p1{4q k�J1k

2

2
�n�

T
n ,

which implies

��pI ´ P1qMJ1M
T
J1pI ´ P1q

��
8 “

��p1{4q k�J1k
2

2
�n�

T
n

��
8 “ p1{4q k�J1k

2

2
.

Therefore SII satisfies the maximum entrywise bound

kSIIk8 “

��m´1
pI ´ P1qMJ1M

T
J1pI ´ P1q

��
8 “

��p4mq
´1 k�J1k

2

2
�n�

T
n

��
8 “ p4mq

´1 k�J1k
2

2
,

so

kSIIk8 “ r2.

Note that if J1 is chosen so that k�J1k8 § ⌧ , then k�J1k
2

2
§ m01⌧ 2, where m01 is the

number of false negatives, so
k�1k22
4m

§
m01

4m
⌧ 2 §

⌧ 2

4
. (S127)
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which implies that the entrywise rate of convergence of SII is Op⌧ 2q.

I.4 Proof of part II of Lemma S23, term III

Let pi denote the ith column of P T
1
, for i “ 1, . . . , n. Let mk denote the kth column of M .

Let "k denote the kth column of ". The term SIII can be expressed as

pSIIIqij “ m´1
pei ´ piq

TMJ1"
T
J1pej ´ pjq

“ m´1 tr
`
"TJ1pej ´ pjqpei ´ piq

TMJ1

˘

“ m´1
ÿ

kPJ1
"Tk pej ´ pjqpei ´ piq

Tmk

“ m´1 vec t"J1u
T `

Im1 b pej ´ pjqpei ´ piq
T

˘
vec tMJ1u

“ m´1 vec tZu
T

´
A1{2

J1
b B1{2

pej ´ pjqpei ´ piq
T

¯
vec tMJ1u

“ vec tZu
T  ij,

where

 ij :“ m´1

´
A1{2

J1
b B1{2

pej ´ pjqpei ´ piq
T

¯
vec tMJ1u . (S128)

The squared Euclidean norm of  ij is

k ijk22 “ vec tMJ1u
T `

AJ1 b pei ´ piqpej ´ pjq
TBpej ´ pjqpei ´ piq

T
˘
vec tMJ1u {m2

“ vec tMJ1u
T

´
AJ1 b qbjjpei ´ piqpei ´ piq

T
¯
vec tMJ1u {m2

“ qbjj
ÿ

kPJ1

ÿ

`PJ1
ak`m

T
k pei ´ piqpei ´ piq

Tm`{m
2

“ qbjj
ÿ

kPJ1

ÿ

`PJ1
ak`p�nqi�kp�nqi�`{

`
4m2

˘

“ qbjj
ÿ

kPJ1

ÿ

`PJ1
ak`�k�`{

`
4m2

˘

“ qbjj�TJ1AJ1�J1{
`
4m2

˘
. (S129)

By the Hanson-Wright inequality (Theorem 2.1),

P
´���vec tZu

T  ij ´ k ijk2
��� ° d1{2K2

a
logpmq k ijk2

¯
§ 2 exp t´d logpmqu “ 2{md. (S130)
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Therefore

P
´
|pSIIIqij| °

´
1 ` d1{2K2

a
logpmq

¯
k ijk2

¯
“ P

´���vec tZu
T  ij

��� ° k ijk2 ` d1{2K2
a
logpmq k ijk2

¯

§ P
´���vec tZu

T  ij ´ k ijk2
��� ° d1{2K2

a
logpmq k ijk2

¯

§ 2{md,

where the last step follows from (S131). By (S130), it follows that

´
1 ` d1{2K2

a
logpmq

¯
k ijk2 § r3, (S131)

so

P p|pSIIIqij| ° r3q § P
´
|pSIIIqij| °

´
1 ` d1{2K2

a
logpmq

¯
k ijk2

¯
§ 2{md, (S132)

by (S132). By the union bound,

P pkSIIIk8 ° r3q §

mÿ

i“1

mÿ

j“1

P p|pSIIIqij| ° r3q § 2{md´2.

I.5 Proof of part II of Lemma S23, term IV

We now analyze term SIV. To do so, we express SIV as a quadratic form in order to apply

the Hanson-Wright inequality.

Let pp1q
i denote the ith column of P T

1
. Let pp2q

i denote the ith column of P T
2
. Define

H ij
group

“ Im0 b

´
ej ´ pp2q

j

¯ ´
ej ´ pp2q

j

¯T

and H ij
global

“ Im1 b

´
ej ´ pp1q

j

¯ ´
ej ´ pp1q

j

¯T

,

(S133)

and let

H ij
pJ0, J1q “

»

–H ij
group

H ij
global

fi

fl , (S134)

where H ij
group

P Rm0nˆm0n, H ij
global

P Rm1nˆm1n, and H ij
pJ0, J1q P Rmnˆmn. Recall that

SIV “ m´1
pI ´ P2q"J0"

T
J0pI ´ P2q ` m´1

pI ´ P1q"J1"
T
J1pI ´ P1q.
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The second term of SIV can be expressed as a quadratic form, as follows (where "k denotes

the kth column of " P Rnˆm):

m´1
pI ´ P1q"J1"

T
J1pI ´ P1q “ m´1

ÿ

kPJ1

´
ei ´ pp1q

i

¯T

"k"
T
k

´
ej ´ pp1q

j

¯

“ m´1
ÿ

kPJ1
tr

ˆ´
ei ´ pp1q

i

¯T

"k"
T
k

´
ej ´ pp1q

j

¯˙

“ m´1
ÿ

kPJ1
"Tk

´
ej ´ pp1q

j

¯ ´
ei ´ pp1q

i

¯T

"k

“ m´1 vec t"J1u
T

ˆ
Im1 b

´
ej ´ pp1q

j

¯ ´
ei ´ pp1q

i

¯T
˙
vec t"J1u

T

“ m´1 vec t"J1u
T H ij

global
vec t"J1u

T . (S135)

Analogously, the first term of SIV can be expressed as a quadratic form:

m´1
pI ´ P2q"J0"

T
J0pI ´ P2q “ m´1

ÿ

kPJ0

´
ei ´ pp2q

i

¯T

"k"
T
k

´
ej ´ pp2q

j

¯

“ m´1 vec t"J0u
T H ij

group
vec t"J0u

T . (S136)

We now express SIV as a quadratic form. Let ⇡pXq denote the matrix X with reordered

columns:

⇡pXq “

”
XJ0 XJ1

ı
and ⇡pAq “ Cov pvec t⇡pXquq . (S137)

Then by (S136) and (S137),

pSIVqij “ m´1 vec t"J0u
T H ij

group
vec t"J0u

T
` m´1 vec t"J1u

T H ij
global

vec t"J1u
T

“ m´1 vec t⇡ p"qu
T H ij

pJ0, J1q vec t⇡ p"qu

“ m´1 vec tZu
T ``

⇡pAq
1{2

b B1{2˘
H ij

pJ0, J1q
`
⇡pAq

1{2
b B1{2˘˘

vec tZu ,

where the last step holds by decorrelation, with Z P Rnˆm as a random matrix with inde-

pendent subgaussian entries.

Note that the pi, jqth entry of SIV can be expressed as

pSIVqij “ vec tZu
T �i,j vec tZu , (S138)
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with

�i,j “ m´1
`
⇡pAq

1{2
b B1{2˘H ij

pJ0, J1q
`
⇡pAq

1{2
b B1{2˘ . (S139)

Having expressed pSIVqij as a quadratic form in (S139), we find the trace and Frobenius

norm of �i,j, then apply the Hanson-Wright inequality. First we find the trace of �i,j. Let

I0 “

»

–Im0ˆm0 0m0ˆm1

0m1ˆm0 0m1ˆm1

fi

fl and I1 “

»

–0m0ˆm0 0m0ˆm1

0m1ˆm0 Im1ˆm1

fi

fl . (S140)

Note that H ij
pJ0, J1q can be written as a sum of Kronecker products,

H ij
pJ0, J1q “ I0 b

´
ej ´ pp2q

j

¯ ´
ei ´ pp2q

i

¯T

` I1 b

´
ej ´ pp1q

j

¯ ´
ei ´ pp1q

i

¯T

, (S141)

hence (S140) can be expressed as

m´1
`
⇡pAq

1{2
b B1{2˘

ˆ
I0 b

´
ej ´ pp2q

j

¯ ´
ei ´ pp2q

i

¯T
˙ `

⇡pAq
1{2

b B1{2˘ (S142)

` m´1
`
⇡pAq

1{2
b B1{2˘

ˆ
I1 b

´
ej ´ pp1q

j

¯ ´
ei ´ pp1q

i

¯T
˙ `

⇡pAq
1{2

b B1{2˘ . (S143)

The trace of the term (S143) is

m´1 tr

ˆ`
⇡pAq

1{2
b B1{2˘

ˆ
I0 b

´
ej ´ pp2q

j

¯ ´
ei ´ pp2q

i

¯T
˙ `

⇡pAq
1{2

b B1{2˘
˙

“ m´1 tr

ˆ
⇡pAq

1{2I0⇡pAq
1{2

b B1{2
´
ej ´ pp2q

j

¯ ´
ei ´ pp2q

i

¯T

B1{2
˙

“ m´1 tr
`
⇡pAq

1{2I0⇡pAq
1{2˘

tr

ˆ
B1{2

´
ej ´ pp2q

j

¯ ´
ei ´ pp2q

i

¯T

B1{2
˙

“ m´1 tr pI0⇡pAqq

ˆ´
ei ´ pp2q

i

¯T

B
´
ej ´ pp2q

j

¯˙

“ m´1 tr pAJ0q rpI ´ P2qBpI ´ P2qqsij

“ m´1 tr pAJ0qrbij.
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Analogously, the trace of the term (S144) is

m´1 tr

ˆ`
⇡pAq

1{2
b B1{2˘

ˆ
I1 b

´
ej ´ pp1q

j

¯ ´
ei ´ pp1q

i

¯T
˙ `

⇡pAq
1{2

b B1{2˘
˙

“ m´1 tr pAJ1q rpI ´ P1qBpI ´ P1qqsij

“ m´1 tr pAJ1qqbij.

Let b7
ij denote the pi, jqth entry of B7 defined in (S87). We have shown that the trace of �i,j

(as defined in (S140)) is

tr p�i,jq “ m´1 tr pAJ0qrbij ` m´1 tr pAJ1qqbij “ b7
ij. (S144)

Next, we find the Frobenius norm of �i,j. For convenience, define

A0 “ ⇡pAq
1{2I0⇡pAq

1{2 and A1 “ ⇡pAq
1{2I1⇡pAq

1{2 (S145)

B2,ij “ B1{2
´
ej ´ pp2q

j

¯ ´
ei ´ pp2q

i

¯T

B1{2 and B1,ij “ B1{2
´
ej ´ pp1q

j

¯ ´
ei ´ pp1q

i

¯T

B1{2.

(S146)

Then

k�i,jk2F “

��m´1
`
⇡pAq

1{2
b B1{2˘H ij

pJ0, J1q
`
⇡pAq

1{2
b B1{2˘��2

F

“ m´2 kA0 b B2,ij ` A1 b B1,ijk2F
“ m´2 tr

´
pA0 b B2,ij ` A1B1,ijq

T
pA0 b B2,ij ` A1 b B1,ijq

¯

“ m´2 tr
`
AT

0
A0 b BT

2,ijB2,ij

˘
` m´2 tr

`
AT

1
A1 b BT

1,ijB1,ij

˘

` m´2 tr
`
AT

0
A1 b BT

2,ijB1,ij

˘
` m´2 tr

`
AT

1
A0 b BT

1,ijB2,ij

˘
. (S147)

We now find the traces of each of the terms in (S148). First, note that

tr
`
AT

0
A0

˘
“ tr pI0⇡pAqI0⇡pAqq “ tr

`
A2

J0

˘
“ kAJ0k

2

F . (S148)

Analogously,

tr
`
AT

1
A1

˘
“ kAJ1k

2

F . (S149)
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For the cross-term, let AJ0J1 denote the m0 ˆ m1 submatrix of ⇡pAq given by columns of A

in J0 and rows of A in J1. Then

tr
`
AT

0
A1

˘
“ tr pI0⇡pAqI1⇡pAqq

“ tr

¨

˝

»

–0m0ˆm0 AJ0J1

0m1ˆm0 0m1ˆm1

fi

fl ⇡pAq

˛

‚

“ tr
`
AT

J0J1AJ0J1

˘

“ kAJ0J1k
2

F . (S150)

Next,

tr
`
BT
1,ijB1,ij

˘
“ tr

ˆ
B1{2

´
ei ´ pp1q

i

¯ ´
ej ´ pp1q

j

¯T

B
´
ej ´ pp1q

j

¯ ´
ei ´ pp1q

i

¯T

B1{2
˙

“

ˆ´
ej ´ pp1q

j

¯T

B
´
ej ´ pp1q

j

¯˙ ˆ´
ei ´ pp1q

i

¯T

B
´
ei ´ pp1q

i

¯˙

“ qbjjqbii. (S151)

Analogously,

tr
`
BT
2,ijB2,ij

˘
“

ˆ´
ej ´ pp2q

j

¯T

B
´
ej ´ pp2q

j

¯˙ ˆ´
ei ´ pp2q

i

¯T

B
´
ei ´ pp2q

i

¯˙

“ rbjjrbii. (S152)

The cross-terms yield

tr
`
BT
1,ijB2,ij

˘
“

ˆ´
ej ´ pp1q

j

¯T

B
´
ej ´ pp2q

j

¯˙ ˆ´
ei ´ pp2q

i

¯T

B
´
ei ´ pp1q

i

¯˙
“ b̆iib̆jj. (S153)

The squared Frobenius norm of �i,j is

k�i,jk2F “
1

m2

´
kAJ0k

2

F
qbiiqbjj ` kAJ1k

2

F
rbiirbjj ` 2 kAJ0,J1k

2

F b̆iib̆jj
¯

§
1

m2
C

`
kAJ0k

2

F ` kAJ1k
2

F ` 2 kAJ0J1k
2

F

˘
kBk2

2

“ C
1

m2
kAk2F kBk2

2
.
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We now apply the Hanson-Wright inequality,

P
´���pSIqij ´ b7

ij

��� ° r4
¯

“ P
´���vec tZu

T �i,j vec tZu ´ tr p�i,jq

��� ° r4
¯

§ 2 exp

ˆ
´cmin

"
d logpmq, d1{2a

logpmq
k�i,jkF
k�i,jk2

*˙

§ 2max
´
m´d, exp

´
d1{2a

logpmqr1{2
p�i,jq

¯¯
.

The first step holds by (S139) and (S145).

J Comparisons to related methods

The most similar existing method to ours is the sphering approach from Allen and Tibshirani

(2012). Both methods use a preliminary demeaned version of the data to generate covariance

estimates, then use these estimates to adjust the gene-wise t-tests. The largest di↵erence

between the procedures lies in this last step. The sphering approach produces an adjusted

data set based on decorrelating residuals from a preliminary mean estimate and performs

testing and mean estimation on this adjusted data using traditional OLS techniques. Though

their approach is well-motivated at the population level, they do not provide theoretical

support for their plug-in procedure, and in particular do not explore how noise in the initial

mean estimate may complicate their decorrelation procedure. In contrast, our approach uses

a generalized least squares approach motivated by classical statistical results including the

Gauss Markov theorem.

The sphering approach also involves decorrelating a data matrix along both axes. Our

work, including the theoretical analysis in Zhou (2014a), suggests that when the data ma-

trix is non-square, attempting to decorrelate along the longer axis generally degrades perfor-

mance. For genetics applications, where there are usually many more genes than samples,

this suggests that decorrelating along the genes may hurt the performance of the sphering

method. Fortunately, for gene-level analyses it is not necessary to decorrelate along the gene

axis, since inference methods like false discovery rate are robust to a certain level of de-

pendence among the variables (genes) (Benjamini and Yekutieli, 2001). Therefore, we also

consider a modification of the sphering algorithm that only decorrelates along the samples.
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Confounder adjustment is another related line of work that deals with similar issues when

attempting to discover mean di↵erences. In particular, a part of that literature posits models

where row-wise connections arise from the additive e↵ects of potential latent variables. Sun

et al. (2012) and Wang et al. (2015) use models of the form

Xnˆm “ Dnˆ1�
T
mˆ1

` Znˆr�
T
mˆr ` Enˆm

Znˆr “ Dnˆ1↵
T
rˆ1

` Wnˆr

where Z is an unobserved matrix of r latent factors. Rewriting these equations into the

following form lets us better contrast the confounder model to our matrix-variate setup:

X “ Dp� ` �↵q
T

` W�T
` E. (S154)

These models are generally estimated by using some form of factor analysis to estimate �

and then using regression methods with additive outlier detection to identify �, methodology

that is quite di↵erent from our GLS-based methods.

For the two-group model, in the case of a globally centered data matrix X, the design

matrix D in (S155) takes the form

DT
nˆ1

“

”
´1 ¨ ¨ ¨ ´1 1 ¨ ¨ ¨ 1

ı
“

”
´1Tn1

1Tn2

ı
, (S155)

and 2� represents the vector of true mean di↵erences between the groups. The vector � is

estimated via OLS, yielding p�OLS, and CATE considers whether the residual X ´ Dnˆ1
p�OLS

has a low-rank covariance structure plus noise. If so, p�p↵ aims to take out the residual low-

rank structure through Dpx�↵q
T . As illustrated in simulation and data analysis, this improves

upon inference based only on p�OLS. When applying the CATE and related methods to data

originated from the generative model as described in the present paper, CATE (and in

particular, the related LEAPP) method essentially seeks a sparse approximation of p�OLS;

Moreover in LEAPP, this is essentially achieved via hard thresholding of coe�cients of p�OLS,

leading to improvements in performance in variable selection and its subsequence inference

when the vector of true mean di↵erences is presumed to be sparse. In our setting, we improve

upon OLS using GLS.
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J.1 Simulation results

Figure S3 compares the performance of Algorithm 2 to the sphering method of Allen and

Tibshirani (2012) and the robust regression confounder adjustment method of Wang et al.

(2015) on simulated matrix variate data motivated by the ulcerative colitis dataset described

in Section 5. Note that this robust regression confounder adjustment is a minor modification

of the LEAPP algorithm introduced in Sun et al. (2012). As discussed above, we also consider

a modification of Allen and Tibshirani (2012) that only decorrelates along the rows.

We can see that across a range of dataset sizes our method consistently outperforms

sphering in terms of sensitivity and specificity for identifying mean di↵erences. In some

settings, CATE improves on Tsphere and t-statistics despite being applied on misspecified

models, because CATE takes out the additional rank two structure from the mean after OLS

regression and does some approximate thresholding on the coe�cients. Our method using

GLS performs significantly better than CATE in the setting of non-identity B, with edges

present both within and between groups.

Figure S5 fixes the sample size and repeats these comparisons on di↵erent sample cor-

relation structures (which are described in Section 4). Figure S6 is analogous to Figure S5,

but with A as the identity matrix. Algorithm 2 is competitive or superior to the competing

methods across a range of topologies.

J.2 Comparison on UC data

We apply both Algorithm 2 and CATE on the ulcerative colitis data to compare their

respective findings on real data. Figure S7 presents the test statistics from these algorithms.

The test statistics have a correlation of 0.75. As expected, both methods find that the bulk

of genes have small test statistics. Note that the regression line of the CATE test statistics on

Algorithm 2’s test statistics has a slope less than 1. This implies that Algorithm 2 generates

more dispersed test statistics than CATE, and, given that we have shown in Figures 5 and 8

that Algorithm 2 provides well-calibrated test statistics, that it also has more power in this

situation.

Using a threshold of FDR adjusted p-values smaller than 0.1, both methods find four

genes with significant mean di↵erences. However, there is only one gene (DPP10-AS1) that
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Figure S3: Performance of Algorithm 2 (GLS) relative to sphering and confounder ad-
justment methods, labeled as tsphere and cate, respectively. These are ROC curves for
identifying true mean di↵erences. An implementation of the sphering algorithm that does
not adjust for A is also included, labeled as tsphere noA. Each panel shows the average
ROC curves over 200 simulations. We simulate matrix variate data with gene correlations
from an AR1p0.8q model and let s “ 10 genes have true mean di↵erences of 0.8, 0.6, and 0.4
for the first, second and third rows, respectively. For all of these the true B is set to pB from
the ulcerative colitis data (using a repeated block structure for larger n values), described
in Section 5 and evenly-sized groups are assigned randomly.
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Figure S4: Performance of Algorithm 2 (GLS) relative to sphering and confounder adjust-
ment, labeled as tsphere and cate, respectively. These are ROC curves for identifying true
mean di↵erences. An implementation of the sphering algorithm that does not adjust for A is
also included, labeled as tsphere noA. Each panel shows the average ROC curves over 200
simulations. We simulate matrix variate data with no gene-wise correlations (A “ I) and let
s “ 10 genes have true mean di↵erences of 0.8, 0.6, and 0.4 for the first, second and third
rows, respectively. For all of these the true B is set to pB from the ulcerative colitis data
(using a repeated block structure for larger n values), described in Section 5 and evenly-sized
groups are assigned randomly.
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both methods identify. So, although there is significant correlation between the test statistics,

the methods do not necessarily identify the same genes.
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Figure S5: Performance of Algorithm 2 (GLS) relative to sphering and confounder adjust-
ment, labeled as tsphere and cate, respectively. These are ROC curves for identifying true
mean di↵erences. An implementation of the sphering algorithm that does not adjust for A is
also included, labeled as tsphere noA. Each panel shows the average ROC curves over 200
simulations. We simulate matrix variate data with an AR1p0.8q model for A and let s “ 10
genes have true mean di↵erences of 0.8. B is constructed according to a Star-Block model
with blocks of size 4, an AR1p0.8q, and an Erdős-Rényi random graph with d “ n log n edges.
All of these use n “ 20 and randomly assign 10 observations to each group.
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Figure S6: Performance of Algorithm 2 (GLS) relative to sphering and confounder adjust-
ment, labeled as tsphere and cate, respectively. These are ROC curves for identifying true
mean di↵erences. An implementation of the sphering algorithm that does not adjust for A is
also included, labeled as tsphere noA. Each panel shows the average ROC curves over 200
simulations. We simulate matrix variate data with no gene-wise correlations (A “ I) and let
s “ 10 genes have true mean di↵erences of 0.6. B is constructed according to a Star-Block
model with blocks of size 4, an AR1p0.8q, and an Erdős-Rényi random graph with d “ n log n
edges. All of these use n “ 40 and randomly assign 20 observations to each group.
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Figure S7: Scatterplot of t-statistics for CATE and Algorithm 2 applied on the ulcerative
colitis data. The 45-degree line is included in black while red dashed line is the linear fit.
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