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Outline

We provide additional simulation and data analysis results in Section A and B. We state
some preliminary results and notation in Section C. We prove Theorem 1 in Section D
and Corollary 2 in Section D.2. We prove Theorem 3 in Section E, with additional lemmas
proved in Section F. We prove entrywise convergence of the sample correlation matrices
for Algorithm 1 in Section G. We prove Theorem 4 in Section H, and we prove additional
lemmas used in the proof of Theorem 4 in Section I. In Section J we provide additional
comparisons between our method and some related methods on both simulated and real

data.

A Additional simulation results

Figure S1 demonstrates the effect of mean structure on covariance estimation. As expected,
when there is no mean structure Gemini performs competitively. As more mean structure
is added, however, its performance quickly decays to be worse than Algorithm 2. This
also provides evidence that the plug-in estimator 7i,;; used in Algorithm 2 is appropriately
selecting genes to group center, as when there are no or very few differentially expressed
genes Algorithm 2 is still never worse than Gemini. Algorithm 1 does not perform as well as
Algorithm 2 but still tends to eventually outperform Gemini as more mean structure is added.
As the sample size increases, the difference between Algorithm 2 and Algorithm 1 decreases
as the added noise from group centering becomes less of a factor. We still recommend using
Algorithm 2 in most realistic scenarios, but this reinforces our theoretical finding that the

two algorithms have the same error rates.
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Figure S1: Performance of Gemini, Algorithm 1, and Algorithm 2 for estimating B under
different mean and covariance structures. As the sample size increases, we can see that
Algorithm 1 improves relative to Gemini and begins to catch up to Algorithm 2. Gemini’s
performance always degrades as the true differences grow or more differentially expressed
genes are added, while Algorithm 1 and 2 are stable. We set B~! as Erdds-Rényi (ER)
or star-block with blocks of size 4 (SB). All plots use A from an AR1(0.8) model with
m = 2000 and are averaged over 200 replications. In the left plot the first 50 genes are
differentially expressed at the level specified on the z-axis. As indicated, the three groups
of lines correspond to n = 20, 40, and 80. In the right two columns there are m1 number of
genes with exponentially decaying true differences between groups, scaled so that the largest
difference is 5 (resulting in an average difference of approximately 1).

B Additional data analysis

As discussed in Section 3.1, it is particularly important that the design effect is accurately
estimated in order for the test statistics to be properly calibrated. The first plot of Figure S2a
displays the sensitivity of the estimated design effect (21) for Algorithm 2 to the GLasso
penalty parameter and the number of group centered columns. In the case that all columns
are group centered, Algorithm 2 reduces to Algorithm 1. If we group center all genes, the
estimated design effect is sensitive to the penalty parameter, but if we group center a small
proportion of genes, it is less sensitive to the penalty parameter. This is further evidence

that it may be advantageous to avoid over-centering the data when the true mean difference
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(a) The first plot displays the estimated design effect vs. the penalty multiplier for Algorithm 2.
Each curve corresponds to a different number of columns being group centered. As the curves
go from top to bottom, the number of group centered columns increases from 10 to 2000. The
second plot shows a quantile plot of test statistics from the data vs. simulated test statistics; in the
simulation, the population person-person covariance matrix is B , as estimated from the UC data.
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(b) Quantile plot and inverse covariance graphs. The first two plots correspond to A = 0.4 and
128 group centered genes. The third plot corresponds to A = 0.5 and 128 group centered genes.
Green circles correspond to twins with UC, orange circles to twins without UC. Twins are aligned
vertically.

Figure S2



vector v may be sparse. The second plot of Figure S2a shows a quantile plot comparing the
distribution of test statistics from the UC data to test statistics from a simulation whose
population correlation structure is matched to the UC data. The quantile plot reveals that
we can reproduce the pattern of overdispersion in the test statistics using simulated data
having person-person as well as gene-gene correlations. Such correlations therefore provide
a possible explanation for the overdispersion of the test statistics.

Figure S2b displays a quantile plot and inverse covariance graph for A = 0.4 and 128 group
centered genes. Under these settings the test statistics appear correctly calibrated, coinciding
with the central portion of the reference line. Furthermore, the inverse covariance graph is
sparse (38 edges). In the inverse covariance graph, there are more edges between subjects
with UC than between the healthy subjects, which could be explained by the existence
of subtypes of UC inducing correlations between subsets of subjects. The third plot of
Figure S2b displays a sparser inverse covariance graph, corresponding to a larger penalty
A = 0.5. There are three edges between twin pairs, and there are more edges between

subjects with UC than between those without UC.

B.1 Stability simulation

Table S1 shows the results from a simulation analogous to Table 2, demonstrating stability
across iterations of the procedure. Iteration 1 begins by group centering 1280 genes and
this number is halved in each successive iteration. We can see from the table that the gene
rankings generated by Algorithm 2 are robust to misspecifying the number of differentially
expressed genes. When the number of group centered genes is 160 or below (iterations 4
through 8), the commonly selected genes among the top 20 genes are stable. Furthermore,
the true positives remain stable as we decrease the amount of genes centered, while the false

positives decrease.



Table S1: Number of genes in common among genes ranked in the top 20 when different
numbers of genes are group centered. This simulation is analogous to Table 2. Note that the
maximum possible value for any entry of the table is 20; if entry (, 5) is 20, then iterations
1 and j selected the same top twenty genes. The first 10 genes have a difference of 1.5 and
the second 10 have a difference of 1. All remaining genes have a true mean difference of
zero. We use B as estimated from the UC data, and A is from an AR1(0.8) model. These
simulations have n = 20 individuals and 2000 genes and are averaged over 200 replications.
The last two rows display the average number of true and false positives among the genes
ranked in the top 20 of each iteration.

1 2 3 4 5 6 7 8
20.0 176 158 14.8 14.3 140 14.0 139
176 20.0 179 16.8 16.2 159 158 15.8
15.8 179 200 187 181 178 17.7 17.6
148 16.8 187 20.0 19.3 19.0 189 18.8
143 162 181 193 20.0 196 195 194
14.0 159 178 19.0 19.6 20.0 19.8 19.7
14.0 158 17.7 189 19,5 198 20.0 19.8
139 158 17.6 188 194 19.7 198 20.0
12.7 143 156 164 16.7 16.8 16.8 16.8

73 5.7 44 36 33 32 32 32
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C Preliminary results

In this section, we refresh notation and introduce propositions that are shared in the proofs

of the theorems. For convenience, we first restate some notation.

1,, O 5
D = e R™ (S1)
0 1,
Q= (D"B'D)" and Qp,, = (D" B, D)~ (S2)
A= B;,ln - B! (S3)
B(éfl) _ (DT§71D>71DT§71X e R2x™ (S4)

When D has the form (S1), the singular values are oyax(D) = \/Nmax and omin(D) = \/Mmin-
The condition number is £(D) = Tpax(D)/0min (D) = /Mratio Where np,iio = max(ng, ny)/ min(ny, ns).



We first state some convenient notation and bounds.

Tq = amax/amin and Ty 1= bmax/bmin;

1/@min(A) = [A7Hl2 < 1p(A) " l2/amin =
1/min(B) = [|1B7 |2 < 1p(B) ™ l2/bmin =

1/¢min(p(A)) = [lp(A)~ 1H2 Amax]||A” 1H2’
1/@min(p(B)) = [|p(B) ™ |l2 < bmax || B~ |l2

1

Omin®Pmin (P(A))

1

bminwmin (p(B)) ’

[All2 < amaxllp(A)ll2,  |1Bll2 < bmaxllp(B)]]2,

(A2 < |All2/amin, — and[[p(B)l2 <

The eigenvalues of the correlation matrices satisfy

0 < @min(p(A)) < 1< @max(p(A)) and 0 < pmin(p(B)) <1<

HBH2/bm1n

@maX(/)(B))-

(S11)

In the remainder of this section, we state preliminary results and highlight important in-

termediate steps that are used in the proofs of Theorems 1 and 3. First we state propositions

used in mean estimation for Theorems 1 and 3.

C.1 Propositions

We now state propositions used in the proofs of Lemmas S5 and S6. We defer the proof of

Proposition S1 to Section D.5.

Proposition S1. For Q as defined in (S2) and some design matriz D,

190l2 < | Bll2/0rin (D)

In the case that D is defined as in (S1), we have ||| < || Bll2/Tmin-

Furthermore,

)\min<B)

nmax

/\min<Q> =

We state the following perturbation bound.

(S12)



Theorem S2 (Golub & Van Loan, Theorem 2.3.4). If A is invertible and ||[A™'E|, < 1,
then A + E is invertible and

1B 1ATME _  IEILIATE

I(A+E)™ = A7, < < .
U= ATE], 1= AT LIE,

In Proposition S3, we provide auxiliary upper bounds that depend on ||Al|s, || B||2, x(D),
and oy (D). We defer the proof of Proposition S3 to the end of this section, for clarity of

presentation.
Proposition S3. Let A = B, — B™".

1 I BIEIAl2

do(A) = [[Qpm — Q|2 < o
o(A) = 18m = Ol < 555 7500y — | BILTATL o
nmax
51(2) = 2D All, < (DBl Alo/020(D) = Y= BlL AL (S14)
If [|(D"B~'D)*DTAD||; < 1, then
D) IBI3IAL
- Q) DA K( 21|12 12 S15
= [l I < Omin(D) 1/K2(D) — || B|2[|All2 o)
D Bl3IB~2llA
(8) = (@~ ) DB, < DL ITBIE el 1)

Tmin (D) 1/6%(D) = || Blla[l2[| All2

The following proposition is a corollary of Proposition S3.

Proposition S4. When D has the form (S1), and Q is as defined in (S2),

1 IB3IIA]-
0( ) ” ’ ”2 Nmin 1/nmtw_ HB||2HA”2
n""(l 10
51(8) = [2D7A, < Vi ), A,

\/ min
(@ — ) DA, < ¥ IBISIALS
7 Vmin Ynrasio = [ Bll2[|A]l

Let K be defined as in Theorem 1. We express the entrywise rates of convergence of the

sample correlation matrices f(B) and f(A), respectively, in terms of the following quantities:

log'?(m) |B|| [P log"?(mvn) |Blh
o = K— 1 1 d n= K . 1
a=Cy N Ll s — and 77 =Cp \/ﬁ e (S17)




D Proof of Theorem 1 and Corollary 2

D.1 Proof of Theorem 1

Let B, ,, € R™" denote a fixed positive definite matrix. Let D be as defined as in (4).
Define A, ,, = B;}n — B! and

Q= (D"B'D)™" and Qp,, = (D' B}, D). (S18)
Note that we can decompose the error for all j as
18 (Brs) = B5 ll2 < 185(B™) = B; ll2 + 18;(Bra) — Bi(B™)|l2 = T+ IL (519)

We will use the following lemmas, which are proved in subsections D.4 and D.3, to bound

these two terms on the right-hand side, respectively.

Lemma S5. Let £ denote the event

log(m)|| Bl2

Nmin

&= (BB = Bl < Sum}, with s = Cod'? (520)

Then P(E) =1 —2/m?.

Lemma S6. Let B, ,, € R"*" denote a fized matriz such that By, ,, > 0. Let X; € R" denote
the jth column of X, where X is a realization of model (2). Let E5 denote the event

& = {1Bi(Bi) = Bi(B e < tam |, with tom = Ol Aumlle  (S21)

for some absolute constant C. Then P(E3) =1 —2/m¢.
The proof of (18) follows from the union bound P(£,nE3) = 1— P (&) —P(E3) = 1—4/m<.

Next we prove (20). Let 7y, = Spm + tnm, as defined in (18). Let § = (1, —1) € R?. Then

s (Bok) = 7l = |67 (B (Bik) = 8| < 101aB3(BLL) = Brlle = V2055 (Bok) = B2,

where we used the Cauchy-Schwarz inequality. Hence if || @(B; L) = Bill2 < ram, it follows

8



that [9;(B, 1) —7;| < V2rym. The result holds by applying a union bound over the variables

7=1...,m. O

This completes the proof of Theorem 1.

D.2 Proof of Corollary 2 and Corollary 5

First note that by Proposition 5S4,

6T(D"B1D) 1 — 67 (D"BD) Y| = |7 ((DTB D) — (DTB D)) o)

< 03 |(DTB'D)"t — (DTB'D)™!

2
—9 H(DTéle)*l —(DTB D)

2

Bl ||A
Nmin
Note that by Proposition S1,
(B
|67Q0] = Aunin >. (S23)

Corollary 2 follows from (522) and (S23), which provide an upper bound on the numerator
and lower bound on the denominator, respectively.

Corollary 5 holds because by (28) of Theorem 4,

) B2 (CAay/IB g v 1 B
‘5T (@-0) 5] < 218l <208y |Bpor v 1 (S24)

Tmin bmin@?nin (p(B)) Tmin

D.3 Proof of Lemma S5

First, we show that

122+ @ K\ Aog(m) |32 /e < (525)



with s, as defined in (19). Because ||QY?||r < v/2||QY2|z, it follows that

192+ a2 gl 918/ Ve < (V2 + 2K loglm)/ve) 1215?

1 B
< 03d1/2 log(m)||Q||;/2<C'3d1/2 og(m)|| ||27

Nmin

where the last step follows from Proposition S1. Next, we express @(B_l) — B} as
Bi(B™) — B = %y, where ;= Q72 (B(B7) - Br).

By the bound (S25), event £ implies {[|QY2n;]ls > [|QY2||F + dY2K24/log(m) ||y /+/c}.

Therefore,

PImilz > snm) < P (10012 > 192 + a2 K2 log(m) 2113/ ve)

< P ([0 2l = 1972 )16| > a2 K2 log(m) 215 /ve)
2

—c (2K flog(m)|| 23/ ve)

K23

~dlog(m)|2]]»
2“"( SZEE

< 2exp

) = 2exp (—dlog(m)) = 2/m".

D.4 Proof of Lemma S6

The proof will proceed in the following steps. First, we show that @-(B; 1y — @-(B‘l) can

be expressed as V Z;, where
V = (QmD"B,,, —QD"B™") B'* e R*™
is a fixed matrix, and Z; = B~Y2X;. Second, we show that

IVl + d? K og"? (m) [ V]la/v/e < Crgal*l| Al

min

10



Third, we use the first and second steps combined with the Hanson-Wright inequality to
show that with high probability, ||V Z; ||z is at most Cn_1"*||Alls.

For the first step of the proof, let Z; = B~Y/2X;, and note that Bj(Brj}W)—Bj(B_l) =VZ,
where V € R?*™ is a fixed matrix, because

Bi(Byny) — Bi(B™") = [(D"B,,,D)'D" B, — QD" B'| BY*(B~'?X;)

= [(D"B,,;,D)'D"B,}, — QD" B'| BY*Z;.

For the second step of the proof, we show that ||V|z + dV2K2log"?*(m)||V|2/+/c <

CN’n;jr/leAHg First we obtain an upper bound on V. By the triangle inequality,

1@ DB, ), = QD" B |y = || QDT B, — QDT BT,

< 1@~ 9 DB~ B, + (@~ ) DB, + [2D7A,
= 5(A) + 03(A) + 61(A).

We bound each of the three terms using Proposition S3,

ratio B||2||A||2

52(A) = || — ) DPA, < Viretio B2

2(8) = ([ = D) DEAN, <~ 2 B TAT,
_ Vhratio || B3I B2l All2

55(8) = [[( Qe — ) DTBY|, < Y oee 1B

3(A) = [|(Qm — Q) I . Utinasio — 1 Bl2ll2 1Al
Nratio

0n(a) = [[@D7All, < o= Bl AL

Applying the above bounds yields

A/ Nratio Bl|?||A Bl|?||B~!
||V||2 < t ||A||2||B||§/2< - H Hz” H2 4 - H HQH ”2 +||B||2)
/Momin 1/k2(D) — || Bll2[|Alla — 1/62(D) — [|Bll2[l2[|All2
< Cngil|All2:

min

11



For the third step of the proof, we use the Hanson-Wright inequality to bound ||V Z;||,:

P (IVZil2 > CrilIAll) < P (IVZille > VIl + a2 K2 log"2(m) |V |12/vc)

min

P (IVZilla = [VIir > a2 K log"(m) [V |l2/ve)

< P(IIVZlo— IVIir| > &K log"(m) [V}o/ve)
2
¢ (2K 108" (m) |V 12/ V) o
< 2exp | — G (Hanson-Wright inequality)

2exp (—dlog(m)) = 2/m?.

D.5 Proof of Proposition S1

Let D = UVVT be the singular value decomposition of D, with U € R™*2, ¥ ¢ R?*2, and
V e R22. Then (DTB-'D)™! = (VWUTB'UWYT)"' = VU-Y(UTBU) "0V, Thus

(DTB™'D)~ Y|, = [ 1 (UTB'U) U, (because V' is square, orthonormal)
< e HEIUTBTU) Y, (sub-multiplicative property)
= Oaax (TOITTBTU) 2

max

= [T BU) " l2/05n(®) = [(UTBTU) " l2/03n (D),

min min

where i (D) = omin(V), because V is the diagonal matrix of singular values of D. Next,

note that ||(UTB7U) ™y = 1/¢omm(UT B71U) and

euin(UTB~U) = ;g%gnTUTB‘lUn/nTn-

12



We perform the change of variables v = Un, under which nTn = ATUTU~ = 4T (that is, U

preserves the length of 7 because the columns of U are orthonormal). Hence

emin(U"B™'U) = min 4" B7ly/yly
~yecol(U),y#0
> miny" B~'y/y"y
v#0

= uin(B™") = 1/||B|l2.
We have shown that 1/@m, (U B~1U) < || Bl|2, which implies that
1T B=T) 2 < [|B]l2.

Therefore

(D B7D) " 2 < [|1Bll2/05in (D).

min

In the special case of the two-group design matrix, 02, (D) = nNuyin, SO
I(DTBID) "2 < || Bll2/Mumin-
The proof of (S12) is as follows:
1 1 1 >\min B )\min B
Anin(Q) = S0 = X —DTBD) © DI T (2): 5)
max (271) Aumax ( ) Dl Amax(B7) - [ID]l3 Mmax
O

D.6 Proof of Proposition S3

By the definitions of Q,,, in (S2) and A = B, — B, we have by Theorem S2

HQn,m — Q]2 = H(DTBn,mDr1 — Q2
_ H (D"B;1,D—D'B™'D + DTB7'D)™" —

2

~ ("B "D+ DTAD) T - @
DT AD|la |23

1= Q2| DTAD][

_ (02 (D)/0min (D)) | BIIIAll2)
h L=r2(D)IBl2llAll2

2

(by Theorem S2)

13



In the last step we apply Proposition S1. Thus

1 wD)BI3IAl:
Tain(D) 1= k(D) Bll2[| All2

1 IBIIZIAl2
Trin(D) (1/63(D)) = || Bl All2

min

HQn,m - QH2 <

We prove (S14) using the submultiplicative property of the operator norm and Proposition

S1:

1Bl2
Timin (D)

min

r(D)

m||BH2HA||2-

loprall, < 12k (D). -
We prove (S15), as follows:

(@0 = ) DA, < Q0 = 2l [ D], 1A

< | ! . [ Bllz1 A1l omax(D)|All2 (by Proposition S3)
Oain (D) (1/K%(D)) — || Bl|2[|All2
k(D) IBII3IA[3

~ gwin(D) (1/s2(D)) = [ BILIIA[L

The proof of (516) is analogous. O

E Proof of Theorem 3

Note that the proof in the current Section follows exactly the same steps as the proof of
Theorems 3.1 and 3.2 in Zhou (2014a). Theorem 3 Part II is proved in Section E.2. To
prove Theorem 3 Part I, we first state Lemma S7, which establishes rates of convergence
for estimating A=! and B! in the operator and the Frobenius norm. We then state the
auxiliary Lemma S8, which is identical to that for Theorems 11.1 and 11.2 of Zhou (2014a),
except that we plug in & and 7 as defined in (S17). Putting these results together proves

Theorem 3, Part I. We prove these auxiliary results in Section F.

14



Let A, denote the event

. (e; = pi)" XX (ej — pj) ~
Vi, j — —pij(B)| < a (526)
tr(A*), /b3 /
X - P)X;
Vi, g L I — pii(A)] <7, S27

with Xy (B) and Xy(A) denoting the events defined by equations (S26) and (S27), respectively.
Let @ and 7] be as defined in (S17). On event Xy(A), for all j, f‘jj(A) = p;;(A) =1 and

N 277
Tin(A) — pin(4)] < 2
Jnax [Tin(A) = pin(A)l < T—% (528)
On event Xy(B), for all 7, fjj(B) = p;j;j(B) =1 and
Bu(B) - palB)| < (S29)
sy IR T PREINS TR

Lemma S7. Suppose (A1) and (A2) hold. Let Wi and Wy be as defined in (10). Let ﬁp

and Ep be as defined in (8a) and (8b). For some absolute constants 18 < C,C" < 36, the

following events hold with probability at least 1 — 2/(n v m)?,

Saz = [WiA, W,/ tr(B) — Ally < Clmari(p(A))*Apy/|Ao,0p v 1 (S30)
Op.a = |[WaB,Wa/tr(A) = Blla < C'buaxti(p(B))*Aan/ | B oo v 1 (S31)
Sap = WA, W1/ t2(B) — Allp < Camai(p(A)*Apy/|A ooy v m  (S32)
0p.r = |WaB,Wa/ tr(A) — Bllr < C'buaxk(p(B))*Aay/[B Yoy v i (S33)

15



and for some 10 < C,C" < 19,

AfJATT 1
-1 B Afl _ C)\B ‘ lo’oﬁv

2 Gminhnin(P(A))

(W4)

(5§,2 = ||tr(A4) <W2§pW2> B — Bl <« C/)\A\/W
(W4m)
(W5,%.)

Oap = |tr(B)

> bunPhin(p(B))
-t 1 < CAp/| A o,0p v M0
F N AminPimin (P(A))
_1—B*1 _ C'Xan/| B~ 0,08 v n

F b bmiHQDEnin(P(B))

Oap = |[tr(B)

opr = |[tr(A)

Lemma S8 follows from Theorems 11.1 and 11.2 of Zhou (2014a,b), where we now plug

in & and 7 as defined in (S17). For completeness, we provide a sketch in Section F.2.
Lemma S8. Suppose (A1) and (A2) hold. For ey,e5 € (0,1), let
)\Az?]/él, )\3286/82,

for &, 17 as defined in (S17), and suppose Aa, \p < 1. Then on event Xy, for 18 < C,C" < 36,

— Aa A A
|G B~ A@Bla < 2222 A Bl + OAptne | Bla(p(A)y 14 o v 1
+C" N abmax||All25(p(B)*A /| B oo v 1
+2 [ C' M abmax i (p(B))?A/ 1B 0,08 v 1] lC/\BamaXﬁ(p(A))Qq [A= 0,08 v 1] :

and for 10 < C,C" < 19,

1 Aa A A A o.op v 1
A@B AT @B o < PAL B AT B Yl + CAgl|B! -
|A® ® 2 I 2] |2 + CAg|| HQOLminSO?nm(P(A))
Ly VB Toegv 13 [A oop v 1 B oog v 1
+ O A4 A7 W+— CA ’ C'Aa ’ 3
Al =B 3 | e (p(A)) bin®inin (P(B))

16



For 18 < C,C" < 36,

— Aa A )\
IA® B — A® Bllp < “2-2E Al Bllp + CApamax|| Bl pr(p(A))*4 /| A 0,05 v M
+C' A Abmax || Al 7 (p( 4/|B Yo.of V
+2 [C/AAbmaX/i(p(B)yq /1B~ 0,0 v n] [C’)\Bamax/ﬁ(p(A))24 A= Yoo v m] ;

and for 10 < C,C" < 19,

TR Aa A A VA opvm
IABB " — A @B < 20 A B 4+ gl B XA oo Y 12

3 amingognin (p(A))
1y VB Hoegvin T VA o o v A |B™ oo v 1
+ C' A4l A7 | ’ —[CA : '\ ’
A 0B T 5 | a0 A) | | M b Tan 0B))
E.1 Proof of Theorem 3, Part I
We state additional helpful bounds:
(amin A% (pmin( )) HAHF = (ng ) \/EHA”% <834>
=1
(bmin Vv mein(B)) ’BH (Z SD ) \/ﬁHBH% <S35)
i=1
1
= At At
Vitfams = (v s ) Vi< A7 e < VA (830
and
Ve = (v —— ) v/ < 1B | < v/l B (537)
* bmax Spmax(B>

Proof of Theorem 3, Part I. We plug in bounds as in (S9) and (S10) into Lemma
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S8 to obtain under (A1) and (A2),

)A/®\B — A®BH < [|Al|2||Bl|20, where
2

=5 iw((;((f)))) o/ 14 oo v 1.+ %“m
Cran(p(A)) | /77 rinloB) ) B gu v
i lmABW] l min(p(B)) AAW}

Al 1 B o 1
_ Mg +log"?(m v n) (\/' oo v + \/' oo v ) +o(1).
2 m n

For the inverse, we plug in bounds as in (S7) and (S8) into Lemma S8 to obtain under (A1)
and (A2), [A@B - A ®B*1H < Aol B~ [lo8", where
2

5/ _ )\A A )\B n CTQ)\BQ/ |A_1|()70ﬁ v 1 n C/’I“b)\A«/ |B_1|070ﬂ vl

3 Pmin (P(A)) Pmin(p(B))
§ C?"a)\B«/ ’A71|07Off v 1 C,Tb)\A«/ |Bil‘0’0ﬁ‘ v 1
2 @mln(p(A)) @mln(p(B))

Aa A A A Yoog v 1 B oo v 1
— JANAB +log1/2(mvn) (\/‘ o0 v +\/| o1 v ) + o(1).
3 m n

The bounds in the Frobenius norm are proved in a similar manner; see Zhou (2014a) to

finish. O

E.2 Proof of Theorem 3, Part 11

Let B! = I//[\/Qépl//[\/g. Let A = B~1— B~ Let &(B) denote the event given by equations
(S34) and (S34), which we know has probability at least 1 — 2/(n v m)? from Lemma S7,

and define the event

&= (1B (B™) = Bl < sum + ton | (538)

where s, ,, is as defined in (19) and

ratio Bil o 1
o= C/\A\/n tio (1B loor v 1) (S39)

Nmin
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Under &(B), we see that

< C/AA |B_1|07Oﬂ‘ v 1
bmm(p?mn(p(B))

= o(1). (S540)
Using Proposition S1 and the fact that ||D]|2 = \/Timax, We get that
IQDTAD)|2 < trasio| Bll2| Al (S41)

From (S40) we know that ||A||2 < 1/(Nyatio|| B||2), which we can plug into (S41) to show that
IQDTAD||, < 1. This implies that Cn,_2[|All, < tr,m- Therefore, we can apply Theorem 1

to get that the conditional probability of & given & (B) is at least 1 —4/(n v m)>?.
We can then bound the unconditional probability,

P(&5) < P(&|&(B)) P (&(B)) + P (&(B)°)
< P& &(B)) + P (&(B))
4 N 2

N

(nvm)?  (nvm)?

F More proofs for Theorem 3

The proof of Lemma S7 appears in Section F.1. The proofs of auxiliary lemmas appear in

Section F.2.

F.1 Proof of Lemma S7

In order to prove Lemma S7, we need Theorem S9, which shows explicit non-asymptotic
convergence rates in the Frobenius norm for estimating p(A), p(B), and their inverses. The-
orem S9 follows from the standard proof; see Rothman et al. (2008); Zhou et al. (2011) We

also need Proposition S11 and Lemma S10, which are stated below and proved in Section F.2.

Theorem S9. Suppose that (A2) holds. Let ﬁp and ép be the unique minimizers defined by
(8a) and (8b) with sample correlation matrices f‘(A) and f‘(B) as their input.
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Suppose that event Xy holds, with

M |A o g v 1 =0(1) and a&4/|B7 5 v 1=0(1).

Set for some 0 <e€,e <1, A\g=a/e and Asy = 1)/e. (542)

Then on event Xy, we have for 9 < C' < 18

|4, = ()|, < |4, = p(a)|| , < Crlp(A)2rzy/IA 5 v 1,
1B, = 08|, < | B, = p(B)|| . < Crlp(BY Aar/IB oo v 1.

and

C/\B |A—1|0’0ﬁv 1
< )
C)\A |B_1‘Oojj‘v 1
< 5 : :
F 290m1n(p(B>>

(S43)

(S44)

We now state an auxiliary result, Lemma S10, where we prove a bound on the error in the
diagonal entries of the covariance matrices, and on their reciprocals. The following Lemma

provides bounds analogous to those in Claim 15.1 Zhou (2014a,b).

Lemma S10. Let Wy and W be as defined in (10). Let Wy = +/tr(B) diag(A)Y? and W, =

\/tr(A) diag(B)'Y2. Suppose event Xy holds, as defined in (S26), (S27). Forn' := \/% <2

and o/ 1= == < )‘TA,
HWl —Wh|| < T/t (B)y/Gmax, HW;l ~ Wi <5 T /et (B)/amm,:
2 2 =/
‘ Ws — Wa| < @v/or (A)v/buans and HW; - Wil|| < =/ () b
2 2 —

Proposition S11. (Zhou, 2014a). Let W and W be diagonal positive definite matrices. Let
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U and U be symmetric positive definite matrices. Then

’W@W—W\IJW < (|| -wl| +1wi) @ - v
2 2
W —w 2( W-w 2+2) 9]l
o~ A~ o~ 21~
‘W\IJW—W@W‘ <( W-w +||W||2> U-w
F 2 F
W -w 2( W W 2+2> 19| .

Proof of Lemma S7. Assume that event & holds. The proof follows exactly that
of Lemma 15.3 in Zhou (2014a,b), in view of Theorem S9, Lemma S10 and Proposition 15.2

from Zhou (2014a,b), which is restated immediately above in Proposition S11. [

It remains to prove Lemma S10.

Proof of Lemma S10. Suppose that event Xy holds. Then

VXTI - P)X;

1< (1-vima) V (Viea-1) <i

max
1=1,....m Qg tr(B)
Thus for all 7,
1 (077} tI‘(B) 1

< < ,
VI+T VXTI -P)X: 1-17

wt(B) | _(1-y/1-7 \/ Viti-1\_ i
VXTI = P)X; S\ WV1-9 N A B
O

F.2 Proof of Lemma S8

In order to prove Lemma S8, we state Lemma S12, Lemma S13, and Proposition S14. Let

|-|| denote a matrix norm such that |A® B|| = ||A||||B||. Let

A= W, AW, @ WyoB, W/ tr(A) tr(B) — A® B, (S45)
o~ o~ o~ \ 1 o~ o~ o~ 1
A’ = tr(A) tr(B) (WlApI/Vl) ® (WQBpWQ) A @B (946)
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Lemma S12 is identical to Lemma 15.5 of Zhou (2014a), except that we now plug in quantities
& and 7] as defined in (S17). Likewise, Proposition S14 is analogous to (20) in Theorem 4.1
of Zhou (2014a), except that we now use the centered data matrix (I — )X, together with

the rates a, 1].

Lemma S12. Let AQ B be as in (11). Then for ¥ = A® B,

— 1 - N _ _ - - ,

|A@B " — x| < @AmIATINB T + (1 + & A A (347)
— A A A A

|A8B - x| < 2222 1ANBI + 0+ Z22E)A)L (348)

Lemma S13 is a helpful bound on the difference of Kronecker products.

Lemma S13. (Zhou, 2014a). For matrices Ay and By, let Ay := A;—A and Ap := B1—B.
Then
A1 ® Br — A® Bl < [[A4lll[BI| + [[As[[IAll + [Aall[[As]-

Proposition S14. Under the event Xy, as defined in as defined in (S26), (S27),
I(I — Po) X7 — tr(A)tr(B)| < (@ A 7)tr(A)tr(B).

Proof of Lemma S8. Assume that event A as defined in (S26), (S27) holds. The
proof follows exactly the steps in Theorems 11.1 and 11.2 in Supplementary Material of Zhou
(2014a,b). O

Proof of Lemma S12. By the triangle inequality and the sub-multiplicativity of the
norm ||-||, with A and A" as defined in (S45) and (S46),

w (o) | (W27 © (075,750 ) | < 4 s+ 18] so)
|(WA,7) @ (WaB,1) /() x(B)| < JANIBI + Al (550)

Following proof of Lemma 15.5 Zhou (2014a,b), we have by definition of A’, and Proposition
S14, and (S49),

— 1 ~ ~ — — ! !
| 7B a7 @B < @am) (AT BT+ AT + AT
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AAAAB

By Proposition S14, we have for A4 = 3a, Ap = 31], where a A 1] < 24522,

‘ 1 ': I = P)X I3 — tr(4) tr(B)
(I = P)X |5 tr(A)tx(B) (I — )X |3 tr(A) tr(B)
anm < anmn
ST=r) X”F tr(A) tr(B)(L — & A 1)

anm <)\A/\)\B

< — < S51
‘nf P2X||F ‘ —ann 2 (851)

By the triangle inequality, the definition of A in (S45), and (S50) and (S51),

)\A+)\B Aa+ A

fisw-ass] 2

[ATBI] + (1 + A

See the proof of Lemma 15.5 Zhou (2014a,b). O

Proof of Proposition S14. Suppose event Xy holds. Note that
E[|(I = P)X|[7] = tr (I = P)E[XX"](I = P)) = tr(A)tx(B)
Decomposing by columns, we obtain the inequality,

II(1 = P2) X[ — tr(A Z (1 = P) X5 — aytr(B)

m

Z X/ (I - Py)X; — a;tx(B Z njja;tr(B) < ntr(A)tr(B).

Decomposing by rows, we obtain the inequality,

(1 = P2) X[ — tr(A)tr(B)| = ZH — i) X3 — bistr(A)

i=1 i=1

Therefore |||(I — P) X ||% — tr(A)tr(B)] < (& A ))tr(A)tr(B). O
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G Entrywise convergence of sample correlations

In this section we prove entrywise rates of convergence for the sample correlation matrices in
Theorem S15. The theorem applies to the Kronecker product model, Cov(vec(X)) = A*®B*,
where for identifiability we define the sample covariance matrices as

m tr(A)

A :mA and B* = m

B,

with the scaling chosen so that A* has trace m. Let p(A) € R™*™ and p(B) € R™*" denote the
correlation matrices corresponding to covariance matrices A* and B*, respectively. Assume
that that the mean of X satisfies the two-group model (4). Let P, be as defined in (13).
The matrix I — P; is a projection matrix of rank n — 2 that performs within-group centering.

The sample covariance matrices are defined as

1 m

S(B*) = — DI = P)X;X] (I - Py, (S52)
S(A*) = XT(I — Py)X /n, (S53)

where S(B*) has null space of dimension two.

Theorem S15. Consider a data generating random matriz as in (2). Let C' be some absolute
constant. Let & and 1] be as defined in (S17). Let m v n = 2. Then with probability at least
1— —3— for&,ij <1/3, and T'(A) and I'(B) as in (7),

(mvn)2’

~ ~

. o N
Vi + 7, + |pi;(B)] < 34,

Dy(B) = piy(B)| < o=

~

Vi +J,

By4) = py(A)] < 705 + I (4)

We state three results used in the proof of Theorem S15: Proposition S16 provides
an entrywise rate of convergence of S(B*), Proposition S17 provides an entrywise rate of

convergence of S(A*), and Lemma S18 states that these entrywise rates imply Xy. Let

~

B = (] — PQ)B*(I - PQ) = COV((I - PQ)Xj>7 <S54)
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where X is the jth column of X. Let E,-j denote the (i, j)th entry of B.

Proposition S16. Let d > 2. Then with probability at least 1 — 2/m?2,

Vi, j |Sii(B*) = b| < djs (S55)
with s
1 A* I~ 3||B*

\/m \/m Nmin
Proposition S17. Let d > 2. Then with probability at least 1 — 2/n%"2,

VZ,j ‘SZJ<A*) — CL:} tr (B*> /n‘ > ¢A,ij7 <S57)
with

+d?Klog"(n v m)(1/n)\/az? + ata®||Bl|p.  (S58)

5]

baij = (aj;/n) ’tr <§> — tr (B*)

Lemma S18. Suppose that (A2) holds and that m v n = 2. The event (S57) defined in
Proposition S17 implies that Xo(A) holds. Similarly, the event (Sb5) defined in Proposi-
tion S16 implies Xo(B). Hence P (Xp) = 1 —

(mvn)2-

Proposition S16 is proved in section G.1. Proposition S17 is proved in section G.2.
Lemma S18 is proved in section G.3. Note that Lemma S18 follows from Propositions S16
and S17. We now prove Theorem S15, which follows from Lemma S18.

Proof of Theorem S15. Let ¢; denote the ith column of I — Py, so that ¢f X X7g¢;
is the (i,7)th entry of (I — P,)XXT(I — P,). Under X,(B), the sample correlation I'(B)
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satisfies the following bound:

- LXXG )

VaE XX gy /qF X XTq;

_ gF X XTq;/ (tr(A*)\/DEDE)) (B)
VA XXTq] (A [af XXTqy/ (b x(A7)

¢ XXTq;/ (tr(A*)\/05D%;) — pij(B)
VAT X XTq;] (bitr(A¥) \/ TXXTq;/ (b tr(A*))

N

sz
\/qTXXTqZ bitr(A*)) \/qTXXqu/ b*tr(A*))
o
1_
< 3aq,

— pij(B)

1
< ~ 1 |pij —=—1
=+ pi(B >|]1_a ]

where the first inequality holds by Xy(B) and the second inequality holds for & < 1/3.

Similarly, under Xy(A) we obtain an entrywise bound on the sample correlation f‘(A):

Ly(A) - pij(A)’

N

XI(I - P)X;
VAT = P)Xiy | XTI = P)X;

XI(1 = P)X;/ (6x(B") oz, )

— pij(A)

— pi(A
VXTI = B) X,/ (artr(BY) \/XT I - P)X;/ (a2,tx(B*)) pld)
XI(1 = P X,/ (6:(B)y/akaly) = pig(A)
VXTI = P) X/ (aktr(B*)) \/XT (I — Py) X/ (at,tx(B"))
Pij (A) — pis (A)

VXTI~ B)Xy/ (a (BN X (L= P)X,/ (a3,tr(B*))

7 A);
1-7

e

where the first inequality holds by Xy(A), and the second inequality holds for 77 < 1/3.
By Lemma S18, the event Xy = Xy(B) n Xp(A) holds with probability at least 1 —3/(n v

m)?, which completes the proof. &
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G.1 Proof of Proposition S16

We first present Lemma S19 and Lemma S20, which decompose the rate of convergence into
a bias term and a variance term, respectively. We then combine the rates for the bias and

variance terms to prove the entrywise rate of convergence for the sample covariance. Define

B(B*) := E[S(B*)] — B* and (S59)
o(B*) := S(B*) — E[S(B*)]. (S60)

We state maximum entrywise bounds on B(B*) and ¢(B*) in Lemma S19 and Lemma S20,

respectively. Proofs for these lemmas are provided in Section G.4 and G.5 respectively.

Lemma S19. For B(B*) as defined in (S59),

3B

[1B(B*)|lmax < (S61)

min

Lemma S20. Let o(B*) be as defined in (S60). With probability at least 1 — 2/m?,

* * * A T T
’Uij(B )| = }Sl](B )— sz‘ < Clogm(m) JC|I'(14|L}; bnb]]

We now prove the entrywise rate of convergence for the sample covariance S(B*).

Proof of Proposition S16. By the triangle inequality,

|55 (B*) — | < [Si;(B*) — E[Si;(B*)]| + |E[Si;(B*)] - bjj|

= [Bij(B*)| + |oi;(B¥)]|

< 9B.ij,

where the last step follows from Lemmas S19 and S20. O

Remark. Note that the first term of (S56) is of order log"/?(m)/y/m, and the second

term is of order ||B*||1/Nmin-
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G.2 Proof of Proposition S17

We express the (7, j)th entry of S(A*) as a quadratic form in order to apply the Hanson-
Wright inequality to obtain an entrywise large deviation bound. Without loss of generality,

let i =1, j = 2. The (1,2) entry of S(A*) can be expressed as a quadratic form, as follows,

S1o(A*) = XTI — P) Xy /n

= T T 0 ([_PZ) X1 N

- [Xl XQ] _(I—PQ) 0 X, /
X1

~umfx w] (| feu-ra )|

We decorrelate the random vector (X, X5) € R?*" so that we can apply the Hanson-Wright

inequality. The covariance matrix used for decorrelation is

* *k
X1 aip Qg

Cov = ® B* =: Af; » ® B*,
¥ P {1,2}
2 21 Q2o
with

* *

x app Qg c R2%2

{1,2} & ot ‘
21 Q22

Decorrelating the quadratic form yields
Sia(A*) = Z2"0Z,

where Z € R?", with E[Z] = 0 and Cov(Z) = I5,x2n, and
. 01 .
@ =(1/2m) | (Aqa)”” | NE f12)"? | ® B2 — P) B2, (562)

To apply the Hanson-Wright inequality, we first find the trace and Frobenius norm of ®.
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For the trace, note that
0 1 0 1
tr | ( ?1,2})1/2 10 ( ?1,2})1/2 =tr 0 >{k1,2} = 2aj,. (S63)

For the Frobenius norm, note that

2 —
0 1 01
( * )1/2 ( * )1/2 = tr ® ®
{1,2} (1,2} L0 (1,2} L0 (1,2}
F -
. ais + aj,a3, 2a7,a59
2a75a3, aiy + af a3,
— 273 + 2a},05,,
Therefore the trace of ® is
tr (@) = af, tr (é) /n, (S64)
and the Frobenius norm of ® is
@]l = (1/n)4/ a5 + af a3, Bl r. (S65)

Applying the Hanson-Wright inequality yields

P (|S12(A%) — ajy tr (BY) /n| > ¢a12)
P (‘512(,4*) ~aytr <B> ‘ (a%,/n) ‘tr (é) —tr(B¥)
—p (‘512@4) —atytr (B) /n‘ > 2K log"?(n v m)||(I>||F>

> ¢A,12>

< 2/(nvm)l
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By the union bound,

P (i, j|Si(A*) — aij tr (B¥) /n| < ¢4, )
> 1= 3 P(IS5(A%) = ay tr (B*) /ol > 6 )
i=1j=1
> 1-2m?/(nvm)=2/(nvm)2

G.3 Proof of Lemma S18

For the event (S55) from Proposition S16,

¥ * 2 IOgl/z( ) T T x 7
|55 (B*) = b| < dpiy = K d—\/ﬁ Canf bibjj + |bi; — bij
dividing by /b};b7; yields
X X" log"*(m) [buby; %~ bi

< K?dC,

— pij(B) (S66)

* % + * Lk
N bmb” A /bubﬂ

1B
bij = by; l1+o< nl :

so the right-hand side of (S66) is less than or equal to &. Hence event (S55) implies Xy(B).
Therefore, we know that P(Xy(B)) > 1 —2/m®2.

tr(A*),/bj;b3;

By Lemma S19,

Similarly, event (S57) in Proposition S17:

\Sl](A*) — a;‘j tr (B*) /n’ < ¢A,ij
— (az,/n) ‘tr (E) ~tr (B)‘ +d"?K log"?(n v m)(1/n)y/ax? + atat, | B s,

% ]]
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implies that

XT(1 - P)X,

tr(B*)\/a};az

tr (B) — tr (B*) -
! 2<B*> 2 og 2n v )y oA+ 1L

— pjt(4)

< |pjt

= ’pjt

ST,

which is the event X;(A). Therefore, we get that P(Xy(A)) = 1 —2/(n v m)<.

or (B) — o (5) 1Ble
1/2 F ‘ 2 og’*(n v m)
(A)] tr(B*) +d KOBHB*HF pit(A)? +1 0

We can obtain the P(X)) by using a union bound put together P(Xy(B)) and P(Xy(A)),

completing the proof. O

G.4 Proof of Lemma S19

Recall that B = (I — Py)B*(I — P,). The matrix B — B* can be expressed as

B— B*=(I — P,)B*(I — P,) — B* = —P,B* — B*P, + P,B*P.

By the triangle inequality, HE — B¥|lmax < ||P2B*||max + || B*Pallmax + || P2B* Ps|max- We

bound each term on the right-hand side.

First we bound ||PyB*||max and ||B*Py||max. Let p; denote the ith column of P,. The

(7, 7)th entry satisfies

i 051 < 1B*pilleo < 1B lcllpilloe = 1B* 1 llpilloe = [1B*[l1/Pmin;

SO || PoB*||max < |[B*||1/Mmin- Because P, and B* are symmetric, || PyB*||max = ||B* Pal|max-

We now bound ||PoB* Py ||max. Let BY? denote the symmetric square root of B*. We can

express p! B*p; as an inner product (BY?p;)T(BY?p;), so
1/2

£ * 1 2 £
(PyB*Py)5| = [(BY2p)"(BY?p;)| < (07 B*pi)"? (nF B*p;)

< lpill2llpsll2 | Bllz < (| B*||2/Tmin,
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where (S67) follows from the Cauchy Schwarz inequality, and (S68) holds because

1y ifie{l,... n}
1/\/ng ifie{n +1,...,n}

pill2 =

G.5 Proof of Lemma S20

Let B'Y? denote the symmetric square root of B*. Let Z; = (a;»‘jB*)*l/QXj. We express
Si;(B*) as a quadratic form in order to use the Hanson-Wright inequality to prove a large

deviation bound. That is, we show that S;;(B*) = vec(Z)T®Y vec(Z), with
®7 = (1/m)A*® BY(¢; — p;)(ei —pi) B2, (569)

We express S;;(B*) as a quadratic form, as follows:

. 1 & 1 &
Si(B*) = EZ( —p) X Xy (e = EZ — i) X Xy, (e — pj)]
k=1 k=1
1 m
= EZXICT(QJ pj) (€ — i)' Xi
k=1
1
= —vec(X)" (Lnxm ® (e; — pj)(es — pi)") vee(X)
= vec(Z)T®Y vec(Z)
where
tr(®9) = tr(BY?(ej — py)es — pi) " BY?) = (e; — pi)T B*(e; — p;) = bij, (S70)
. 1,
|2 = EHA 17l BY2(e; — pj)(ei — pi)" BY?|| (571)

1 " " 1/2 " 12 _ * T T
= EHA Ir ((e; — pi)" B*(e; — p1)) / ((ej — pj)" B*(ej — pj)) / ||A |74/ biiby
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Therefore, we get that

P (Vi, jls;(B*) %y
- P (W, j [vec(2)T® vee(Z) — tr (97)| < K2dlog"?(m)| @ |\F/c')

dlog1/2<m>||<1>ij||F/c')>

< K2dlog"(m) |87 /c')

> 1-2m%exp | —cmin | d*log(m)/c?, =
1712

> 1-2/m%2

If the event {Vl,j Sij (B*) — Zij

< K?dlog"?(m)||®¥ ||F/c'} holds, it follows that

|5 (B*) — b%| < [Sij(B*) — big| + b5 — byj| < K2dlog"*(m)||®7]|p/c + |bij — by

The Lemma is thus proved. O
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H Proof of Theorem 4

H.1 Notation

Notation Meaning
Mean structure
e R™ Vector of grand means of each gene
v eR™ Vector of mean differences for each gene
T
V= % [%1% %2152] e R” Inner product with v computes global mean

Outcome of model selection step

JOC {1,2,...,m}
Ji<{1,2,...,m}

Indices selected for group centering

Indices selected for global centering

Sizes of gene subsets

mo = |Jo| Number of group centered genes
my = |Ji| Number of globally centered genes
Projection matrices

P1 = 1TLVT
P, (as in (S81))

Projection matrix that performs global centering

Projection matrix that performs group centering

Sample covariance matrices

S(B, Jo, J1) = ™-5,(B) + 255(B)
S1(B,J1) = =3, (I = PO)X; X T (I

(- P)
Sa(B, Jo) = mLOZjeJO([ - PQ)XJ‘XJT([ -

P)

Model selection sample covariance matrix
Globally centered sample covariance matrix

Group centered sample covariance matrix

Decomposition of S(B, Jy, Ji)

Sy = 8(B, Jo, J1) —E[S(B, Jo, J1)]
Su=L(I - P)My,ME(I - P,)
S = L(I— P)Mye"(I - Py)

Sty = m I — P2)€J0€§0([ — P)+

m~ (I — Py)ejel (I —Py)

Bias
False negatives (deterministic)
False negatives (random)

True negatives
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H.2 Two-Group Model and Centering

We begin by introducing some relevant notation for the two-group model and centering.

Define the group membership vector 6,, € R" as
T r]" n
b= 17 17| eRe (S72)
In the two-group model, the mean matrix M can be expressed as
M = 1"+ (1/2)0,77, (573)

where p € R™ is a vector of grand means, and v € R™ is the vector of mean differences.

According to (S73), the (7, 7)th entry of M can be expressed as

w; +v;/2 if sample 7 is in group one
mij = ! ! (874)

pj —v;/2 if sample ¢ is in group two.

Define the vector v € R" as

1 11T 11T g R
v=5|sin Liz] ern, (875)

ny N1 no

so that for the jth column of the data matrix X; € R",

k=n1+1

AU (R S S DV SN o B
E(v'X;) = SE nl;X]HnQ D X | = (S76)
Note that
v, = (1/2)1+1) =1, and 76, =(1/2)(1—-1)=0. (S77)

Next we define a projection matrix that performs global centering. Define the non-orthogonal
projection matrix

P, = 1,07 e R™", (S78)
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Applying the projection matrix to the mean matrix yields
PM = 1,07 (Lo + (1/2)6,77) = Lap” + (1/2) (0" 6,)107" = Lop”, (S79)

with residuals

(I-P)M=M-PM=M-—1,u" =(1/2)5,~7". (S80)
Define
nfllnl 171’:1
Py = : (S81)
n511n2]‘£2

Note that P1, = 1,, and %6, = §,, so
PoM = Pyl + (1/2) Pody" = 1™ + (1/2)0,47 = M, (S82)

and therefore (I — P2)M = 0.

Define
B—(1-P)B(-P) = (by) (S83)
B=(1-P)B(I - P) = (by) (S84)
B=(-P)BUI-P)= (Eij> . (S85)

Let Emax, Zmax, and I;max denote the maximum diagonal entries of B , B , and B , respectively.

H.3 Model Selection Centering

For a subset J < {1,...,m}, let X; denote the submatrix of X consisting of columns indexed

by J. For the fixed sets of genes .Jy and J;, define the sample covariance

S(B,Jo, 1)) =m™ 'Y (I —P)XpXi (I —P)" +m™t Z (I - P)Xp X (I —P)' = 1+1I.

kEJO keJy
(S86)
Note that E[S(B, Jo, J1)] = B¥, with
A A
gt = 2 (An) (I — P)B(I — Py) + tr(4s) (I — P)B(I — P,). (S87)

m m
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Define the sample correlation matrix,

(S(B7 JO? Jl))ij

Ii(B) = \/(5(37(]07Jl))ii(S(B,Jo,Jl))jj'

(988)

The baseline Gemini estimators Zhou (2014a) are then defined as follows, using a pair of

penalized estimators for the correlation matrices p(A) = (a;;//aia;;) and p(B) = (bi;j/+/biibj;):

A, = argmin {tr (f(A)A;l) + log|A,| + AByA;lh,oﬁ} , (S89a)
Ap>0

ép = argmin {tr (f(B)BP_l) + log | B,| + )\A‘Bp_l‘lpff} : (S89b)
B,>0

We will focus on ép using the input as defined in (S88).

The proof proceeds as follows. Lemma S22, the equivalent of Proposition S16 for Algo-
rithm 1, establishes entry-wise convergence rates of the sample covariance matrix for fixed
sets of group and globally centered genes. We use this to prove Theorem S21 below in

Section H.4 and to prove Theorem 4 in Section H.5.

H.4 Convergence for fixed gene sets

We first state a standalone result, Theorem S21, which provides rates of convergence when
S(B, Jo, J1) as in (S86) is calculated using fixed sets of group centered and globally centered
genes, Jy and Ji, respectively. This result shows how the algorithm used in the preliminary
step to choose which genes to group center can be decoupled from the rest of the estimation

procedure. The proof is presented below in Section H.4.2.

Theorem S21. Suppose that (A1), (A2’°), and (A8) hold. Let Jy and J, denote sets such
that JonJy = & and Jy o Jy = {1,...,m}. Let mg = |Jo| and my = |J1| denote the sizes of
the sets. Let Tgiopar > 0 satisfy

ijg.x |’Ya | < Tglobals (S90)

for Tyopar = C/log(m)||[(DTB~'D) 1||1/2 = log
Consider the data as generated from model (S73) with e = BY2ZAY2, where A € R™*™

and B € R™™ are positive definite matrices, and Z is an n x m random matriz as defined
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in Theorem 1. Let A4 denote the penalty parameter for estimating B. Suppose the penalty
parameter s in (S89b) satisfies

)\A 2 C//

log1/2(m vn) ||B|h
K . 1
Ca \/% + — (89 )

where C” is an absolute constant.

(I) Let E4(Jo, J1) be the event such that

Ol)‘A |B_1|070ff vl
< v . (592)

N~ —1
tr (A) ( WoB, W- — B!
t(4) (W, 172) S T (B)

Then P(Ey(Jo, J1)) = 1 — C/m?.
(II) With probability at least 1 — C'/m?, for all j,

RS ratio B! o 1 — -
H@ww—@m<@“¢nt( oor V1) | og(m)l|(D7B-D) V2 (393)

Nmin
H.4.1 Decomposition of sample covariance matrix

The error in the sample covariance S(B, Jy, J1) can be decomposed as
S(B, Jo, i) — B = [B* — B] + [S(B, Jy, i) — BY], (S94)

where the first term corresponds to bias and the second term to variance. We now further

decompose the variance term. The first term of S(B, Jo, J;) in (S86) can be decomposed as,

I=m (I - P)X;, X (I— P)
=m (I — Py)(My, +¢e5,)(My, +c5) (I — P)
=m ™I — Py)eges (I —P) + m™'(I — P)Myeh (I — Ps)
+m NI = Py)eg My (I — P) +m™' (I — Py) MM (I — P»), (S95)
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and the second term can be decomposed analogously, as

II=m (I —P)eses (I—P)+m (I—-P)Myeh(I—P)
+m (I = P)ey My (I—P)+m (I —P)M,M, (I-P). (S96)

By the above decompositions, it follows that S(B, Jy, J;) can be expressed as

S(B, Jo, Jl) = SH + SIII + SITI} + SI\/, (897)
with
Si=m""(I— P)MyMj (I—P)+m (I —P)MjM;(I—P). (S98)
S =m (I — Py)Myel (I — Py) +m ™ (I — P)Myey (I —P) (S99)
SIV = mfl(I — P2>8J0€?;0 (I — PQ) + mil(I — P1>€J1€?;1 (I — Pl) (8100)

For each of Sy, Sy, and Sty, the first term comes from (S96) and the second term comes
from (S97).

The terms Sy; and Syyp can be simplified, as follows. Because (I — Py) M, = 0, it follows
that the first term of Sy is zero:

m~ (I — P)M M (I — P5) = 0.
and the first term of Sy is also zero,
m~ (I — Py)Myel (I — P5) =0,

Therefore the terms Sy and Syyp are equal to

Su=m "I —P)M;Mj(I—P), (S101)
S =m~ (I — P\)Myel (I — P). (S102)
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Let Sy = B* — B. We have thus decomposed the error in the sample covariance as

S(B,Jo,J))-B= S + L(SW — Bﬁ)j St + Snl. (S103)
bias variance

In Lemma S23, we provide an error bound for each term in the decomposition (S104).

We next state Lemma S22, which establishes the maximum of entry-wise errors for esti-
mating B using the sample covariance for fixed gene sets as defined in (S104). Lemma S22
is used in the proof of Theorem S21. Following, we state Lemma S23, which is used in the

proof of Lemma S22.

Lemma S22. Suppose the conditions of Theorem S21 hold. Let E(Jy, J1) denote the event

log?(m v n B
&umm={wamm—mu<QM'g&m >+kﬁ}. ($104)

Then Es(Jo, J1) holds with probability at least 1 — —2

(mvn)?-

Lemma S23. Let the model selection-based sample covariance S(B, Jy, J1) be as defined
in (S86), where Jy and Jy are fized sets of variables that are globally centered, and group

centered, respectively. Let mg = |Jo| and my = |J1|. Define the rates

3| B
r o= || ”1, (8105)
N'min
ra = (4m) " a3, (S106)
rg = Cyd"2K?1og"?(m)m ™ (vﬁAJﬂJl)l/z leﬁx, (S107)
s = Cad K log"2(mym™" | Al | B, (5108)
(1) Deterministically,
|B* = B||,<r and ||Sull, <ra (S109)
(II) Define the events
51 = {HSIV - BﬁHoo < 7‘4} and 511 = {HSIH“oo < 7’3}. (8110)
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Then & and &y occur with probability at least 1 — 2/md.

Lemmas S22 and S23 are proved in Section I. We analyze term S7 in Section 1.2, term
St in Section 1.3, term Sy in Section 1.4, and term Spy in Section I.5.
H.4.2 Proof of Theorem S21

Let us first define the event Egopal, that is, the GLS error based on the true B~ is small:

Exoret = {|[3(B™) = 11|, < Viog(m)l|(D" B D)%} (S111)

Let &4(Jo, J1) be defined as in (S93), denoting small operator norm error in estimating

B~

C/)\A |B_1’0,oﬂ vl
< v . (S112)

54(‘]07 Jl) = 2 bminsp2 i (p(B>>

ir (4) (W8, g

Note that &,(Jy, J1) holds deterministically under event & (.Jy, J1) as defined in (S105) of
Lemma S522.

Define the event bounding the perturbation in mean estimation due to error in estimating

B~
—1/2

0

& (o 1) = { 7B =3B

2}. (S113)

Conditional on a fixed matrix B! that satisfies E4(Jo, J1), event Es(Jy, J1) holds with prob-
ability at least 1 — C'/m<, by Lemma S6 (used in the proof of Theorem 1).
The overall rate of convergence follows by applying the union bound to the events Egiopa N

Ei(Jo, J1) n Es(Jo, J1), as follows:

P(ggclobal Y 54(‘]07 ']1>C v 55<J07 Jl)c)

< P(Egopa) + P(Ea(Jo, J1)°) + P(Es(Jo, J1)° | Ea(Jo, J1)) P(Ea(Jo, J1))
+ P(&5(Jo, J1)° | Ea(Jo, 1)) P(Ea(Jo, J1)°)

< P(Eqobar) + P(Ea(Jo, J1)°) + P(Es(Jo, 1)) + P(Es(Jo, 1) | E4(Jo, J1))

= P(EGopar) + 2P (E4(Jo, J1)°) + P(E5(Jo, J1)° | E4(Jo, 1)),

global
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where P(ES

global

) and P(Es(Jo, J1)¢ | €4(Jo, J1)) are bounded in Theorem 1, and P(&4(Jo, J1)°)
has high probability under Lemma S22.

H.5 Proof of Theorem 4

Let 4™ denote the output from Algorithm 1. By our choice of the threshold parameter iy
as in (16), that is,

log"*(m ) | Bl1 Nratio (| B~ oot v 1) 12
init, = C e 2 + C4/1 DTB 1D -1y
Tinit ( \/m Nmin Nmin Og || ||

we have a partition (jo, J~1) such that jo is the set of variables selected for group centering
and J; is the set of variables selected for global centering. The partition results in a sample
covariance matrix S(B, Jy, J;) as defined in (S86). Define the event that the Algorithm 1

Zinit

estimate ™" is close to 7y in the sense that

= {IF™ = lls < 7imi}- (S114)

Note that the event £4; implies that the false negatives have small true mean differences.

That is, on event £41, by the triangle inequality,

Hle H ‘ V5 V}mt ’ g . < Tinit + Tinit = 27init; (S115)
where ‘ﬁfﬁit < Tt by definition of £4, 7(‘;“'3 < Tinit by definition of the
0 0

thresholding set Ji.

Under the assumptions of Theorem S21, Tinit < Tglobal With Taionar as defined in (S90), so
condition (S90) of Theorem S21 is satisfied. Under the conditions of Theorem S21, event
Es(Jo, J1) as defined in Lemma S22 holds with high probability; that is, the entrywise error
in the sample covariance matrix is small.

Let € denote event (28) in Theorem 4. In view of Theorem S9 and Lemma S10, event
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Ep holds on &(Jy, J1). Hence

P (&g) = P (& (Jo, J1) | Ear) P (Ear) + P (E6(Jo, 1) | €41) P (E41)

(€6 (Jo, 1) | Ear) + P (E41)

where the first term is bounded in Lemma S22 and the second in Theorem 3.
Recall the event Egobal as defined in (S112). Event (29) in Theorem 4 holds under the
intersection of events Egobal N 55(50, jl) N Ep N E41. Hence the probability of (29) can be

bounded as follows:

P(gclobal Y 55((70; jl)c u&pu 5511)

< P(Egiopar) + P(ER) + P(E5(Jo, 1) | €5)P(Ep)

global
+ P(E(Jo. J1)° | E8)P(EG) + P (%)
< P(Egpal) + P(ER) + P(E) + P(55(<707 =71)c | Es) + P (E4)

g

= P(EGopal) +2P(ER) + P(55(<707 jl)c | E) + P (E4,),

g

where P(&g),,.;) and P(&5(Jo, J1)° | €p) are bounded in Theorem 1, P(£5) is bounded above,

and P (€4;) is bounded in Theorem 3.

I Proof of Lemmas S22 and S23

We first prove Lemma S22 in Section I.1. The rest of the section contains the proof of Lemma

S23, where part I is proved in Sections [.2 and 1.3 and part II in Sections 1.4 and L.5.

1.1 Proof of Lemma S22

The entrywise error in the sample covariance matrix (S86) can be decomposed as

HS(Bv J07 ‘]1) - BHoo < HS(B7 J07 Jl) B Bﬁ”oo + HBﬁ B BHoo (8116)
< HSIV — BﬁHoo + 2 HSIIIHOO + HSHHoo + HBjj — B”oo (8117)

43



Let 7y, = 71 + 72 + 2r3 + 74. By parts I and II of Lemma S23,

P(IS(B, Jo, 1) = Blly, = Tnm)

< P(||Stv = B, + 2[1Smll, + [Sull, + || BF = Bl = rnm)  (by (S118))
< P (|[Sv = B, + 2 1Suill, + 72 + 71 = mm)  (by (S110))
= P (||Stv = B|,, +21Sull,, = 74 + 2r5)
< P(||Siv = B, = r4) + P (2| Suill,, = 2r5) (b (S111))
2 2 4
<—+—=—.
md md md

We show that under the assumptions of Theorem S21, the entrywise error in terms Sy
and Sy is O <C logm ) Recall that the entrywise rates of convergence of Sy and Sy are
stated in equations (S107) and (S108), respectively. Let s = |supp(y)| denote the sparsity
of 7. Let mg; = |supp (7, )| denote the number of false negatives.

First, we express the entrywise rate of convergence of Sy in terms of 7gobar. By (S90),

1771 loo < Talobar, Which implies that vally < morry Slobal < STgioba1; Where the last inequality
holds because mgy; < s by definition. Therefore,
2
_ ST, slog(m)
— (4m)~ 2 gl o B S118
o= () |} < T < 02BN g (s118)

where the last step holds because Tgopa = C/log(m)|| (DTB=1D)~1||3? = 4/ o2 m) ||B||1/2

m

assumption. Applying (A3) to the right-hand side of (S119) implies that r, = O <C A M) :

Next, consider term Sypp. First note that

Yo Anvn < vl Ay < morTgapa Al (5119)

where the last inequality holds by (S90). This implies that r3 is on the order

log'?(m) /v 12~ log"/(m)mg)’
% (bmax7£ AJ17J1> < brlrﬁx HAJl Hé/Q % Tglobal
1
S W e (S120)

o
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where the last inequality holds because mg; < s < m and Tgoba = @ HBHé/ 2 Under

(A2’), the right-hand side of (S121) satisfies

lo | A log(m
P 1A 7 BT, < ioglm) Lyl A’h‘l'/z <0/ (s1an)

where the last inequality holds because s < m.

1.2 Proof of part I of Lemma S23, term I

We bound the entrywise bias,

tr (A tr(Ay,) x5
||Bﬁ BH ‘ I ( Jo)B I ( Jl)B_B
max m m max
tr (A ~ tr (A .
<MHB—B’  bds) B—B’ (S122)
m max m max
Note that
|B=B| =1 P)BU = P) = Bl = |PBP = PB = BPil|,
< ||PlBP1||max + ||P1B||max + ||BP1||max : (8123)
We bound the first term of (S124) as follows:
B
ez, | < o] 1], 181, < 120

For the second term of (S124),

(PIB)Z‘]‘ = bz-Tpg-l)

)

1)‘ < 1Bl

Nmin

by the definition of P, in (S78). We have shown ||BP||, .. < < 1Bl

max

‘ T'min

Likewise, || BP|| a0 < ELBUP Therefore,

where H pg-l)

NEIN

max Nmin

|5 -5
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< -1 an analogous proof shows that

Because the projection matrix P, satisfies ||p —

0

< 3”3”1. (S125)

max Mmin

3-8

Substituting (S125) and (S126) into (S123) yields

r(A r(A
|8~ Bl < ZA% |5 p| 4+ TE) |5 p)
< (tl" (AJO) + tr (AJl)) 3||B||1
m m Nmin
w438,
m Nmin
Nmin '

I.3 Proof of part I of Lemma S23, term 11

In this section we prove a deterministic entrywise bound on Sy. By (S80), it follows that
(I = PO)My, My (I = Pr) = (1/4) Iy, |15 667
which implies
107 = P My MG (T = P, = (1/4) vl 6007 [, = (1/4) [l

Therefore Sy satisfies the maximum entrywise bound
ISull, = ||m ™" (I = P)My M7 (1= P, = ||(4m) " v )13 6207 ]| = (4m) " (7,113 ,

SO

Sl =

Note that if J; is chosen so that ||y, < 7, then ||v;|l3 < moi7?, where myq, is the

number of false negatives, so
2 2
m T
Il _ mo s

i yo T 1 (S127)
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which implies that the entrywise rate of convergence of Sy is O(72).

I.4 Proof of part II of Lemma S23, term III

Let p; denote the ith column of P, for i = 1,...,n. Let m; denote the kth column of M.

Let e denote the kth column of €. The term Sy can be expressed as

(Stn)i; = m™ " (e; — pi) " Myl (e; — p;)

m~tr (] (e — pj)(e; — pi)" My,)

m 8%(6;' —pj)(e — i)y
keJy

= m~"vec{es,} (Im, ® (e; — pj)(es — pi)") vee {My,}
= m™vee {2} (A)2 @ BY2(e; - py)(es — pi)") vee {My}

= vec {Z}T Vi,

where

Mppp—— (A},{? ® B(e; — p;)(e; — pi)T) vec {My,} . (S128)
The squared Euclidean norm of v;; is
ijlly = vee {M}" (A @ (ei = pi)(ej — )T Ble; = pj)(e: = pi)T) vee {My,} /m?

= vec {MJI}T <AJ1 ®\6jj<ei — )€ — ps) ) vec {M,} /m”

= by, D0 aremi (ei — pi)(e; — pi)Tmg/m?

keJy teJq
Z Z ot (6n) iV (0n)ive/ (4m )
keJi teJq
= Ejj Z Z ek e/ (4m2)
k‘EJl ZEJl
= b5 A/ (4m?) . (S129)

By the Hanson-Wright inequality (Theorem 2.1),

P <‘V€C {Z}T pij — me 9

> A2 log(m) ||y, ) < 2exp {~dlog(m)} = 2/m”. (3130)
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Therefore

P (I(Su)il > (1 + 2K log(m)) [03,) = P (|vee {2}
<P ([vec {2} vy — syl

<2/m?,

where the last step follows from (S131). By (S130), it follows that
(1+ a"2K2\/log(m) ) 19, < 75, (5131)
SO
P(|(Sun)s| > ra) <P (ISl > (1+dPK*iog(m)) [ll,) < 2/m,  (S132)

by (S132). By the union bound,

m m

P (Sl > 73) < > Y P ([(Sm)g| > r3) < 2/m*.

i=1j=1
I.5 Proof of part II of Lemma S23, term 1V

We now analyze term Sry. To do so, we express Sy as a quadratic form in order to apply
the Hanson-Wright inequality.
Let pgl) denote the ith column of P Let p§2) denote the ith column of PJ. Define

.. T .. T
Hg”oup = Imo ® <€j - p§2)> <ej - p§2)> and Hgobal = Iml ® (ej - p§1)> <ej - p§1)> )
(8133)
and let
. HY
H9(Jo, Jy) = | =% : (S134)

]
H global

7 monXmon J
where Hgj,,, € R s Hylopa

L€ lenxmln’ and ]—[U(JO7 Jl) e Rmnxmn - Recall that

Sy =m I = Py)ejeh (I = Po) +m (I — P)ejes, (I —P).
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The second term of Sty can be expressed as a quadratic form, as follows (where €, denotes

the kth column of € € R™*™):

T
m (I = Pejen(I—P) =m™ ) (ei —pgl)> Exck (61' _p§1)>

keJy
T

wot S (o) et (6 -087))

kEJl

T

=m™ Y & <ej - pg;)) (ei —p§1)> £k

keJy

T

= m ! vec {ng}T (Iml () <ej — p§1)> <€i — pg”) > vec {€J1}T
_ 1 T 17ij T
=m" vec{es ) Hgpavecien} . (5135)

Analogously, the first term of Sty can be expressed as a quadratic form:

T
m (I = P)egyeq, (I — Py) =m™ Z (ei B p’@) ek (ej B p§2))
]{:EJO

— m tvec{e )" HY o vee{e s, V7 (S136)

We now express Sty as a quadratic form. Let 7(X) denote the matrix X with reordered

columns:

W(X)z[xjo XJl] and  7(A) = Cov (vec {m(X)}). (S137)

Then by (S136) and (S137),

(Stv)ij = m ™" vec {eg,} Hiyyp, vee {es} +m ™ vec {ey, ) HJ o vee {ey, }T

— m”tvec {m ()} HY(Jy, J1) vec {r (¢)}
=m " vec {Z}" ((7(A)2 @ BY?) HY(Jy, Jy) (n(A)Y? @ BY?)) vec{Z},

where the last step holds by decorrelation, with Z € R™™ as a random matrix with inde-
pendent subgaussian entries.

Note that the (i, j)th entry of Sy can be expressed as
(Stv); = vec (2} @, ;vec{Z}, (S138)
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with
(I)Lj _ m—l (,n_(A)l/Z ®Bl/2) Hij(Jm J1> (71’(14)1/2 ®Bl/2) ‘ (8139)

Having expressed (Srv);; as a quadratic form in (S139), we find the trace and Frobenius

norm of ®; ;, then apply the Hanson-Wright inequality. First we find the trace of ®; ;. Let

Imoxmo Omoxml Omoxmo Omo Xmq

I[) = and Il = . (8140)

0m1 Xmo Om1 Xmi Om1 Xmo ]ml Xmi

Note that H%(Jy, J1) can be written as a sum of Kronecker products,
ij @) @\" () )"
HY(Jo, J1) =Ty ® <€j — D > (ei —Dp; ) +4 ® (ej —Dj > <€i — D ) ) (S141)
hence (S140) can be expressed as
-1 1/2 1/2 (2) @\" 1/2 1/2
m~" (r(A)? @ B'?) (Zy® <ej — D, > <ei —p; > (m(A)"? @ B'?) (S142)
-1 1/2 1/2 (D (M T 1/2 1/2
+m ' (r(A)P @B (L@ (e;—p; ) (& —p; (m(A)'? @ BY?). (S143)
The trace of the term (S143) is
T
) tr <(7T(A)1/2 ® Bl/2) (Io ® (ej _ pgz)) (ei _ pZ@)) ) (71'(14)1/2 ® Bl/z))
T
ol tr (W(A)1/2I()7T(A)l/2 ® B2 ((Bj B pgg)) (Gi _ pz(‘Q)) BI/Q)
T
=m 'tr (W(A)I/QIOW(A)I/Q) tr (BI/Q <6j - pg-Q)) (61' - p£2)> BI/Z)

=m " tr (Zym(A)) ((61' - pz(-z))T B (63' - p§2)>)
=m~ " tr (Ay) [(I — P)B(I — Py))];

= m_l tr (AJO) 31]
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Analogously, the trace of the term (S144) is

m—L tr ((W(A)lﬂ ® B'?) (I1 ® (ej _ pﬁ»l)) <€z‘ _ pgl))T) (A2 ® Bl/2))
o (A [(1 - POB( - P,

= m_l tr (AJl) \6”

Let bfj denote the (i, j)th entry of B* defined in (S87). We have shown that the trace of ®, ;
(as defined in (S140)) is

tr ((I)Lj) = mfl tr (AJO)EU + mfl tr (AJI)\Z;Z']' = bgj (8144)

Next, we find the Frobenius norm of ®; ;. For convenience, define

Ay = (A2 Tyr (A2 and Ay = 7(A)V2Lr(A)Y? (S145)

T T
By = BY? (63‘ - pf)) <€i - p§2)> B and By =B <€j - pg-”) (62‘ - pg”) B2,
(S146)

Then

@115 = [Im™ (x(A)? @ BY2) HY (o, ) (=(4)' @ B'2)][,
=m % || Ao @ Ba,ij + A1 ® B 7
— 2t ((Ao ® B + AiBrij)" (Ao ® Bayj + A1 ® Bw))
=m 2 tr (AT Ay ® BY,Bi;) +m tr (A A @ BY;B1 )

+ m72 tr (Ag./h ® Bg:ijBLij) + m72 tr (A{Ao ® BT Bgﬂ'j) . (8147)

1,i
We now find the traces of each of the terms in (S148). First, note that
tr (AJ Ao) = tr (Zom(A)Zom(A)) = tr (AF) = A5 (S148)

Analogously,
tr (AT AL) = (1A % (5149)
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For the cross-term, let Aj,;, denote the my x my submatrix of 7(A) given by columns of A

in Jy and rows of A in J;. Then

tr (Ag A1) = tr (Zom(A)Zy7(A))

Om()xm() AJ()J1

= tr m(A)

Om1 Xmo Oml Xmi

= tr (A§0J1AJOJ1)

= [ Ann 7 (S150)
Next,
tr (BlT,ijBLij) = tr (31/2 <€i - PE”) <€j - pg‘l))T B <€j - pg‘”) <€i - pgl))T 31/2>
= ((ej —p§1)>TB <€j —pg-l))) ((ei - El)>TB (ei —pgl)))
= ijviz'- (S151)
Analogously,
tr (B3,1;B24) = ((ej - pg'z))T B (ej - p§2))) <<€i - Pz@))T B <€@- - p§2)>>

The cross-terms yield

(8 80) = (6= 0") 8 (es=07) ) (60 0%) " B (o= 087) ) = by 5159

The squared Frobenius norm of @, ; is

2 1 25 Y 257y 25 ¥
D] = p— (HAJOHF biibjj + | Ax |5 bibjj + 2 | Ag [ bnbjj)
1 2 2 2 2
<50 (1Al + 1 An e + 211 Asnllz) 1Bl

1
= C— Al 1B];-
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We now apply the Hanson-Wright inequality,

P <‘(Sl)ij — b

> =P (‘VGC{Z}T P, jvec{Z} —tr (P;;)| > 7”4>

< 2exp (—cmin {dlog dl/Q\/—luq)vJHF})

dlla

< 2max (m_d,exp (dl/2 log(m)r'/?(®, ])>> .

The first step holds by (S139) and (S145).

J Comparisons to related methods

The most similar existing method to ours is the sphering approach from Allen and Tibshirani
(2012). Both methods use a preliminary demeaned version of the data to generate covariance
estimates, then use these estimates to adjust the gene-wise t-tests. The largest difference
between the procedures lies in this last step. The sphering approach produces an adjusted
data set based on decorrelating residuals from a preliminary mean estimate and performs
testing and mean estimation on this adjusted data using traditional OLS techniques. Though
their approach is well-motivated at the population level, they do not provide theoretical
support for their plug-in procedure, and in particular do not explore how noise in the initial
mean estimate may complicate their decorrelation procedure. In contrast, our approach uses
a generalized least squares approach motivated by classical statistical results including the
Gauss Markov theorem.

The sphering approach also involves decorrelating a data matrix along both axes. Our
work, including the theoretical analysis in Zhou (2014a), suggests that when the data ma-
trix is non-square, attempting to decorrelate along the longer axis generally degrades perfor-
mance. For genetics applications, where there are usually many more genes than samples,
this suggests that decorrelating along the genes may hurt the performance of the sphering
method. Fortunately, for gene-level analyses it is not necessary to decorrelate along the gene
axis, since inference methods like false discovery rate are robust to a certain level of de-
pendence among the variables (genes) (Benjamini and Yekutieli, 2001). Therefore, we also

consider a modification of the sphering algorithm that only decorrelates along the samples.
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Confounder adjustment is another related line of work that deals with similar issues when
attempting to discover mean differences. In particular, a part of that literature posits models
where row-wise connections arise from the additive effects of potential latent variables. Sun
et al. (2012) and Wang et al. (2015) use models of the form

anm = Dn><1 ;Ir;xl + anrrT + Enxm

mxr

T
anr = anla/rxl + anr

where Z is an unobserved matrix of r latent factors. Rewriting these equations into the

following form lets us better contrast the confounder model to our matrix-variate setup:
X=DB+Ta)" + WI'T + E. (S154)

These models are generally estimated by using some form of factor analysis to estimate I"
and then using regression methods with additive outlier detection to identify 3, methodology
that is quite different from our GLS-based methods.

For the two-group model, in the case of a globally centered data matrix X, the design

matrix D in (S155) takes the form
DI | = [_1 e =1 1--- 1] = [—121 1’52], (S155)

and 20 represents the vector of true mean differences between the groups. The vector (5 is
estimated via OLS, yielding BOLS, and CATE considers whether the residual X — D,,; QOLS
has a low-rank covariance structure plus noise. If so, T'@ aims to take out the residual low-
rank structure through D(l:a)T. As illustrated in simulation and data analysis, this improves
upon inference based only on BOLS. When applying the CATE and related methods to data
originated from the generative model as described in the present paper, CATE (and in
particular, the related LEAPP) method essentially seeks a sparse approximation of BOLSE
Moreover in LEAPP, this is essentially achieved via hard thresholding of coefficients of B\OLS,
leading to improvements in performance in variable selection and its subsequence inference
when the vector of true mean differences is presumed to be sparse. In our setting, we improve

upon OLS using GLS.
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J.1 Simulation results

Figure S3 compares the performance of Algorithm 2 to the sphering method of Allen and
Tibshirani (2012) and the robust regression confounder adjustment method of Wang et al.
(2015) on simulated matrix variate data motivated by the ulcerative colitis dataset described
in Section 5. Note that this robust regression confounder adjustment is a minor modification
of the LEAPP algorithm introduced in Sun et al. (2012). As discussed above, we also consider
a modification of Allen and Tibshirani (2012) that only decorrelates along the rows.

We can see that across a range of dataset sizes our method consistently outperforms
sphering in terms of sensitivity and specificity for identifying mean differences. In some
settings, CATE improves on Tsphere and t-statistics despite being applied on misspecified
models, because CATE takes out the additional rank two structure from the mean after OLS
regression and does some approximate thresholding on the coefficients. Our method using
GLS performs significantly better than CATE in the setting of non-identity B, with edges
present both within and between groups.

Figure S5 fixes the sample size and repeats these comparisons on different sample cor-
relation structures (which are described in Section 4). Figure S6 is analogous to Figure S5,
but with A as the identity matrix. Algorithm 2 is competitive or superior to the competing

methods across a range of topologies.

J.2 Comparison on UC data

We apply both Algorithm 2 and CATE on the ulcerative colitis data to compare their
respective findings on real data. Figure S7 presents the test statistics from these algorithms.
The test statistics have a correlation of 0.75. As expected, both methods find that the bulk
of genes have small test statistics. Note that the regression line of the CATE test statistics on
Algorithm 2’s test statistics has a slope less than 1. This implies that Algorithm 2 generates
more dispersed test statistics than CATE, and, given that we have shown in Figures 5 and 8
that Algorithm 2 provides well-calibrated test statistics, that it also has more power in this
situation.

Using a threshold of FDR adjusted p-values smaller than 0.1, both methods find four

genes with significant mean differences. However, there is only one gene (DPP10-AS1) that
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Figure S3: Performance of Algorithm 2 (GLS) relative to sphering and confounder ad-
justment methods, labeled as tsphere and cate, respectively. These are ROC curves for
identifying true mean differences. An implementation of the sphering algorithm that does
not adjust for A is also included, labeled as tsphere noA. Each panel shows the average
ROC curves over 200 simulations. We simulate matrix variate data with gene correlations
from an AR1(0.8) model and let s = 10 genes have true mean differences of 0.8, 0.6, and 0.4
for the first, second and third rows, respectively. For all of these the true B is set to B from
the ulcerative colitis data (using a repeated block structure for larger n values), described
in Section 5 and evenly-sized groups are assigned randomly.
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Figure S4: Performance of Algorithm 2 (GLS) relative to sphering and confounder adjust-
ment, labeled as tsphere and cate, respectively. These are ROC curves for identifying true
mean differences. An implementation of the sphering algorithm that does not adjust for A is
also included, labeled as tsphere noA. Each panel shows the average ROC curves over 200
simulations. We simulate matrix variate data with no gene-wise correlations (A = I) and let
s = 10 genes have true mean differences of 0.8, 0.6, and 0.4 for the first, second and third
rows, respectively. For all of these the true B is set to B from the ulcerative colitis data
(using a repeated block structure for larger n values), described in Section 5 and evenly-sized
groups are assigned randomly.
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both methods identify. So, although there is significant correlation between the test statistics,

the methods do not necessarily identify the same genes.
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Figure S5: Performance of Algorithm 2 (GLS) relative to sphering and confounder adjust-
ment, labeled as tsphere and cate, respectively. These are ROC curves for identifying true
mean differences. An implementation of the sphering algorithm that does not adjust for A is
also included, labeled as tsphere noA. Each panel shows the average ROC curves over 200
simulations. We simulate matrix variate data with an AR1(0.8) model for A and let s = 10
genes have true mean differences of 0.8. B is constructed according to a Star-Block model
with blocks of size 4, an AR1(0.8), and an Erdés-Rényi random graph with d = nlogn edges.
All of these use n = 20 and randomly assign 10 observations to each group.
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Figure S6: Performance of Algorithm 2 (GLS) relative to sphering and confounder adjust-
ment, labeled as tsphere and cate, respectively. These are ROC curves for identifying true
mean differences. An implementation of the sphering algorithm that does not adjust for A is
also included, labeled as tsphere noA. Each panel shows the average ROC curves over 200
simulations. We simulate matrix variate data with no gene-wise correlations (A = I) and let
s = 10 genes have true mean differences of 0.6. B is constructed according to a Star-Block
model with blocks of size 4, an AR1(0.8), and an Erdés-Rényi random graph with d = nlogn
edges. All of these use n = 40 and randomly assign 20 observations to each group.

60



CATE test statistics

-4 -2 0 2 4

Algorithm 2 test statistics

Figure S7: Scatterplot of t-statistics for CATE and Algorithm 2 applied on the ulcerative
colitis data. The 45-degree line is included in black while red dashed line is the linear fit.
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