Supplemental Material

S1 Proof of Chiba et al.'s (2011) Sensitivity Analysis Formula (7)

Note that individuals with observed $\mathrm{A}=1$ and $\mathrm{S}=\mathrm{s}$ must have $S_{1}=s$. Let $\pi_{u}=\operatorname{Pr}(U=u)$, where $u=s s, s \bar{s}, \bar{s} s, \bar{s} \bar{s}$ denote the proportion of individuals in each principal stratum. We can express $E\left(Y_{1} \mid A=1, S=s\right)$ as the weighted sum of $E\left(Y_{1} \mid U=s s\right)$ and $E\left(Y_{1} \mid U=s \bar{s}\right)$:

$$
\begin{equation*}
E\left(Y_{1} \mid A=1, S=s\right)=\frac{\pi_{s \bar{s}} E\left(Y_{1} \mid U=s \bar{s}\right)+\pi_{s s} E\left(Y_{1} \mid U=s s\right)}{\pi_{s \bar{s}}+\pi_{s s}}, \tag{S1.1}
\end{equation*}
$$

where $\pi_{s \bar{s}}+\pi_{s s}=\operatorname{Pr}\left(S_{1}=s, S_{0}=\bar{s}\right)+\operatorname{Pr}\left(S_{1}=s, S_{0}=s\right)=\operatorname{Pr}\left(S_{1}=s\right)=\operatorname{Pr}\left(S_{1}=s \mid A=1\right)=$ $\operatorname{Pr}(S=s \mid A=1)=p_{1}$ because $S_{a}(\mathrm{a}=1$ or 0$)$ is independent from A due to randomization. Likewise, because individuals with the observed value of $\mathrm{A}=0$ and $\mathrm{S}=\mathrm{s}$ are limited to those with $S_{0}=s, E\left(Y_{0} \mid A=0, S=s\right)$ can be expressed by the weighted sum of $E\left(Y_{0} \mid U=s s\right)$ and $E\left(Y_{0} \mid U=\bar{s} s\right):$

$$
\begin{equation*}
E\left(Y_{0} \mid A=0, S=s\right)=\frac{\pi_{\bar{s} s} E\left(Y_{0} \mid U=\bar{s} s\right)+\pi_{s s} E\left(Y_{0} \mid U=s s\right)}{\pi_{\bar{s} s}+\pi_{s s}}, \tag{S1.2}
\end{equation*}
$$

where $\pi_{\bar{s} s}+\pi_{s s}=\operatorname{Pr}\left(S_{1}=\bar{s}, S_{0}=s\right)+\operatorname{Pr}\left(S_{1}=s, S_{0}=s\right)=\operatorname{Pr}\left(S_{0}=s\right)=\operatorname{Pr}\left(S_{0}=s \mid A=\right.$ $0)=\operatorname{Pr}(S=s \mid A=0)=p_{0}$.

Let $\beta_{1}=E\left(Y_{1} \mid U=s \bar{s}\right)-E\left(Y_{1} \mid U=s s\right)$ denote the difference in average potential outcomes under TEST between the stratum "PP with TEST only" and the stratum "always PP." Substituting $E\left(Y_{1} \mid U=s \bar{s}\right)=\beta_{1}+E\left(Y_{1} \mid U=s s\right)$ into equation (S1.1) yields

$$
\begin{align*}
E\left(Y_{1} \mid A=1, S=s\right) & =\frac{\pi_{s \bar{s}}\left(\beta_{1}+E\left(Y_{1} \mid U=s s\right)\right)+\pi_{s s} E\left(Y_{1} \mid U=s s\right)}{\pi_{s \bar{s}}+\pi_{s s}} \\
& =\frac{\left.\left(\pi_{s \bar{s}}+\pi_{s s}\right) E\left(Y_{1} \mid U=s s\right)\right)+\pi_{s \bar{s}} \beta_{1}}{\pi_{s \bar{s}}+\pi_{s s}} \\
& =E\left(Y_{1} \mid U=s s\right)+\frac{\pi_{s \bar{s}}}{p_{1}} \beta_{1} \\
& =E\left(Y_{1} \mid U=s s\right)+\frac{p_{1}-p_{0}+\pi_{\bar{s} s}}{p_{1}} \beta_{1}, \tag{S1.3}
\end{align*}
$$

where $\pi_{s \bar{s}}=p_{1}-\pi_{s s}=p_{1}-\left(p_{0}-\pi_{\bar{s} s}\right)=p_{1}-p_{0}+\pi_{\bar{s} s}$.

Similarly, Let $\beta_{0}=E\left(Y_{0} \mid U=\bar{s} s\right)-E\left(Y_{0} \mid U=s s\right)$ denote the difference in average potential outcomes under RLD between the stratum "PP with RLD only" and the stratum "always PP." Substituting $E\left(Y_{0} \mid U=\bar{s} s\right)=\beta_{0}+E\left(Y_{0} \mid U=s s\right)$ into (S1.2) yields

$$
\begin{equation*}
E\left(Y_{0} \mid A=0, S=s\right)=E\left(Y_{0} \mid U=s s\right)+\frac{\pi_{\bar{s} s}}{p_{0}} \beta_{0} . \tag{S1.4}
\end{equation*}
$$

In addition, $E\left(Y_{a} \mid A=a, S=s\right)=E(Y \mid A=a, S=s)$ because of consistency assumption (a persons potential outcome under a hypothetical condition is precisely the outcome experienced by that person (Robins et al., 2000)), equation (7) is therefore proved.

S2 Proof of the boundaries of $\pi_{\bar{s} s}$

As previously explained, $\pi_{s \bar{s}}+\pi_{s s}=\operatorname{Pr}\left(S_{1}=s, S_{0}=\bar{s}\right)+\operatorname{Pr}\left(S_{1}=s, S_{0}=s\right)=\operatorname{Pr}\left(S_{1}=\right.$ $s)=\operatorname{Pr}\left(S_{1}=s \mid A=1\right)=\operatorname{Pr}(S=s \mid A=1)=p_{1} ;$ Similarly $\pi_{\bar{s} s}+\pi_{s s}=\operatorname{Pr}\left(S_{1}=\bar{s}, S_{0}=\right.$ $s)+\operatorname{Pr}\left(S_{1}=s, S_{0}=s\right)=\operatorname{Pr}\left(S_{0}=s\right)=\operatorname{Pr}\left(S_{0}=s \mid A=0\right)=\operatorname{Pr}(S=s \mid A=0)=p_{0}$. Therefore, we have following three equations:

$$
\left\{\begin{array}{l}
\pi_{s s}+\pi_{s \bar{s}}=p_{1} \tag{S2.1}\\
\pi_{s s}+\pi_{\bar{s} s}=p_{0} \\
\pi_{s s}+\pi_{s \bar{s}}+\pi_{\bar{s} s}+\pi_{\bar{s} \bar{s}}=1
\end{array}\right.
$$

which implies that

$$
\left\{\begin{array}{l}
\pi_{s s}=p_{0}-\pi_{\bar{s} s}, \tag{S2.2}\\
\pi_{s \bar{s}}=p_{1}-p_{0}+\pi_{\bar{s} s}, \\
\pi_{\bar{s} \bar{s}}=1-p_{1}-\pi_{\bar{s} s} .
\end{array}\right.
$$

In addition, because $\pi_{u}=\operatorname{Pr}(U=u), u=s s, s \bar{s}, \bar{s} s, \bar{s} \bar{s}$ are bounded probabilities, i.e.,

$$
\left\{\begin{array}{l}
0 \leq \pi_{\bar{s} s} \leq p_{0} \tag{S2.3}\\
0 \leq \pi_{s s} \leq \min \left(p_{0}, p_{1}\right) \\
0 \leq \pi_{s \bar{s}} \leq p_{1} \\
0 \leq \pi_{\bar{s} \bar{s}} \leq \min \left(1-p_{0}, 1-p_{1}\right)
\end{array}\right.
$$

Substituting in (S2.2) into (S2.3), we have

$$
\left\{\begin{array}{l}
0 \leq \pi_{\bar{s} s} \leq p_{0} \tag{S2.4}\\
0 \leq p_{0}-\pi_{\bar{s} s} \leq \min \left(p_{0}, p_{1}\right) \\
0 \leq p_{1}-p_{0}+\pi_{\bar{s} s} \leq p_{1} \\
0 \leq 1-p_{1}-\pi_{\bar{s} s} \leq \min \left(1-p_{0}, 1-p_{1}\right)
\end{array}\right.
$$

The four inequalities imply that $p_{0}-p_{1} \leq \pi_{\bar{s} s} \leq p_{0}$

$$
\left\{\begin{array}{l}
0 \leq \pi_{\bar{s} s} \leq p_{0}, \tag{S2.5}\\
\max \left[0, p_{0}-p_{1}\right] \leq \pi_{\bar{s} s} \leq p_{0}, \\
p_{0}-p_{1} \leq \pi_{\bar{s} s} \leq p_{0}, \\
\max \left[0, p_{0}-p_{1}\right] \leq \pi_{\bar{s} s} \leq 1-p_{1} .
\end{array}\right.
$$

Therefore, $\max \left[0, p_{0}-p_{1}\right] \leq \pi_{\bar{s} s} \leq \min \left[p_{0}, 1-p_{1}\right]$, and (8) is proved.

