
Supplementary Information 

Ordered Probit Model 

The full model and priors are specified below. IntT, age, steering, aiming, tracking and postural 

balance (open and closed) scores were entered as predictors. The model was based on Kruschke 

(2015) and the model code is available online at https://github.com/OscartGiles/Hitting-the-target. 

𝜷 ∼ 𝑁(0, 𝐾) 

𝝁 = 𝑿𝜷 

𝑪1 ≡ 1.5 

𝑪𝑡=2,…,𝐾−2 ∼ 𝑁(𝑡 + 0.5, 𝐾) 

𝑪𝐾−1 ≡ 𝐾 − 0.5 

 𝜎 ~ ℎ𝑎𝑙𝑓 𝐶𝑎𝑢𝑐ℎ𝑦(0, 100) 
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    𝒚𝒊~ 𝐂𝐚𝐭𝐞𝐠𝐨𝐫𝐢𝐜𝐚𝐥(𝜽𝒊) 

 

where 𝑖 = 1…𝑁, 𝑘 = 1…𝐾, and 𝑡 = 1…𝐾 − 1. 𝑿 is an 𝑁 × 7 matrix of predictor variables where 

the first column is equal to 1. 𝜽 is an 𝑁 ×  𝐾 matrix, specifying the probabilities of obtaining each 

observed academic attainment score for the 𝑖th participant. 𝜙 is the cumulative normal function. 𝝁 

represents a continuous latent attainment outcome, and y is the observed attainment scores. 

The first and last threshold value 𝑪1and 𝑪𝐾−1 were fixed in order to identify the model. Thus all 

other model parameters must be interpreted with regards to this constraint. In addition each 

threshold parameter was constrained to be greater than the last, 𝑪𝑘 < 𝑪𝑘+1. 

https://github.com/OscartGiles/Hitting-the-target


All priors were chosen to be weakly informative on the scale of the data 

 

Effect size calculations 

In the main text we provide an estimate of the effect size for each predictor in the model in terms of 

the equivalent change in age that would be required to produce the same change on the latent 

attainment score as the typical range of each of the sensorimotor measures, where the typical range 

was defined as 2 times the standard deviation of the motor measure of interest. The effect size was 

defined as,  

𝐸𝑞𝑢𝑖𝑣𝑖𝑙𝑎𝑛𝑡 𝑎𝑔𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 =  
2 × 𝑆𝐷𝑗 × 𝛽𝑗

𝛽𝑎𝑔𝑒
× 12 

where 𝑆𝐷𝑗 is the estimated standard deviation for the 𝑗th sensorimotor measure (after controlling 

for age), 𝛽𝑗  is the corresponding model coefficient and 𝛽𝑎𝑔𝑒  is the coefficient for age. For clarity we 

illustrate this graphically in Figure S1 (see caption for details).  

 

 

Figure S1: Illustration of how the effect size metric was calculated. The top line shows the latent 

Mathematics attainment score (𝜇𝑖) for the 𝑖th participant on a continuous scale. The model states 

that 𝜇𝑖 = 𝑋𝑖
𝑇𝛽, where 𝑋 is a design matrix specifying the predictor scores for each participant. As we 

change the values of the predictor variables, the predicted latent attainment score will change. 

Changing a motor task score by the typical range (left side; moved from open purple dot to filled 



purple dot) results in a change in the predicted latent attainment score (open black dot to filled 

black dot). Our effect size measure defines how much we would need to change the age predictor 

(right side; open blue dot to closed blue dot) in order to achieve the same change in the latent 

attainment score. In other words, how many months the typical range of the sensorimotor task 

predictor is worth.  

 

Typical range of sensorimotor measures after controlling for age 

We chose the typical range to be 2 × 𝑆𝐷 as this is the difference between a score one 𝑆𝐷 above and 

below the mean. We therefore needed to estimate the 𝑆𝐷 for each motor task. However, we know 

that a substantial proportion in the variance in each motor task is explained by age. Thus we 

calculated the 𝑆𝐷 after controlling for age. For a single motor task we could calculate this by fitting a 

simple regression with age as a predictor and the motor task as the outcome variable. The SD then 

provides a measure of the variance not explained by age. Here we used a “seemingly unrelated 

regression” model which allowed for all the motor tasks to be modelled as output variables 

simultaneously. This is essentially the same as fitting multiple simple regressions between age and 

each motor task, except that the covariance between motor tasks is also estimated. The full model 

code is provided at https://github.com/OscartGiles/Hitting-the-target.  

 

Understanding how the latent attainment score maps to the observed score 

The latent attainment score is mapped to the observed data by a probit link function. For a 

given predicted latent attainment score (𝜇) the model provides a vector of probabilities for 

each possible ordered attainment outcome. For illustrative purposes, Panel a in Figure S2 

shows the probability distribution when 𝜇 = 5, which we refer to here as 𝜇1 (blue bars) and 

when 𝜇 increases as a result of IntT increasing by the typical range, referred to as 𝜇2 (orange 

https://github.com/OscartGiles/Hitting-the-target


bars). We can see that in both cases an attainment score of 5 is most probable, but in the latter 

case higher scores have become more probable, while the probability of lower scores has 

decreased. Panel b shows the logarithm of the ratio between the two probability distributions 

shown in Panel a. Again, this shows that observed attainment scores above 5 are more 

probable when the latent attainment score is increased (positive values), while lower scores 

are less probable (negative values). 

 

 

Figure S2: a) The probability of obtaining each possible observed Mathematics attainment 

outcome (𝑦) when the latent Mathematics score is equal to 5 (𝜇1; blue bars) and when the 

latent Mathematics score increases by the amount induced by the typical range of the 

interceptive timing metric (𝜇2; orange bars). b) Log ratio of probability of each observed 

Mathematics attainment score given 𝜇1 and 𝜇2. Dark line shows the posterior mean. Other 

lines show 100 random samples from the posterior.  

 

 

Graphical probes of model fit – Posterior predictive checks 



To assess the how well the model captures the data we simulated 16000 data sets from the 

posterior (𝑦𝑟𝑒𝑝) and calculated the mean and standard deviation for each. The distribution of these 

test statistics are shown in figure S3. The true mean and SD of the observed data is clearly plausible 

under the models simulations, suggesting the model captures these statistics well. We also 

calculated the mean score for each data point across all the expected score for each data point, 

𝐸(𝑦𝑟𝑒𝑝). This is plotted again IntT in figure S4 (red dots) while the true Mathematics attainment 

scores are also plotted against IntT (blue dots). It’s clear that the model captures the general pattern 

of observed relationship between interceptive timing and Mathematics attainment well. 

 

 

Figure S3: Distribution of test statistics for 16000 simulated data sets. a) The mean of each replicated 

dataset. b) The standard deviation of each replicated dataset. The distribution of simulated data is 

shown by the blue kernel density plots. The dashed line shows the mean and SD of the true data set.  

 



 

Figure S4: The expected value of the simulated data (𝑦𝑟𝑒𝑝) as a function of IntT score (blue dots). 

The observed data as a function of IntT score (red dots).  

 

School Attainment Metrics: 

Table S1 shows how the attainment code maps to the original code used by schools, as well as the 

school year and age by which children are expected to reach key attainment levels. 

Table S1. Attainment score conversion table. A scale of 1 to K (where K was the highest observed 

score in the data) was used for the Bayesian Attainment Model. This scale maps to the UK nationally 

standardized scores. The school year and age at which children are expected to achieve these scores 

is shown.    

 

Attainment 

Score 

Government 

Code 

Expected 

Year Group 

Expected 

Age 



1 1c 

 

 

2 1b 

 

 

3 1a 

 

 

4 2c 

 

 

5 2b 2 6-7 

6 2a 

 

 

7 3c 

 

 

8 3b 

 

 

9 3a 

 

 

10 4c 

 

 

11 4b 6 10-11 

12 4a 

 

 

13 5c 

 

 

14 5b 9 13-14 

15 5a 

 

 

  



 

 

Table S2. In UK primary schools, mathematics is taught and assessed in two stages – Key stage 1 

(years 1 and 2 when the children are 4-6 years) and Key stage 2 (years 3 to 6 when the children are 

7-11 years). The table below is an extracted from: 

https://www.gov.uk/government/collections/national-curriculum-assessments-test-frameworks  

 

 Year  

Key Stage 1 

The mathematics taught is 

very practical and related to 

everyday experiences. A 

variety of resources, such as 

coins, dice, dominoes, playing 

cards, beads and plastic bricks 

for counting. 

 

1 number bonds, early skills for multiplication and solving 

simple problems; very practical mathematic related to 

everyday experiences. 

 

2 working on numbers through rehearsal and using 

addition and subtraction facts regularly; using number 

lines, tracks and 100 squares. 

Key Stage 2 

Shape, space, data handling, 

money and measures in 

addition to numeracy. 

 

3 puzzles, problems and investigations to practice, 

consolidate and extend understanding with an emphasis 

on real world situations. 

4 decimals (particularly with money and measurement); 

equivalent fractions introduced via diagrams and 

number lines used to teach fractions. 

https://www.gov.uk/government/collections/national-curriculum-assessments-test-frameworks
https://www.gov.uk/government/publications/key-stage-1-mathematics-test-framework
https://www.gov.uk/government/publications/key-stage-2-mathematics-test-framework


Children are expected to read, 

write and order numbers on a 

number line (and place value 

cards, beads on a string etc).  

 

5 Fractions, decimals and percentages; comparing, 

ordering and converting and solving problems in a 

meaningful context 

6 more complicated problems, including those that have 

decimals, fractions and percentages; expectation of 

working systematically, using the correct symbols and to 

check their results. They also learn about positive and 

negative numbers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


