

Identification of Androgen Receptor Antagonists Using Tox21 qHTS Data and the MARCoNI Assay

Audrey Bone

Society of Toxicology 56th Annual Meeting, Baltimore, MD

March 14, 2017

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

I declare no conflict of interest

AR Antagonism

- AR controls male sexual development and adult male sexual phenotype
- Antagonists bind to AR and inhibit receptor-mediated transcriptional activity
 - Exploited for prostate cancer drugsflutamide, bicalutamide
- Important mechanism of endocrine disruption in environmental chemicals
 - Associated with reproductive tract and male sexual development abnormalities
 - include vinclozolin, DDE
- Need to identify other chemicals that can act as AR antagonists
- Target of EDSP and Tox21 screening efforts

- Federal collaboration between NIH, EPA, FDA
- Goal is to develop methods to quickly and efficiently test chemical toxicity
- Tox21 10K chemical library qHTS data produced at NIH/NCATS
- Environmentally important chemicals
- 15 conc, n>= 3
- 1536-well plate format
- Data processed by ToxCast data pipeline (tcpl R package) to produce hit calls (active or inactive) and AC50 values

1) Identify AR antagonists using Tox21 qHTS AR antagonist assay data

- 2) Identify structural groupings of AR antagonists
- 3) Use MARCoNI co-regulator recruitment assay to determine patterns of co-regulator recruitment that identify true antagonists

BLA vs. LUC assay platforms in Tox21 qHTS

BLA

Transactivation

8-P4

- GAL4 β-lactamase reporter gene assay (mammalian one-hybrid)
- HEK293T human kidney cell line
- Ligand-binding domain (LBD) only
- Matching viability assay

LUC

- Transactivation
- Luciferase-based reporter gene assay
- MDA-kb2 human breast cell line
- Full receptor
- Matching viability assay
- Run at second, lower agonist concentration (LUC2)

⇒EPA

Results

Assay	Tested	Active (% of tested)	Active <10uM (% of active)	Active <1 uM (% of active)	Active < 100 nM (% of active)
BLA	8307	1212 (15%)	382 (32%)	139 (11%)	49 (4%)
BLA VIA	8307	623 (8%)	181 (29%)	64 (10%)	20 (3%)
Both		575 (92% of BLAVIA)			
LUC	8307	875 (11%)	230 (26%)	82 (9%)	18 (2%)
LUCVIA	8304	700 (8%)	107 (15%)	24(3%)	5 (0.7%)
Both		575 (82% of BLAVIA)			
LUC2	7523	1206 (16%)	322 (27%)	103 (9%)	35 (3%)
LUC2VIA	7872	853 (11%)	137 (16%)	36 (4%)	15 (2%)
Both		682 (80% of BLAVIA)			

SFPA

Challenges with assessing NR antagonism in vitro

Activity

Activity

ent

- Measuring loss of signalconfounded by cytotoxicity
- To address:
 - Two different assay platforms
 - Use bootstrapping techniques to determine effect of cytotoxicity
 - Two concentrations of agonist R1881
 - MARCoNI assay for corepressor/activator recruitment

FLAGS:

lw

8.85

BMAD: 9.44

ACTP: 1

lw

6.26

BMAD: 1.74

ACTP: 1

Objective 1: Use bootstrapping of response curve fitting to assess criteria for true antagonism

EPA Why use bootstrapping?

- Comparing AC50s
 - AR assays to their matching viability assays for cytotoxicity
 - LUC (high agonist concentration) to LUC2 (low agonist concentration) for shift
- Comparing AC50s directly does not take into account model variability
- Use bootstrapping methods to produce 95% confidence intervals around the AC50 values
 - Statistical methods that uses resampling methods to produce confidence intervals
 - Removes one data point from population and re-runs model 1000X to give distribution of values for AC50
 - Not related to biological variability which is accounted for in experimental design
 - R package "toxboot" by Eric Watt

Bootstrapping results

- TOX21_AR_LUC_MDAKB2_Antagonist
- TOX21_AR_LUC_MDAKB2_Antagonist2
- --- TOX21_AR_BLA_Antagonist_ratio

SEPA

- TOX21_AR_LUC_MDAKB2_Antagonist_viability
- TOX21_AR_LUC_MDAKB2_Antagonist2_viability
- --- TOX21_AR_BLA_Antagonist_viability
- TOX21_off_target_nuclear_receptors

Reference Chemical Results

SEPA

Chemical	Designation	Assay Hitcalls	LUC vs. LUC2	LUC2 vs. LUC2VIA
Procymidone	Very Weak Antagonist	BLA, LUC, LUC2	Yes	Yes
Fenarimol	Very Weak Antagonist	BLA, LUC, LUC2	Yes	Yes
4-(1,1,3,3-Tetramethylbutyl)phenol	Weak Antagonist	LUC2	Yes	Yes
o,p'-DDT	Weak Antagonist	BLA, LUC2	Yes	Yes
p,p'-DDE	Weak Antagonist	LUC2	Yes	Yes
Propiconazole	Weak Antagonist	BLA, LUC, LUC2	Yes	No
Zearalenone	Weak Antagonist	BLA, LUC, LUC2	No	No
Methoxychlor	Weak Antagonist	BLA, LUC, LUC2	No	No
Linuron	Moderate/Weak Antagonist	BLA, LUC2	Yes	No
Vinclozolin	Moderate/Weak Antagonist	BLA, LUC, LUC2	Yes	Yes
Flutamide	Moderate/Weak Antagonist	BLA, LUC, LUC2	Yes	Yes
Bisphenol A	Moderate/Weak Antagonist	BLA, LUC, LUC2	Yes	Yes
Prochloraz	Moderate/Weak Antagonist	BLA, LUC, LUC2	Yes	Yes
Cyproterone acetate	Moderate Antagonist	BLA, LUC	Yes	Yes
Nilutamide	Moderate Antagonist	BLA, LUC, LUC2	Yes	Yes
Spironolactone	Strong/Moderate Antagonist	BLA, LUC	No	Yes
Mifepristone	Strong/Moderate Antagonist	BLA, LUC, LUC2	No	Yes
Fenitrothion	Strong Antagonist	BLA, LUC, LUC2	Yes	Yes
Hydroxyflutamide	Strong Antagonist	BLA, LUC, LUC2	Yes	Yes
Bicalutamide	Strong Antagonist	BLA, LUC, LUC2	Yes	Yes
17-Methyltestosterone	Negative Antagonist	NA	NA	NA
4-Androstene-3,17-dione	Negative Antagonist	NA	NA	No
Atrazine	Negative Antagonist	NA	NA	NA
Daidzein	Negative Antagonist	BLA	NA	NA
Deltamethrin	Negative Antagonist	NA	NA	NA
Methomyl	Negative Antagonist	LUC2	NA	No
Simazine	Negative Antagonist	NA	NA	NA
Testosterone	Negative Antagonist	NA	NA	NA

€PA

Sensitivity/Specificity Criteria

Sensitivity= # of true positives/(# of true positives + # of false negatives) Specificity= # of true negatives/(# of true negatives + # of false positives)

Criteria	Sensitivity	Specificity	Balanced Accuracy
Active in BLA	0.9	0.88	0.89
Active in LUC	0.8	1	0.9
Active in LUC2	0.9	0.88	0.89
Active in at least 2 assays	0.9	1	0.95
Active in all three assays	0.7	1	0.85
Active in all three assays, LUC vs. LUC2			
difference, not confounded by			
cytotoxicity	0.5	1	0.75
Active in LUC2, LUC vs. LUC2			
difference, not confounded by			
cytotoxicity	0.7	1	0.85

SEPA Results

- Only 102 chemicals positive using strictest criteria
- Expanding criteria allows for ranking of chemicals based on strength of evidence
- Chemicals that are confounded by cytotoxicity are not eliminated but evidence is weaker
- Potency not currently considered but is another important factor

Hydroxyflutamide
Bis(tributyltin)oxide
Dipyrithione
Ziram
NTP Mix21 AR2 2-EQP
17alpha-Ethinylestradiol
Bis(1-piperidinylthioxomethyl)hexasulfide
Triphenyltin acetate
Tributyltin benzoate
Nilutamide
Triethyltin bromide
Equilin
17alpha-Estradiol
(Acryloyloxy)(tributyl)stannane
Triphenyltin fluoride
Ethylestrenol
Copper dimethyldithiocarbamate
Vinclozolin

Objective 2: Structural categorization

Methods for structural analysis

 Toxprints are chemical structure "fingerprints" that can be used for structural categorization of chemicals

• 729 descriptors

3 - PA

	bond:C(=O)O_carb	oxylicA bond:C(=O)O_carbox	ylic bond:C(=O)O_car	boxylic
Chemical Name	cid_generic	Ester_4-nitrophenol	Ester_acyclic	
Sodium L-ascorbate		0	0	0
L-Ascorbic acid		0	0	0
Aspartame		1	0	1
Aspirin		1	0	0
Astemizole		0	0	0
Atrazine		0	0	0
Atropine		0	0	0
Auramine hydrochloride		0	0	0
Auranofin		0	0	1
5-Azacytidine		0	0	0
6-Azacytidine		0	0	0
Azaserine		1	0	1

- Self-organizing maps (SOMs)
 - Unsupervised clustering technique
 - Clusters data into "honeycomb" like map where each cluster is surrounded by similar clusters using Tanimoto distance measure
 - Produced SOM using toxprint chemical descriptors for 8416 chemicals
 - Overlaid clusters with median of the differences between the LUC and LUC2 assay Cl's

98-Fenarimol-like fungicides (5)

Objective 3: MARCoNI Assay

\$EPA

MARCoNI assay

- Microarray Assay for Real-time Coregulator-Nuclear receptor Interaction
- Cell-free assay measuring co-regulator recruitment to AR-LBD
 - 154 co-regulators
 - 3 concentrations (1, 10, 100 uM)
 - log fold-change of binding compared to DMSO
- Tested 318 suspected AR antagonists
- Goal of this assay is to see if patterns of coregulatory recruitment can distinguish between true antagonists and false antagonists (cytotoxicity/artifacts)

Image: pamgene.com

\$EPA

MARCoNI assay

Microarray Assay for Real-time Coregulator-Nuclear receptor Interaction

- Cell-free assay measuring co-regulator recruitment to AR-LBD
 - 154 co-regulators
 - 3 concentrations (1, 10, 100 uM)
 - log fold-change of binding compared to DMSO
- Tested 318 suspected AR antagonists
- Goal: to see if patterns of coregulatory recruitment can distinguish between true antagonists and false antagonists (cytotoxicity/artifacts)

Figure 2: Outline of the nuclear receptor – coregulator interactions in the µ-wells

Keith's heatmap here

Co-regulator Recruitment Patterns

Plotted mean value for each cluster. Comparing cluster 1 vs 2, note loss of binding of a series of peptides (circled in red). All are SRC coactivators that have histone acetyl transferase activity.

Cluster (Mean) Profile Plot

€EPA

Cluster Median Profile Plot

€

- Of ~8000 tested chemicals, 102 exhibited the strongest evidence for true AR antagonism.
- Different criteria can be used to optimize sensitivity and specificity based on specific goals and needs.
- X, Y, and Z structural groups showed a strong association with AR antagonism. THIS WILL BE FIXED BASED ON NEW MAP
- MARCoNI assay identified multiple patterns of co-regulator recruitment associated with several categories of true and false positives.
- Patterns of co-regulator recruitment can be investigated for specific adverse effects
- This data can be used to rank chemicals that are deserving of prioritization for followup testing.

Acknowledgements

- NCCT
 - Keith Houck
 - Richard Judson
 - Eric Watt
 - Dayne Filer
- NICEATM
 - Nicole Kleinstreuer
- NCATS
 - Ruili Huang
 - Srilatha Sakamuru
 - Menghang Xia
- PamGene
 - Rene Houtman
 - Rinie van Beuningen

Questions or comments? Contact:

Bone.Audrey@epa.gov