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Abstract

Cancer arises from successive rounds of mutations, resulting in tumour cells with di�er-

ent somatic mutations known as clones; this phenomenon is called tumour heterogene-

ity. Drug responsiveness and therapeutics of cancer depend on the accurate detection

of clones in a tumour sample. Recent research has considered inferring the clonal com-

position of a tumour sample using computational models based on the short reads

(segmented DNA parts of di�erent tumour cells) data of the sample, generated using

the next generation sequencing (NGS) technology. Short reads are noisy; therefore,

inferring clones and their mutations from the data is a di�cult and complex problem.

Methods to infer tumour heterogeneity have three main drawbacks: they are (1) unable

to discover di�erent clones having the same clonal frequency, (2) unable to detect clone-

speci�c allelic composition of mutations of a genomic location, and (3) do not consider

the inter-dependency between mutations found in three dimensional (3D) structure of

DNA, called long-range mutational in�uences. In the thesis, we address these drawbacks

and develop computational methods to infer tumour heterogeneity more precisely.

We address the �rst two drawbacks by developing a computational method based

on Factorial Hidden Markov Model to infer clones and their proportions from the noisy

and mixed short reads. However, this method works on single tumour sample data.

Therefore, we extend this method for multiple tumour samples and long-ranges muta-

tional in�uences, captured from the known gene-gene interaction networks, and gene

and mutation locations. Moreover, the cancer data consists of known and unknown

interactions between genes. We then focus on to predict the unknown gene-gene in-

teractions from high-dimensional data. We propose a new graphical model structure

iv



Abstract v

discovery method which predicts the known and unknown gene-gene interactions from

the high dimensional data. This method is developed based on optimising a minimum

message length (MML) based objective function. In this approach, we assume that

all observations are generated from the same underlying multivariate distribution i.e.

single sub-type of cancer. However, the real-life datasets exhibit heterogeneity, which

means the data is mixture of normal cells and di�erent cancer sub-types. Therefore,

we extend our graphical model structure discovery method for heterogeneous data to

capture this, using mixtures of graphical models, instead of single graphical model.

Empirical results con�rm that the �rst computational method and its extension

infer clonal composition more accurately than previous works. In the experiments of

graphical model discovery on both the synthetic and the real-life data, our designed

graphical model discovery methods detect gene-gene interactions with low false discovery

rates. Therefore, the thesis makes three major research contributions: it (1) infers clone

speci�c allelic composition of mutations and clonal frequencies together, using both

adjacent and known long-range mutational in�uences, (2) discovers the graphical model

to represent the known and unknown interactions between genes to �nd the long-range

mutational in�uences, and (3) predicts the structures of graphical models to discover

shared and context-speci�c graphical models from the high dimensional heterogeneous

data. Hence, these three major contributions to computational tumour heterogeneity

research give more precise prediction of tumour heterogeneity.
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Chapter 1

Introduction

1.1 Introduction

Cancer is a disease, caused by variations accumulated in the genome, called the genomic

variations, during the lifetime of a human (Stratton et al., 2009). The genomic vari-

ations create di�erent cancer cells, known as clones, leading to a phenomenon called

tumour heterogeneity (Ha et al., 2012). According to Sharma et al. (2015), the genomic

variations result from (a) errors during DNA replication or (b) other types of damage

to DNA (e.g. caused by exposure to radiation or carcinogens), which then may undergo

error-prone repair or (c) alterations in the gene after it has come in contact with muta-

gens1 and environmental causes. Based on a recent research survey from Harris (2017),

66% of cancer-causing mutations are due to errors during DNA replications, error-prone

repairs, and mutagens, 29% are due to the environment, and 5% are inherited.

Recent cancer therapeutics are developed to target cancer cells, based on the genomic

variations that they harbour (Caraco, 1998). From the treatment perspective, therefore,

it is both critical and di�cult to identify the genomic variations2 in cancer cells (i.e.

tumour heterogeneity). Most of the researches focus on identifying the clones with the

genomic variations of DNA replication error, error-prone repairs and mutagens. Next

1In genetics, a mutagen is a physical or chemical agent that changes the genetic material, usually
DNA, of an organism and thus increases the frequency of the genomic variations/mutations above the
natural background level.

2Note that, in this thesis, we use the term mutations and genomic variations interchangeably.

1
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Generation Sequencing (NGS) o�ers a great opportunity to identify clones in a tumour

sample based on the generated short reads3. NGS produces billions of short reads by

chopping o� the genome of cells into small segments, and then conveniently reading

these short sequences. It is challenging, however, to reconstruct the genome of the

sequenced cells since the short reads are not tagged with the ordering information. The

di�culty of the problem is further exacerbated due to the mixing of short reads from

cells belonging to di�erent clones.

In this thesis, we present computational methods to identify the tumour heterogene-

ity (i.e. cancer clones and their genomic variations) from mixed and noisy short reads

of a tumour sample(s). In this chapter, we �rst focus on the cancer biology, and the

researches and their drawbacks to predict cancer clones and their genomic variations in

the �elds of computer science and machine learning. We then discuss our research ob-

jectives to resolve the drawbacks of the current methods and our research contributions.

Finally, we outline the organization of the thesis.

1.2 Cancer

Cancers are a large family of diseases that involve abnormal cell growth with the po-

tential to invade or spread to other parts of the body (Anand et al., 2008). They form

a subset of neoplasms, called a tumour. A tumour is a group of cells that have under-

gone unregulated growth and will often form a mass or lump, but may be distributed

di�usely (Anand et al., 2008). All tumour cells show the �ve hallmarks of cancer as

follows (Hanahan & Weinberg, 2011):

• Erroneous cell division during mitosis.

• Avoidance of programmed cell death

• Limitless number of cell divisions

• Promoting blood vessel construction

3The fragmented DNA whose length is in between 100 and 600 base-pairs (Caraco, 1998).
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• Invasion of tissue and formation of metastases

Therefore, cancer is fundamentally a disease of tissue growth regulation. In order for a

normal cell to transform into a cancer cell, genetic changes can occur in an entire chro-

mosome through errors in mitosis4. The most common genetic changes are mutations,

which change the nucleotide sequence of a DNA strand.

1.2.1 Mutations

In biology, a mutation is a permanent alteration of the nucleotide sequence of the

genome of an organism. Mutations can be classi�ed into two categories: somatic and

germline. Somatic mutation is a genetic alteration acquired by a cell that can be passed

to the progeny of the mutated cell in the course of cell division. Whereas, germline

mutations are inherited genetic alterations that occur in the germ cells, i.e. sperm

and eggs. Somatic mutations are frequently caused by DNA replication error, error-

prone repairs, mutagens, and oncogenes5. According to cancer biology, various types of

somatic mutations can appear in human cells (Freese, 1959):

1. Point mutation: It changes a single nucleotide to another nucleotide, and is caused

by malfunctioning of DNA replication6 (Freese, 1959).

2. Insertion mutation: It adds one or more extra nucleotides into the DNA (Freese,

1959).

3. Deletion mutation: It removes one or more nucleotides from the DNA (Freese,

1959).

4. Chromosome structural mutation: It ampli�es, deletes or translocates parts of a

chromosome structure (Freese, 1959). Fig-1.1 shows an example of chromosome

structural mutations.

4In cell biology, mitosis is a part of the cell cycle when replicated chromosomes are separated into
two new nuclei to produce two new cells.

5An oncogene is a gene that has the potential to cause cancer. In tumour cells, they are often
mutated and/or expressed at high levels.

6In molecular biology, DNA replication is the biological process of producing two identical replicas
of DNA from one original DNA molecule.
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Figure 1.1: Chromosome structural mutations. (A) Deletion of a part of chromosome
which is marked by the blue region, (B) Ampli�cation of a part of chromosome, where
the blue region is ampli�ed by two i.e. duplication, and (C) Translocation of two parts
of two chromosomes (Freese, 1959).

Among the above stated types of mutations, the �rst three mutation types are Sin-

gle nucleotide polymorphisms (SNPs) and the last one includes Copy number variations

(CNVs). In a normal human genome, each chromosome has two copies. When a struc-

tural variation mutation apperas in a tumour genome, the number of copies of the

structurally mutated part of the genome can change, (i.e. copy number variation). In

the human body, these somatic mutations create cells with di�erent genomic variations,

which are known as clones.

1.2.2 Clones

Somatic mutations create cancer cells with di�erent genomic variations, where a set of

cancerous cells show distinct morphological7 and phenotypic pro�les8, including gene

expression and metabolism. A set of cells with identical genomic variations (i.e. muta-

tions) are known as tumour clones. The observation of di�erent cancer cells in a tumour

is known as tumour heterogeneity.

According to Nowell (1976), tumours arise from a single mutated cell, accumulating

additional mutations as it progresses. These changes give rise to additional subpopu-

7Morphology is a branch of biology dealing with the study of the form and structure of organisms
and their speci�c structural features.

8A phenotype (from Greek phainein , meaning "to show ", and typos , meaning "type") is the
composite of an organism's observable characteristics or traits



Introduction 5

Figure 1.2: Progression of clones from a normal cell.

lations (i.e. tumour clones), and each of these subpopulations has the ability to divide

and mutate further (Merlo, Pepper, Reid, & Maley, 2006). This heterogeneity gives

rise to more clones that possess an evolutionary advantage over the others within the

tumour environment, and these clones may become dominant in the tumour over time

(Merlo et al., 2006).

Recent cancer therapeutics have been developed to target cancer clones based on the

mutations that they harbour (Caraco, 1998). From the cancer treatment perspective,

therefore, it is critical to identify the genome of cancerous cells (i.e. the composition of

mutations) forming a patient's tumour clones.

1.2.3 DNA sequencing

The composition of somatic mutations of a clone can be inferred based on DNA sequenc-

ing (Olsvik et al., 1993): a process for determining the sequences of nucleotides within

a DNA molecule. DNA sequencing is used to determine the order of the four bases:

adenine, guanine, cytosine, and thymine, in a DNA strand. There are di�erent types
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of DNA sequencing technologies, which can be classi�ed according to their cost, time

and accuracy. Sanger and Coulson (1975) proposed a DNA sequencing technique called

Sanger sequencing. It is considered the �rst generation DNA sequencing technique.

Figure 1.3: Sanger sequencing

In Sanger sequencing, the sequence of the nucleotides of a DNA strand is identi�ed by

using DNA polymerase9 and four independent sequencing reactions for four nucleotide

of the DNA strand. At a genomic location, a nucleotide reacts with a DNA polymerase,

and is added to the corresponding column of the sequencing ladder. Finally, using gel

electrophoresis, ddNTP10 and Ultra-violet light, the columns of the sequencing ladder

are visualized. From the visualized sequencing ladders, the sequence of the DNA strand

is read.

This technique su�ers from several drawbacks: (a) the quality is deteriorated after

approximately 700-900 nucleotides11, (b) it cannot work on very long DNA pieces, e.g.

9In molecular biology, DNA polymerases are enzymes that synthesize DNA molecules from deoxyri-
bonucleotides � the building blocks of DNA.

10A dideoxynucleotide (ddNTP) is an arti�cal molecule that lacks a hydroxyl group at both the 2'
and 3' carbons of the sugar moiety. There are four types of ddNTPs: ddATP (for adenine) ddGTP
(for guanine), ddCTP (for cytosine) and ddTTP (for thymine). Each of ddNTP is used to determine
nucleotide of a DNA strand

11ddNTP can work �ne for 700-900 nucleotides in each reaction. For this reason, Sanger sequencing
can detect 700-900 nucleotides at a time.
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a full chromosome, and (c) it is very costly (approximately several million US dollars

per human genome).

1.2.4 Next Generation Sequencing

In contrast, Next Generation Sequencing (NGS) o�ers better and large-scale sequencing

that often aims at sequencing very long DNA pieces, such as whole chromosomes. It

allows the sequencing of a DNA much more quickly and cheaply than the previously used

Sanger sequencing. NGS consists of cutting (with restriction enzymes) or shearing (with

mechanical forces) large DNA fragments into shorter DNA fragments. The fragmented

DNA pieces are then cloned into a DNA vector and ampli�ed in a bacterial host, such

as Escherichia coli. Finally, short DNA fragments puri�ed from individual bacterial

colonies are individually sequenced and assembled electronically into a long contiguous

sequence. The sequenced short DNA fragments are called short reads.

Sequence assembly refers to putting together the short reads in order to reconstruct

the original sequence. There are two di�erent approaches to sequence assembly:

De-novo: Assembling short reads to create full-length (sometimes novel) sequences,

and

Mapping: Assembling short reads against an existing reference sequence, and building

a sequence that is similar but not necessarily identical to the reference sequence.

In terms of the complexity and time requirements, de-novo assembly methods are orders

of magnitude slower and more memory intensive than mapping assembly methods. In

this thesis, we adopt the second approach and reconstruct genomes by mapping their

short reads to the reference genome.

It is challenging to reconstruct the genome of the sequenced cells since the short

reads are not tagged with the ordering information. The di�culty of the problem is

further exacerbated due to the mixing of short reads generated from cells belonging to

di�erent clones. Various computational methods have been proposed to identify the
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clones and their genetic make-up12 from mixed and noise short reads.

1.3 Computational methods to predict tumour het-

erogeneity from short reads

The problem of identifying clones and their mutations has recently attracted attention

due to the viability of NGS technology. GPHMM (A. Li et al., 2011) (Global Parameter

Hidden Markov Model) is a pioneering work to discover mutations involving CNVs

and SNPs. It assumes the tumour sample is a mixture of the normal tissue and a

tumour clone possessing all cancer-causing mutations. However, as discovered in cancer

biology (Stratton et al., 2009), a tumour sample often has multiple clones and each

clone harbours a subset of mutations in the tumour sample. This is the basis of Apolloh

(Ha et al., 2012), Onco-SNP (Yau, 2013) and TH-HMM (Xia et al., 2013) in inferring

CNVs and SNPs. To infer mutations, the aforementioned models assume the presence

of three clones in a sample, where two of them are cancerous, and a mutation can

appear in either of these cancer clones or both. TITAN (Ha et al., 2012) and CLImAT-

HET (Yu, Li, & Wang, 2017) allows a tumour sample to contain more than two cancer

clones; however, it makes the assumption that a mutation cannot belong to more than

one clone. This limitation has been remedied in the follow up works TrAp (Strino,

Parisi, Micsinai, & Kluger, 2013) PyClone (Roth et al., 2014), PhyloSub (Jiao et al.,

2014), Rec-BTP (Hajirasouliha et al., 2014), PhyloWGS (Deshwar, Vembu, Yung, et

al., 2015), CITUP (Malikic et al., 2015), BitPhylogeny (Jianga, Qiu, Minn, , & Zhang,

2016), Canopy (K. Yuan, Sakoparnig, Markowetz, & Beerenwinkel, 2015) and PASTRI

(Satas & Raphael, 2017), where they output the list of mutations characterising each

clone as well as the clonal frequency i.e. the percentage of tumour cells belonging to

the clone. However, these methods to predict tumour heterogeneity su�er from many

drawbacks which we discuss in the next section.

12The genetic make-up of a clone is the set of mutations harboured by the clone, and the genotype
of those mutations.
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1.4 Research challenges

Current methods to detect tumour heterogeneity from the mixed and noisy short reads,

have three main limitations:

L1: Inability to discover the clones with same frequency. All tumour hetero-

geneity inferring methods discover the clones by assuming they have di�erent

clonal frequencies. However, in the real cancer data, some of the clones have

the same frequency but with di�erent allelic compositions. Thus, the existing tu-

mour heterogeneity inferring methods cannot infer clones with the same frequency.

These methods consider clones with the same frequency as a single clone.

L2: Incapable to detect �ne-grain composition of clones. Methods to infer

tumour heterogeneity assume that a single type of mutation appears at a location.

However, Kandoth et al. (2013) and Vogelstein et al. (2013) observe that di�erent

types of mutations can appear at a location and that these are harboured by each

clone independently. This indicates that the type of mutation and its appearance

is clone dependant or speci�c. Therefore, the existing methods are unable to infer

the exact type of the mutations (allelic composition) at a location.

L3: Omission of the long range in�uences among mutations. Ji et al. (2016)

observed the relationships between the mutations of cancer arise from the three-

dimensional DNA structure of the human cells. They found that due to the

three-dimensional structure of DNA, cancer-causing genes with driver mutations

mask the genomic functionalities of their nearest proteins and genes, which in turn

cause the appearance of other mutations. However, the one dimensional genomic

distance between these driver mutations and the newly appeared passanger mu-

tations are not close to each other. This type of in�uences among the mutations

is known as long-range in�uences. Existing methods do not use this important

relationship between the mutations in their methods.

In this thesis, we address the above mentioned limitations to infer more accurately
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cancer clones and their genomic composition from the NGS data.

1.5 Objectives of the thesis

We set four research goals to improve tumour heterogeneity inference:

O1: Inferring clonal composition and frequencies from single sample data.

To achieve the �rst objective, we propose a computational method to detect the

clonal frequencies and their allelic compositions of tumour clones from a single

tumour sample to resolve the �rst two limitations (L1 and L2). In this objective,

we also focus on predicting the clones with same frequency from the given data-set.

O2: Extending the �rst objective to multiple-sample data and long-range

mutational in�uences. Ellenbroek and v. Rheenen (2014) found that each

clone of a tumour is formed within a particular area of the tumour bulk. Tumour

samples of a patient can be taken from di�erent parts of the tumour bulk. Thus,

the inferred clonal frequencies should be di�erent, depending on the area from

which the sample has been taken. Whereas, the genomic composition of clones

should be the same across the samples.

Moreover, mutations have long-range in�uences among themselves, which is not

captured by their 1-D genomic distance. Therefore, to achieve the second objec-

tive, we extend the tumour heterogeneity detection method to multiple samples

and long-range inter-dependencies among mutations to resolve the last shortcom-

ing (L3). Ji et al. (2016), observe that mutations with long-range in�uences appear

in genes of the same pathways. Therefore, addressing the second objective, we use

the known gene-gene interaction networks to identify long-range mutational in�u-

ences.

O3: Discovering the structure of the gene-gene interaction networks to �nd

out long-range mutational in�uences. Although we use known gene-gene in-

teraction in the second objective to �nd out the long-ranges mutational in�uences,
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some of the gene interactions are not found in the known networks. By good for-

tune, the gene expression data can help us to �nd these missing interactions. To

achieve our third objective, we develop a data based method to discover gene-gene

interaction from gene expression data. We cast this problem as discovery of the

structure of a probabilistic graphical model (PGM).

O4: Extending the graphical model structure discovery to heterogeneous

data. Recent studies on cancer genome atlas network have found that gene ex-

pression data can be described as a mixture of a small number of components

harbouring di�erent expression pathways (Mukherjee & Roriguez, 2016). Thus,

real-life datasets are heterogeneous, which can be accommodated through the use

of mixtures of graphical models. This allows each component exhibit di�erent con-

ditional dependencies among variables, a.k.a context-speci�c-dependencies (Meil 

& Jordan, 2000; Rodriguez, , Lenkoski, & Dobra, 2011). To achieve our �nal

research objective, we propose a method to discover context speci�c graphical

models.

1.6 Research Contribution

The research area in tumour heterogeneity prediction is rich with many open questions

and challenges. We address and solve the aforementioned limitations (stated in Section

1.4) through our objectives (given in Section 1.5). The major contributions of this thesis

are as follows:

C1: Prediction of clonal composition and clonal frequencies. One of the major

contributions of this research is to discover the clones with equal frequencies and

their mutational architecture. We develop a statistical model based on Factorial

Hidden Markov Model to infer the clonal compositions from noisy and mixed short

reads. First, we predict the clonal composition from single sample tumour data

(O1). Later we incorporate long-range in�uences among the mutations in addition
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to that of adjacent mutations (O2). Then we incorporate multiple samples in our

extended statistical model (O2) for more accurate tumour heterogeneity inference.

PUBLICATION: Mohammad S Rahman, Ann E. Nicholson and Gholamreza Haf-

fari �HetFHMM: A novel approach to infer tumour heterogeneity using factorial

hidden Markov model", Journal of Computational Biology, 25(2): 182-193, 2018,

https://doi.org/10.1089/cmb.2017.0101

C2: Discovery of graphical models with low false discovery rate. Another

major contribution of our research is to discover the structure of probabilistic

graphical models with low false discovery rate. In C1, we only use the long-

range mutational in�uences available in the known gene-gene interaction networks.

Whereas, the real cancer data contains many unknown gene-gene interaction as

well. To capture the unknown gene-gene interaction, we have proposed a scal-

able and statistically e�cient approach for graphical model structure discovery

involving continuous variables (O3). We introduce a novel method based on the

minimum message length (MML) (Wallace & Boulton, 1968) for statistical infer-

ence to improve the structure discovery of Gaussian graphical models.

PUBLICATION: Mohammad S Rahman and Gholamreza Ha�ari, �A statistically

e�cient and scalable method for exploratory analysis of high-dimensional data",

Revised version submitted to Journal of Data Mining and Knowledge DIscovery.

C3: Structure learning with mixture of Gaussian graphical models. Our last

contribution to tumour heterogeneity research is to discover the context-speci�c

graphical models from heterogeneous data, considered as a mixture of graphical

models. We propose a statistically e�cient method to discover context-speci�c

Gaussian graphical models structure, along with their shared edges, from high-

dimensional data(O4). We introduce PaGIAM (Partition and Graphical model

discovery Iterative Algorithm based on MML) for clustering the data and tGDM

(the context-speci�c Gaussian graphical models Discovery using MML) for dis-

covering the context-speci�c graphical models with shared edges based on the
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minimum message length. Most of the existing methods discovering the mix-

ture of GGMs use the hard EM algorithm to cluster the heterogeneous data and

�nd the GGM components in the mixture. However, they do not consider the

existence of context speci�c graphical structures. In contrust, PaGIAM is an it-

erative algorithm based on EM which considers the existence of context-speci�c

graphical structures. The tGDM algorithm is a step-wise greedy algorithm to �nd

the context-speci�c GGMs and their shared edges. By combining the ideas of

these two algorithms, we discover the context-speci�c graphical structures from

the heterogeneous data more accurately than the existing methods.

1.7 Thesis organization

The thesis is organised into six chapters.

Chapter 2 gives an overview of the related work in the areas of both inferring

the clonal composition and structures of graphical models. First, we review di�erent

approaches to inferring the clonal architecture and clonal frequencies. Then we review

di�erent Gaussian graphical model structure learning techniques to discover gene-gene

interaction networks, which helps to capture long-range inter-dependencies among mu-

tations. In this review, we focus on the methods that discover Gaussian graphical models

from homogeneous as well as heterogeneous data.

Chapter 3 introduces our novel framework for inferring the clonal composition

for single-sample tumour data (O1). This framework is based on Factorial Hidden

Markov Models (Ghahramani & Jordan, 1997) to infer clones and their proportions from

the noisy NGS data, called Heterogeneity prediction using Factorial Hidden Markov

Models or HetFHMM. We then present an extensive evaluation for HetFHMM with

various synthetic and publicly-available real cancer datasets. We compare the perfor-

mance of HetFHMM with other state-of-the-art techniques in tumour heterogeneity

prediction- PyClone and PhyloSub- based on accuracy and robustness for tumour het-

erogeneity prediction.
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Chapter 4 presents the extension of HetFHMM to discover clones and their genetic

make-up from multiple samples and leveraging long-range mutational in�uences (O2).

To capture long-range in�uences among mutation, we use known gene-gene interaction

network. We call this extension of HetFHMM extended multisample HetFHMM or

emHetFHMM. We present extensive evaluation of emHetFHMM and compare with

PyClone, PhyloSub and HetFHMM based on using both synthetic and real cancer data.

Many gene-gene interactions are hidden and not found in the existing gene-gene in-

teraction networks. Therefore, we aim to discover the gene-gene interaction networks

from real-life cancer data. In Chapter 5, we introduce a new method to discover

gene-gene interaction network, formulated as Gaussian graphical model structure dis-

covery (O3). To select the best suitable edges for the graphical model, we use mini-

mum message length (MML), which makes it possible to learn the structure from high-

dimensional data, where the number of random variables is larger than samples. We

call our method ContChordalysis-MML. We present an evaluation framework and com-

pare ContChordalysis-MML with strong baselines: TIGER (H. Liu, 2017), r-GLasso

(Avagyan, Alonso, & Nogales, 2017), FoBa-gdt (J. Liu, Fujimaki, & Ye, 2014), CLIME

(Cai, Liu, & Luo, 2011) and GLasso (J. Friedman et al., 2008).

Real cancer datasets exhibit heterogeneity, i.e. the mixture of di�erent cancer sub-

types and normal tissue. These cancer subtypes have di�erent gene-gene interaction

networks with a set of common gene-gene interactions. Chapter 6 presents the exten-

sion of our graphical model discovery method for heterogeneous data (O4). To discover

context-speci�c graphical models and their shared structure, our method incrementally

adds best edges minimising an MML-based scoring function in the forward selection

algorithm (Deshpande et al., 2001). Following the previous chapters, we present exten-

sive evaluation results to compare our method along with two strong baselines: New-SP

(Gao, Zhu, Shen, & Pan, 2016) and JSEM (Ma & Michailidis, 2016).

Finally, Chapter 7 summarizes the work of the thesis, draws conclusions, and

outlines the possible future directions.



Chapter 2

Background and literature review

2.1 Introduction

In the Introduction chapter, we highlighted the drawbacks of the existing methods to

infer tumour heterogeneity from the tumour samples. Based on drawbacks, we set four

research objectives for the thesis. The �rst two objectives aim to predict clones and their

genetic make-up along with clonal frequencies. To predict clones, their genetic make-up,

and frequencies, some methods have been developed. Among these methods, a group

of methods infer clones by clustering mutations and predict the tumour phylogeny to

detect the tumour clones and their frequencies. Another group of methods predict clones

by inferring the genotypes1 of mutations. All of these methods su�er from drawbacks

as mentioned in the previous chapter. In this chapter, we discuss all of the methods

that are close to our methods.

Moreover, as described in the Introduction chapter, we set the third objective to

develop a method to discover the gene-gene interaction networks using Gaussian Graph-

ical Model (GGM) from the high-dimensional data. In this chapter, we also discuss the

existing methods which discover the GGM from the high-dimensional data and their

drawbacks.

The �nal objective is to discover context-speci�c GGMs from heterogeneous data

1Genetic make-up of a mutation.

15
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containing mixture of GGMs. Existing methods to discover context-speci�c GGMs

from heterogeneous data are discussed in this chapter. Therefore, the whole chapter is

divided into four sections as below:

• Methods that leverage the tumour phylogeny to predict the tumour clones and

their frequencies.

• Methods that leverage genotypes of the mutations to infer the tumour clones.

• Methods that discover Gaussian graphical models (GGMs).

• Methods that learn context-speci�c GGMs from the heterogeneous data.

2.2 Inferring tumour clones with phylogeny

A group of tumour heterogeneity inference methods detect the tumour clones by infer-

ring clusters of mutations and clonal frequency of clones on the phylogeny property2 of

tumour. According to the phylogeny property of the tumour, each clone can contain

two types of mutations:

1. Old mutation: Mutations that appear in a clone and its ancestor clones.

2. New mutation: Mutations that appear in a clone only.

The cellular frequency of new mutations of a clone would be same, and equal to the

clonal frequency3 of that clone. This can be expressed as follows:

ϕi = φj (2.1)

where i is a new mutation that appears in the clone j only. ϕ and φ are the cellular fre-

quency of a mutation and clonal frequency of a clone, respectively. Moreover, according

to the phylogeny property, old mutations that appear inside an ancestor of some or all

2All clones follow a perfect persistent phylogeny, where a mutation cannot be reverted back to its
original state

3The fraction of cells that are genetically similar to each other.
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of the existing clones should be present in all of its descendant clones. Therefore, the

cellular frequency of an old mutation follows the following mathematical relation:

ϕk = φancestor +
∑

∀ j∈ D(ancestor)

φj (2.2)

where k is an old mutation which appears in the clone ancestor and its descendent

clones j. D(ancestor) is a function which �nds the descendants of the clone ancestor.

According to the equation (2.2), the cellular frequency of an old mutation would be

higher than a new mutation. Moreover, the cellular frequency of old mutations of

an ancestor clone would be di�erent from the other ancestors. So, it is possible to

predict clones and their mutations by clustering mutations according to their cellular

frequencies.

In reality, it is not easy to compute cellular frequency of mutations from DNA se-

quences of a tumour sample. DNA sequencing is a technique which is used to determine

the precise order of nucleotides of DNA sequences. But DNA sequencing cannot detect

the complete DNA sequences. It produces fragmented pieces of DNA sequences which

are called short reads. Mutations are identi�ed by comparing the nucleotides of short

reads with the reference genome4. Mismatched nucleotides of short reads are considered

as mutations. The fraction of short reads containing a mutation at any genomic location

t may be considered as the cellular frequency of mutation t, which is called BAF5 ((B

allele6 frequency)).

Strino et al. (2013), Zare et al. (2014), Hajirasouliha et al. (2014), Miller et al.

(2014), Malikic et al. (2015), Popic et al. (2015), El-Kebir, Oesper, Acheson-Field, and

Raphael (2015), and Satas and Raphael (2017) consider BAF as the cellular frequency

4A complete human DNA sequence.
5BAFt = āt

a+āt
, where at and āt are the number of the short reads of matched and B allele at a

location t, respectively. Some of the researchers refer to it as the variant allele frequency or VAF
6In the context of short read, the �B� allele is the non-reference allele observed in a heterozygous

SNP, i.e. in the normal or tumour sample. Since the tumour cells' DNA are originally derived from
the normal cells' DNA, most of these SNPs will also be present in the tumour sample. But due to
allele-speci�c copy number alterations, loss of heterozygosity or allelic imbalance, the count of B allele
of these SNPs may be di�erent in the tumour, and that is the evidence that one (or both) of the copies
was gained or lost during tumour evolution.
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of a mutation in their methods. They use di�erent clustering approaches to cluster the

cellular frequencies of mutations to infer the clones. TrAp (Strino et al., 2013), Clomial

(Zare et al., 2014) and AncesTree (El-Kebir et al., 2015) use the matrix factorization

method to infer clonal frequencies and clones. SciClone (Miller et al., 2014), Rec-

BTP (Hajirasouliha et al., 2014) and PASTRI (Satas & Raphael, 2017) use variational

Bayesian mixture model (VBMM) to cluster BAF. CITUP (Malikic et al., 2015) uses

the standard K-mean clustering approach. In LICHeE, Popic et al. (2015) compute the

similarity score between the BAFs of two mutations as follows:

similarity scorei,j =
∑

∀ samples i

min(BAFi, BAFj)

max(BAFi, BAFj)
(2.3)

where i and j are two mutations. If the similarity scorei,j is higher than a given

threshold, the mutation i is assigned to the cluster having the mutation j. All of the

above mentioned methods assume that all mutations are single nucleotide variation

(SNV)7. These are not designed for copy number variation (CNV).

Interestingly, during DNA sequencing, some fragments of a DNA sequence are am-

pli�ed by some enzymes8 and E. coli9, which increases the number of short reads.

Moreover, some fragments are harmful to E. coli and cause the death of E. coli bac-

teria. Therefore, it reduces the number of short reads. On the other hand, di�erent

types of mutations especially CNVs also a�ect the short reads counts. Tumour sample

is the admixture of di�erent tumour clones and normal cells. Hence, the number of

short reads is not able to express the exact number of cells that contain a mutation.

That is BAF should not be considered as the cellular frequency of a mutation.

Jiao et al. (2014), Roth et al. (2014), Deshwar, Vembu, Yung, et al. (2015), K. Yuan

et al. (2015) and Jianga et al. (2016) cluster mutations using the Bayesian approach

(posterior probabilities) from the short read counts of B allele.

Roth et al. (2014) proposes a method called PyClone, which uses Hierarchical Dirich-

7Some researchers also call it single nucleotide polymorphism (SNP).
8Enzymes are used to cut the DNA sequence into multiple fragments
9In DNA sequencing, E. coli is used to isolate the each fragments from others.
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let process as the prior. To compute the likelihood, they consider three types of sub-

populations to be present in tumour samples:

(a) Normal subpopulation, which contains the normal cells,

(b) Reference subpopulation, which contains the tumour cells, but do not exhibit

mutation i,

(c) Variant subpopulation, which contains tumor cells and exhibit mutation i.

Moreover, they assume that the number of B-allele short reads ā follows the Binomial

distribution, and computes as follows:

P (āi|Ni,Gi, φ, φ0) = Bin(Ni, Pb(Gi, φ, φ0)) (2.4)

where the expected probability of B allele reads Pb is

Pb =
φ0C(G(n)

i )B(Gi) + (1− φ0)(1− φt)C(G(r)
i )B(Gi) + (1− φ0)φtC(G(v)

i )B(Gi)
φ0C(Gi) + (1− φ0)(1− φt)C(Gi) + (1− φ0)φtC(Gi)

. (2.5)

φ0 and φt are frequencies of the normal and variant populations, respectively. G(n)
i , G(r)

i

and G(v)
i are the genotypes of the normal, reference and variant subpopulations of the

mutation i, respectively. C(G) and B(G) are functions which give the total and B allele

copy number from genotype G, respectively. Interestingly, this method is dependent on

the inference methods for predicting genotypes.

Jiao et al. (2014) also infer clusters of mutations by posterior probability. They use a

tree structured stick breaking process prior (Adams, Ghahramani, & M.I.Jordan, 2010)

to cluster and to compute the prior probabilities. Similar to PyClone, they assume

that B-allele short reads follow the binomial distribution, but the expected probability

function Pb is di�erent from PyClone:

Pb = φtP
(t)
b + (1− φt)P (n)

b (2.6)

where P
(t)
b and P

(n)
b are the probabilities of sampling the B allele from the tumour and
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normal populations, respectively. Their proposed method is known as PhyloSub. The

advantage of PhyloSub over PyClone is that PhyloSub is not dependent on the output

of genotype prediction methods.

Deshwar, Vembu, and Morris (2015) improve PhyloSub by incorporating treeCRP

(tree structured Chinese Restaurant Problem) to cluster and compute the posterior

probabilities. This modi�ed method is known as treeCRP (Deshwar, Vembu, & Morris,

2015). PhyloSub, PyClone and treeCRP work on only the single nucleotide variations

(SNVs), and not on the copy number variations (CNVs). Later, Deshwar, Vembu, Yung,

et al. (2015) improve PhyloSub further by considering the presence of CNVs and SNVs

within the tumour population to cluster mutations. They consider any of the following

four scenarios of a mutation:

One. Only SNV appears,

Two. Only CNV appears,

Three. SNV appears after CNV,

Four. SNV appears before CNV,

For each scenario, they assume the value of B-allele short reads counts would be dif-

ferent. Therefore, Deshwar, Vembu, Yung, et al. (2015) modify the computation of

the expected probability function Pb. They introduce two terms: The number of

copies of the reference allele C
(r)
i and B allele C

(v)
i at i. The copy numbers of ref-

erence allele and B allele would be di�erent in each scenario. In scenarios one and

two: C
(r)
i = C

(r)
i + φu × 2 (u is the reference subpopulation) and C

(v)
i = C

(v)
i . In

scenarios three and four: C
(r)
i = C

(r)
i + φu × 2 (u is the reference subpopulation) and

C
(v)
i = C

(v)
i + φu (u is the variant subpopulation). Finally, the expected probability

function Pb is changed as below:

Pb =
C

(r)
i (1− ε) + C

(v)
i ε

C
(r)
i + C

(v)
i

(2.7)
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where ε is the probability of reading the reference allele when the location contains the

variant allele. This method is known as PhyloWGS.

K. Yuan et al. (2015) also use posterior probability to cluster mutations, which is

exactly the same as the PhyloSub. But they use di�erent technique to discover the

tumour phylogeny, which we discuss later in this section. This method is known as

BitPhylogeny. Similar to PhyloWGS, Jianga et al. (2016) infer clusters by assuming

that both SNVs and CNVs are present in the tumour samples. But they develop a

single equation to capture the expected probability function Pb for the four scenarios

(mentioned earlier), which is as follows:

Pb =
Cmut · φcancer

2× (1− φcancer) + Ctotal × φcancer
(2.8)

where, φcancer is the purity of the cancer cell, which is user de�ned. Cmut and Ctotal

are the mutant-allele copy number and total copy number, respectively. This method

is named Canopy.

After clustering mutations, most of the methods discover the phylogeny of the clus-

ters to �nd tumour clones and their frequencies. PyClone, Clomial and SciClone do

not predict the tumour phylogeny from the mutations clusters. These three methods

assume the predicted clusters to be the tumour clones and the frequencies of the clusters

as the clonal frequencies. But in the real world, an old clone may change to a set of new

clones by harbouring a set of new mutations and become extinct in the tumour sample.

Hence, PyClone, Clomial and SciClone predict more clones than the real clones.

Other methods infer tumour phylogeny to predict tumour clones and their clonal

frequencies. TrAp (Strino et al., 2013), AncesTree (El-Kebir et al., 2015), LICHeE

(Popic et al., 2015), Canopy (Jianga et al., 2016) and PASTRI (Satas & Raphael, 2017)

create a k × m binary matrix B, where the entry Bij is one if mutation j is present

in the clone i, and zero otherwise. k and m are the number of clusters and mutations,

respectively. From this binary matrix the tumour phylogeny is created in following

fashions:
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Ancestor clone and descendent clone prediction: From the binary matrix, these

methods select a cluster as the root node of the tree, which contains all of the mu-

tations and these mutations are also present in all other clusters. These methods

select a cluster as an internal node if it contains the mutations of its parent nodes

and some new mutations which are also present in its descendant nodes. Finally,

these methods select leaf nodes clusters, which contain all of the old mutations of

their ancestor nodes and some new mutations.

Maintaining the children sum to parent condition: According to the children

sum to parent condition, the clustering frequency of an internal node would be

equal or greater than the sum of the clustering frequencies of its children nodes.

These methods maintain this relationship to infer the internal nodes of the tree.

Existing clone prediction: These methods assume the leaf node clusters as the ex-

isting clones. Moreover, these methods select an internal node as existing clones

if the clustering frequency of this internal is greater than that of its children.

As mentioned earlier, TreeCRP (Deshwar, Vembu, & Morris, 2015), PhyloSub (Jiao

et al., 2014), PhyloWGS (Deshwar, Vembu, Yung, et al., 2015) cluster mutations into

several clusters either by tree structured Chinese restaurant process or by tree structured

stick breaking process (TSSB), respectively. In both processes, two more hyperparam-

eters γ and λ are used to control the tree topologies with concentration parameter α.

The hyperparameters α and λ determine the number of nodes (subclones) in the tree,

λ also a�ects the height of the tree and γ a�ects the width of the tree. These three

hyperparameters are sampled as part of MCMC sampling e.g. Gibbs sampling. After

de�ning the tree topologies, Deshwar, Vembu, Yung, et al. (2015) Deshwar, Vembu, and

Morris (2015) and Jiao et al. (2014) place clusters with lower frequencies into the leaf

nodes of the tree, and then place the rest of the clusters in the tree by maintaining the

following frequency relationships between the internal nodes and their children:

φinternal = freqinternal −
∑

∀ u∈ Child(internal)

φu (2.9)
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where, freqinternal is the cluster frequency of the cluster internal, and Child(internal)

is a function denoting the children of the node internal.

Hajirasouliha et al. (2014) predicts tumour phylogeny from clustered BAFs in a

di�erent way. In Rec-BTP, they modify the children sum to parent condition as follows:

freqinternal =
∑

∀u∈Child(C)

φu (2.10)

Rec-BTP starts with a cluster with the highest frequency i.e. 1.00 and selects as the

root. Then it selects two clusters whose frequencies satis�es the equation (2.10). If the

sum of the two next higher clusters are not equal to the frequency of the root node,

Rec-BTP selects the next highest cluster and introduce a dummy cluster called auxiliary

node, and makes them the children of root node. The frequency of the auxiliary node

is as followed:

φauxiliary = φroot − φ(next highest frequncy cluster) (2.11)

For the next highest node, Rec-BTP uses the same technique to �nd its children. Rec-

BTP continues until all clusters are placed in the tumour evolutionary tree. Therefore,

Rec-BTP produces many auxiliary nodes inside the tumour phylogeny, which is one of

the major drawbacks of Rec-BTP.

All of the methods mentioned above (PhyloSub, PhyloWGS, TreeCRP, Rec-BTP,

TrAp, AncesTree, LICHeE, Canopy and PASTRI) infer the tumour phylogeny assuming

that the phylogenetic tree is a binary tree. Malikic et al. (2015) use Beyer-Hedetniemi

algorithm to predict the n-ary tumour phylogeny.

BitPhylogeny (K. Yuan et al., 2015) use a mixture of two Laplace distributions to

model the parent�child relation,

P (φi|φparent(i),Λ, ϑ, w) =
K∏
i=1

wiLaplace(ϑ,Λ) + (1− wi)Laplace(−ϑ,Λ) (2.12)

where ϑ de�nes the location of a positive and a negative mode. Intuitively, the positive

mode generates parameters that give a high probability of observing mutation events,
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whereas the negative mode has the opposite e�ect. The hyperparameter Λ models

variation within the modes. The weights wi and (1 − wi) of the two Laplace densities

specify the probabilities of either mode being selected for sampling the child parameter.

The performance of all of the above discussed methods were tested on the synthetic

and real cancer data e.g. AML (Acute Myeloid Leukemia), CLL (Chronic Lymphocytic

Leukemia), TNBC (Triple Negative Breast Cancer), HGSOC (High Grade Serous Ovar-

ian Cancer) etc. Each method shows its e�cient performance on predicting tumour

clones and the clonal frequencies.

Despite the performance, the above mentioned methods have the following serious

drawbacks:

(a) They assume that all mutations appear independently. But in reality, a mutation

appears under the e�ect of other mutations. Modeling this important feature is

missing in these methods.

(b) Except PhyloWGS and Canopy, they consider mutations are SNVs.

(c) They assume that only a single type of mutation can appear at a location. But

in the real world, mutations are di�erent in clones. None of the above discussed

methods consider that mutations are clone speci�c.

In this thesis, we develop a method to infer clones with their mutations, and fre-

quencies to resolve the above mentioned drawbacks.

2.3 Inferring tumour clones with genotype

From the cancer research literature (Freese, 1959; Caraco, 1998; Anand et al., 2008;

Hanahan & Weinberg, 2011), mutations appear under the in�uence of other previous

mutations. This in�uence is known as the position speci�c e�ect, and it is a stochastic

process.

Moreover, genotype is a representation of a mutation along with its types. In geno-

type, `A' and `B' are used to represent the two SNP alleles inherited from parents. Dif-
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ferent kinds of chromosomal abnormalities such as copy number gain/loss and LOH10

are modeled by genotypes. Genotype also represent the zygosity11 of a mutation. Table

2.1 lists all mutation genotypes that are used in di�erent methods. Genotypes not only

represent a point mutation but also the copy number of the mutated part of the genome.

Table 2.1: The genotype variable space

copy number Genotype state Genotype Description
0 0 ∅ Nullizygous12

1
1 A

Hemizygous13
2 B

2
3 AA Copy neutral with LOH
4 AB Normal copy
5 BB Copy neutral with LOH

3

6 AAA Three copies with LOH
7 AAB Three copies with duplication of A allele
8 ABB Three copies with duplication of B allele
9 BBB Three copies with LOH

4

10 AAAA Four copies with LOH
11 AAAB Four copies with duplication of A allele
12 AABB Four copies with duplication of both alleles
13 ABBB Four copies with duplication of B allele
14 BBBB Four copies with LOH

4

15 AAAAA Five copies with LOH
16 AAAAB Five copies with duplication of A allele
17 AAABB

Five copies with duplication of both alleles
18 AABBB
19 ABBBB Five copies with duplication of B allele
20 BBBBB Five copies with LOH

However, genotype of a mutation can be predicted by capturing the position spe-

ci�c e�ects. Therefore, the dependency among the genotypes of the mutations can be

modelled by a Markov model.

From DNA sequencing, it is not possible to detect the genotypes of mutations di-

rectly. As mentioned earlier, DNA sequencing produces short reads of a DNA sequence.

10Loss of heterozygosity (LOH) is a cross chromosomal event that results in loss of the entire gene
and the surrounding chromosomal region (Joseph et al., 2014). Human cells contain two copies of the
genome, one from each parent. Each human copy contains approximately 3 billion bases (adenine (A),
guanine (G), cytosine (C) or thymine (T)). For the majority of positions in the genome the base present
is consistent between individuals, however a small percentage may contain di�erent bases (usually one
of two; for instance, `A' or `G') and these positions are called `single nucleotide polymorphisms' or
`SNPs'. When the genomic copies derived from each parent have di�erent bases for these polymorphic
regions (SNPs) the region is said to be heterozygous. Most of the chromosomes within somatic cells of
individuals are paired, allowing for SNP locations to be potentially heterozygous. However, one parental
copy of a region can sometimes be lost, which results in the region having just one copy. The single
copy cannot be heterozygous at SNP locations and therefore the region shows loss of heterozygosity
(LOH). Loss of heterozygosity due to loss of one parental copy in a region is also called hemizygosity
in that region.

11Zygosity is the degree of similarity of the alleles for a trait in an organism.
12Both alleles are missing at genomic location.
13One allele is missing at genomic location.
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Figure 2.1: Probabilistic graphical model of an ordinary HMM

Therefore, it is important to predict the genotype of a mutation from the short reads.

A special Markov chain model is required to infer genotypes from short reads, where

genotypes are hidden states and short reads are observations. Hidden Markov Model

(HMM) is a suitable Markov model to infer genotypes from short reads.

In HMM, there are three types of probabilities required to infer hidden variables (or

hidden states):

• Transition probabilities P (St = x|St−1 = y) = At(x, y) ∀t > 0;

• Emission probabilities P (OtOtOt|St, θ);

• Initial probabilities P (S0) = π(S0) = π0;

where St and OtOtOt are the hidden states, and observations at t location, respectively. θ

denotes the parameters of HMM.

Several HMM based methods are developed to infer genotypes of a sequence of

mutations appear in tumour genome. GPHMM (A. Li et al., 2011) (Global Parameter

Hidden Markov Model) is one of the pioneer HMM-based method to predict genotypes

of mutations. In GPHMM, it is assumed that only a single type of mutation can appear

at one location. Each hidden state is expressed as St = (G(t),G(n)) where G(t) and G(n)

are the genotype of the tumour and normal populations at location t, respectively. As

inputs, it takes the number of B-allele short reads āt, and LRR14 lt at a location t.

A. Li et al. (2011) assume that āt and LRR are Gaussian distributed. The emission

14Log ratio of normal-tumour contents. lt = log
a
(n)
t

a
(v)
t +ā

(v)
t

= log
a
(v)
t +ā

(v)
t

ψt
. where a

(v)
t and ā

(v)
t are

the short read counts of matched and B-allele at a location t of tumour, respectively. a
(n)
t is the short

read count of normal cells at a location t. Together LRR and BAF express the zygosity of a mutation
along with the copy number (A. Li et al., 2011).
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probabilities of āt is de�ned as:

P (āt|Gt, θ) = N (āt, µāt , σb) (2.13)

where Gt is the genotype of the tth location: Gt = [Gtt ,Gnt ], µt is the mean of B-allele

reads, which is as follows

µāt = φt
B(Gtt)
C(G(t)

t )
+ (1− φt)

B(G(n)
t )

C(G(n)
t )

where B(Gt) and C(Gt) are the functions to get the B-allele copy number and total copy

number for any genotype Gt at t location, respectively. φt is the pre-assumed frequency

of the tumour population at tth location. σb is the variance of the B-allele short reads.

The emission probabilities of LRR lt is de�ned as

P (lt|Gt, θ) = N (lt, µlt + ot, σl) (2.14)

where ot and σl are the LRR base-line shift, which depend on the ploidy of the location

t and the variance of LRR, respectively. The mean µlt is as follows

µlt = φtC(G(t)
t ) + (1− φt)C(G(n)

t )

Initial probabilities are de�ned as follows

π0 =


1−P (0)
K−1

If G0 > 0

P (0) If G0 = 0

where P (0) is the initial probability of LRR base-line shift, which is set to 10−4. K is
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the number of hidden states. The transition probabilities of GPHMM is as follows

At(Gt,Gt−1) =



1− P (0)− P (f) Gt = Gt−1,Gt > 0,Gt−1 > 0

P (f)
N−2

Gt 6= Gt−1,Gt > 0,Gt−1 > 0

P (f) Gt−1 = 0

1−P (f)
−1

Gt = 0,Gt−1 > 0

(2.15)

where P (f) is the initial transition probability between two di�erent non-�uctuation15

states, which is set to be 10−5. Initial values of the global parameters o, σb and σl are

set to 0, 0.2 and 0.03. The authors pre-assume the value of φt for each t location.

A. Li et al. (2011) employ the EM algorithm to update parameters θ = (σb, σl, o)

and transition probabilities. In the E step, they use partial log-likelihood functions for

āt and lt. In the M step, the Baum-Welch algorithm and Newton-Raphson method are

used to estimate the transition probabilities.

In GPHMM, it is assumed that the number of clones at a mutant location t is one.

But in the real world, multiple clones can harbour the same mutant location. This prob-

lem is improved by Xia et al. (2013) in their method TH-HMM (Tumor Heterogeneity-

Hidden Markov Model). In TH-HMM, Xia et al. (2013) assume that the presence of two

clones, instead of one clone, at any location. This leads to three combinational cases

for any location:

One. Mutation appears at clone C1 only.

Two. Mutation appears at clone C2 only.

Three. Mutation appears at clones C1 and C2 both.

Except the concept of the presence of two clones at any location, there is no di�erence

between TH-HMM and GPHMM.

Similar to GPHMM, in TH-HMM, it is assumed that all data are Guassian dis-

tributed. Yu et al. (2014) observe that, the number of total short reads N follows an

15Fluctuation state is the nullizygous state of a location. In GPHMM, [N/A,AA], [N/A,AB] and
[N/A,BB] are �uctuation states
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over-dispersed distribution. Several e�ects (e.g. deletion or ampli�cation of short reads)

cause on large di�erence between the total short reads covering all locations. Yu et al.

(2014) also found that the number of B-allele short reads ā follows the Binomial dis-

tribution. Therefore, Yu et al. (2014) proposed new emission probabilities of B allele

short reads āt in their method CLImAT (CNV and LOH Assessment in Impure and

Aneuploid Tumors), which is as follows

P (āt|Nt,Gt, θ) = Bin(Nt, Pb(Gt, φt)) (2.16)

where Pb is the expected probability of the number of B-allele reads, which is as follows

Pb(Gt, φt) = φt
B(G(t)

t )

C(G(t)
t )

+ (1− φt)
B(G(n)

t )

C(G(n)
t )

In CLImAT, over-dispersed total reads are modeled by the negative binomial dis-

tribution. The emission probabilities of the total short reads at the location t, is as

follows

P (Nt|Gt, θ) = NB(Nt, λt, Pb)

= Γ(Nt+λt)
Γ(Nt+1)Γ(λt)

PNt
b (1− Pb)λt

(2.17)

where λt is the expected number of read counts, which is as follows

λt =
PN
2
λ+ o

λ is the mean value of copy neutral read count. The expected probability of total reads

PN is as follows

PN = φtC(G(t)
t ) + (1− φt)C(G(n)

t )

GPHMM, TH-HMM, CLImAT assume that only one type of mutation appears at a

location. For this reason, these methods cannot detect genetic make-up of a mutation

which is clone speci�c, i.e. clone speci�c genotypes.

In TH-HMM and CLImAT, the frequencies of two clones C1 and C2 are user de�ned.

Yau (2013) improve these methods using single variant population frequency φt. They
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assume that at a location t, there are three types of populations:

• The normal cell population with frequency φ0,

• The tumour cell populations which do not harbour t mutation, with frequency

(1− φt)(1− φ0), and

• The tumour cell populations which harbour the mutation t, with frequency φt.

It takes the number of B-allele and total short reads as inputs. Unlike CLImAT, it

assumes that the number of total reads follows the student t-distribution. The exact

number of total reads are unknown due to the loss or ampli�cation of DNA fragments or

change of copy numbers. Student t-distribution is a distribution whose mean is known,

but standard deviation is unknown. Due to the unknown number of exact total reads,

Yau (2013) cannot compute its standard deviation. So they assume that the number

of the total short reads follows the student t-distribution. The emission probabilities of

the total short reads are as follows

P (Nt|Gt, φ0, φt, σn, ν) = Student(µt, σn, ν) (2.18)

where ν is the degree of freedom, which is set to 4. µt is the mean of total reads, which

is as follows

µt = (φ0 + (1− φt)(1− φ0))C(G(n)
t ) + (1− φ0)φtC(G(t)

t ) (2.19)

Similar to CLImAT, Yau (2013) assumes that the number of B-allele short reads follows

the Binomial distribution. The emission probabilities of the number of B allele short

reads are as follows

P (āt|Nt,Gt, θ) = Bin(Nt, Pb) (2.20)

Where

Pb =
(φ0 + (1− φt)(1− φ0))B(G(n)

t ) + (1− φ0)φtB(G(t)
t )

(φ0 + (1− φt)(1− φ0))C(G(n)
t ) + (1− φ0)φtC(G(t)

t )
(2.21)
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Pb is the expected probability of the B-allele reads at a location t. Yau (2013) also

use the improved transition probabilities, which capture better position speci�c e�ect

of mutations (proposed by Colella et al. (2007)), as follows

At(Gt|Gt−1) =

 ρt Gt = Gt−1

1−ρt
K−1

Otherwise
(2.22)

where ρt = 1− 1
2
[1− e−(

dt
2L

)]. dt and L are the distance between two genotypes (Gt and

Gt−1) and average length of short reads, respectively.

Unlike previous methods, Yau (2013) does not employ any algorithm to learn the

parameters of OncoSNP-SEQ. Rather, they consider the pre-assumed range of values of

the parameters θ = (ν, φ0, φt). Without requiring a matched normal sample, OncoSNP-

SEQ fully explores genotypes of each location. It captures the position speci�c e�ect

successfully. Similar to CLImAT, GPHMM and TH-HMM, OncoSNP-SEQ also made

assumption on the appearance of single type of mutation at any location t. Sometimes

pre-assumed parameters cannot predict accurate genotype, specially when the normal-

tumour cells ratio is 55:45 or more (Ha et al., 2014).

In parallel to GPHMM, Ha et al. (2012) developed a method to predict genotypes,

named Apolloh. It takes the number of total reads, B-allele reads and LRR as inputs.

They have assumed that the number of B-allele reads follows the Binomial distribution,

and LRR follows the normal distribution. Emission probabilities of the B-allele reads

and LRR are as follows

P (āt|Gt, θ) = Bin(Nt, Pb) (2.23)

where Pb = φt
B(G(t)t )

C(G(t)t )
+ (1 − φt)B(G(n)t )

C(G(n)t )
is the expected probability of B-allele reads at a

location t. and

P (lt|Gt, θ) = N (lt, µt, σl) (2.24)

where µt = φtC(G(t)
t ) + (1 − φt)C(G(n)

t ) is the mean of LRR at a location t. σl is the

variance, which is set to 10−3. It uses the same transition probabilities of OncoSNP-SEQ
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(Yau, 2013). Initial probabilities are computed using Dirichlet process prior. Ha et al.

(2012) employs the EM algorithm to estimate the parameters. In the E step, Apolloh

computes the expectation of the complete-data likelihood. In the M step, it updates

its parameters θ = (φtφtφt, α) using maximum a posteriori (MAP) technique. It captures

position speci�c e�ect successfully to predict the genotype. But similar to TH-HMM,

CLImAT and OncoSNP-SEQ, it cannot infer clone speci�c genotypes.

TH-HMM, CLImAT, OncoSNP-SEQ and Apolloh assume that a tumour sample can

have only two tumour clones. But in the real world, each of the tumour sample may

have more than two clones and each clone contains a set of mutations. Therefore, it is

also important to cluster mutations to detect clones. But none of the above methods

predict clusters of mutations. Ha et al. (2014) revises their method by incorporating

the concept of Factorial Hidden Markov Model16 to predict genotype and the cluster id

of a mutation t. Ha et al. (2014) rename their method as TITAN. In TITAN, they build

two chains FHMM: One chain for the genotype G and another for the cluster id Z. The

emission probabilities are exactly the same as Apolloh, but the expected probability of

B allele reads Pb at location t and µt the mean of LRR follow the equations (2.21) and

(2.19) of OncoCNP-SEQ respectively. The transition probabilities for genotypes are the

same as equation (2.22). The transition probabilities for the cluster id are as follows

Tt(Zt|Zt−1) =

 ρZ Zt = Zt−1

1− ρZ Otherwise
(2.25)

where ρZ = 1 − 1
2
[1 − e−(

dt
2LZ

)
]. LZ is the average distance between two mutations of

same cluster. TITAN does not require any external clustering algorithm to �nd the

clones of the tumour sample. Similar to the previous methods, it assumes only one type

of mutation appear at any location t.

TITAN and previous all methods use log-likelihood as the objective function. Ac-

cording to Giraud (2014), log-likelihood has the issue of over-�tting model. For this

16Factorial hidden Markov model or FHMM is an HMM which contains n number of hidden chains
instead of one chain.
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reason, Yu et al. (2017) improve their method CLImAT to predict the clusters of the

mutations along with the genotypes by using BIC as the objective function. Following

TITAN, Yu et al. (2017) use Factorial HMM, where one chain is depicting aberration

state sequence, and other is delineating corresponding clonal clusters. Moreover, they

extend emission probabilities of read counts and B-allele read depth for capturing the

cluster id. Given the aberration state G and the kth clonal cluster, they assume B-

allele read depth is the binomial distributed with the conditional probability de�ned as

follows:

P (āi|Ni,GGG, k) =

(
bi
Ni

)
(
B(Gt,k)
C(Gt,k)

)āi(1− B(Gt,k)
C(Gt,k)

)Ni−āi (2.26)

where B(Gt,k) and C(Gt,k) are functions to get B allele and total copy number for the

genotype Gt,k, respectively. These functions are de�ned as below

B(Gt,k) = C
(n)
t BAF

(n)
t (1−φk) +C

(v)
t BAF

(v)
t φk C(Gt,k) = C

(v)
t BAF

(v)
t (1−φk) +C

(v)
t φk

(2.27)

where C
(n)
t and BAF

(n)
t denote the copy number and expected B allele frequency (BAF)

of the normal cells, respectively, C
(v)
t and BAF

(v)
t represent the copy number and BAF

of tumour cells, respectively. In addition, they assumed that read counts is negative

binomial (NB) distributed, which is as follows:

p(Nt|λ, Pb,GGG, k) =
Γ(Nt + λG,k

1−Pb
Pb

)

Γ(Nt + 1)Γ(λG,k
1−Pb
Pb

)
(1− Pb)

λG,k
1−Pb
Pb PNt

b (2.28)

where, λ is the mean read counts associated with normal copy and λG,k is formulated

as

λG,k =
C(Gt,k)

2
λ (2.29)

The rest of all probabilities and parameter estimations are the same as CLImAT. They

also use the transition probabilities of cluster id from TITAN. To capture better geno-

type and clusters of the mutation, they use BIC as the objective function:

BICCLImAT−HET = −L+
λ

2
mC · ln(T ) (2.30)
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where λ and mC the regularization parameter and the number of free parameters.

Except OncoSNP-SEQ, all of the above discussed methods are evaluated on the

synthetic and the real data e.g. triple negative breast cancer. But these methods have

a number of serious drawbacks:

1. They consider the e�ect of adjacent previous mutation on the current mutation.

Whereas Ellenbroek and v. Rheenen (2014) observe that mutations in genes of

the same pathway have strong dependencies, known as long-range mutational

in�uences. This important type of dependency is ignored in all of the methods

2. To infer genotypes, they assume the clonal frequencies are pre-de�ned.

3. All method specially, TITAN and CLImAT-HET, assume that a mutation appears

only in one clone. But in the real world, genomic aberration can appear in di�erent

clones in di�erent way. Therefore, no method predict the clone speci�c genemic

aberrations.

According to above discussed drawbacks, our research objective is to develop an Fac-

torial HMM which considers the presence of multiple mutations e�ect on one mutation

including the types of e�ect.

2.4 Gaussian graphical model structure discovery

In Chapter 1, we mentioned that we set a research objective (second objective) to

develop a method which works on the long-range mutational in�uences to predict sta-

tistically better tumour heterogeneity. According to Ji et al. (2016), since the existence

of three dimensional structure of DNA, mutations with long-range in�uences are located

close to each other and genes of these mutations form a pathway. Therefore, genes of

same pathway can skeleton the list of mutations having the long-range in�uences. We,

therefore, use the known gene-gene interaction networks to �nd genes and their path-

ways. From genes, their pathways, and their gene locations, we identify the mutations

with the long-range mutational inter-dependencies.
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All gene-gene interactions can not be found in the known gene-gene interaction

networks. For this reason, we set another objective (third objective) for the thesis to

discover the gene-gene interaction networks from the cancer data. It is well known that,

gene expression data is an important source to discover gene-gene interaction networks.

Moreover, most of the gene expression data is Gaussian distributed (Shokirov, 2013).

Therefore, we plan to develop a method to discover gene-gene interaction networks as

the structure of Gaussian Graphical Model (GGM). In this section, we discuss existing

methods to discover the structure of GGM from the high dimensional data.

Let D = {X1, . . . , Xn} be a training set consisting of n data points where Xi ∈ Rd

and d is the number of dimensions (equivalently attributes, or random variables). It

is assumed that the observed input vectors have been generated from a multivariate

Gaussian distribution D ∼ Nd(µ,Σ). The aim is to discover the unobserved undirected

Gaussian graphical structure G = (V,E), where V is the set of vertices, each of them

corresponds to a random variable (or a dimension of the input vectors), and E is the

set of edges capturing the interaction (statistical associations between) random vari-

ables, from the observed/sampled vectors in D. Interestingly, the dependency structure

among the variables corresponds to non-zero entries of the precision matrix K = Σ−1 in

Gaussian graphical models (GGM) (Koller & Friedman, 2009). Here, Σ is the covariance

matrix. Hence, methods to discover the GGM from the high-dimensional data focus on

inferring the precision matrix from the data.

Initially, Gaussian graphical models (GGMs) are discovered based on the exhaustive

search algorithms. These algorithms are classi�ed into three categories:

Forward selection: This algorithm starts with the simplest model with no edge (i.e.

E = ∅). Edges are added incrementally, as long as the objective function �nds

an optimal GGM.

Backward elimination: This algorithm starts with the complete graph over the |V |

vertices, and edges are deleted incrementally as long as the new hypothesised

models are not rejected according to the objective function.
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Forward-backward combination: This algorithm is the combination of forward se-

lection and backward elimination algorithms. In forward step, the algorithm ini-

tially starts from an empty edge list E and then adds the edges incrementally as

long as it improves the objective function at least by εE, otherwise the algorithm

terminates. Then, in the backward step, the algorithm checks one or more of the

previously added edges that do not contribute at least νE to the objective function,

then the algorithm removes them from the edge list E. This procedure ensures

that at each round, the objective function is improved by at least (1− νE)εE.

Deshpande et al. (2001) proposed a forward selection based greedy algorithm to

discover GGMs from the high-dimensional data. They maintain the chordality17 in

GGM, which gives the statistical guarantee to compute the objective function. They

use Maximum Likelihood Estimate (MLE) as the objective function. Due to the use

of MLE based objective function, their method faces the over-�tting problem and not

e�cient when the number of samples is far less than the number of variables.

Noting on the drawback of Deshpande et al. (2001)'s method, Jalali, Johnson, and

Ravikumar (2011) propose an algorithm to discover the structure of a graphical model

based on the forward-backward algorithm, called FoBa. They use penalized likelihood

as the objective function. Moreover, they de�ne εE = cn·log d
n

, where cn is a constant

between 0 and 1, and νE = 0.5. However, FoBa predicts only 45% of true edges from

the data.

To improve the performance of FoBa, Johnson, Jalali, and Ravikumar (2012) modify

FoBa by introducing a new objective function and εE. The updated objective function

is as follows:

L(D|K)Johnson = −d
2

log 2π − 1

2
log |Σ|exp

{
− 1

2

n∑
i=1

(Di − µ)Σ−1(Di − µ)T
}

+tr{Σ−1(K − K̂)} − tr{K0(K − K̂)}+ (λ− log (1 + λ)) (2.31)

17In graph theory, a �chordal graph� is one in which all cycles of four or more vertices have a chord,
which is an edge that is not part of the cycle but connects two vertices of the cycle. Equivalently, every
induced cycle in the graph should have exactly three vertices (West, 2001).
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where λ = (
√
c log d

n
). c is the constant tuning parameter, set to 0.5. Johnson et al. (2012)

modi�ed εE to degmax(G)·log d
n

. degmax(G) is the function to �nd the maximum degree of

the graph G. Their method is known as FoBa-Johnson. FoBa-Johnson showed it good

performance on random network, but not well on star, hub and small world networks.

J. Liu et al. (2014) observed that neither FoBa nor FoBa-Johnson estimate εE from

the data, and it a�ects the performance. Therefore, they estimate εE using the precision

matrix K, as below:

εFoBa-gdt = |K|
√

log d

n
(2.32)

J. Liu et al. (2014) call their algorithm FoBa-gdt. However, greedy based GGM discovery

algorithms su�er from the poor performance when the number of sample is far less than

the number of variables.

It is well know that the dependency structure among variables corresponds to non-

zero entries of the precision matrix in Gaussian graphical models (GGM) (Koller &

Friedman, 2009). To predict the precision matrix, Tibshirani (1996) presents a relation

between the precision matrix and regression coe�cient. More speci�cally, Tibshirani

(1996) describes that the neighbours of each node can be found by regressing that

variable against the remaining variables. Therefore, Lasso (Least Absolute Shrinkage

and Selection Operator) can be used to infer the precision matrix e�ciently. Therefore,

some methods have been developed using Lasso to predict the precision matrix from

the high dimensional data.

For the �rst time, Meinshausen and Buhlmann (2006) propose a method using Lasso

to estimate the precision matrix, named NLasso. Using Lasso, the method updates the

precision matrix in row-by-row fashion. NLasso estimates of ith row of precision matrix

K̂i is as follows:

K̂i = arg min
K̂i:K̂ii=0

{
‖Di −DK‖2

2

n
+ λ‖K‖1

}
(2.33)

where λ is the regularization parameter. During the computation of the precision matrix,

Meinshausen and Buhlmann (2006) assign zeros to the diagonal entries Kii. The method

keeps updating the rows of the precision matrix until the pseudo maximum likelihood
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�nds the optimal solution. Due to zeros in the diagonal entries of the precision matrix,

NLasso does not produce a positive de�nite precision matrix when the size of the sample

is far less than the number of variables. Therefore, the precision matrix would not be

invertible and likelihood can not be estimated. Moreover, in the real world, GGMs are

not densely connected graph, rather these are sparse networks. The level of sparsity is

not maintained in NLasso.

M. Yuan and Lin (2007) propose a new Lasso based method by assuming that

observations are suitably centred and scaled; and the diagonal elements of the sample

precision matrix equal to one to maintain the positive de�niteness. They estimate the

ith row of the precision matrix as follows

K̂i = arg min
K̂

(
2
∑
i<j

ΣijK̂ij +
∑
i

ΣiiK̂ii − log

(
|
∑
i

K̂iiI i +
∑
i<j

K̂ijI ij|
))

(2.34)

subject to
∑

i K̂iiI i +
∑

i<j K̂ijI ij being positive de�nite, where I i is an n × n matrix

with the (i, i)th entry being 1 and all other entries being 0. I ij is an n × n matrix

with the (i, j)th and the (j, i)th entries being 1 and all other entries being 0. M. Yuan

and Lin (2007) update each of the rows until the following penalized likelihood based

objective function �nds the optimal solution:

L(D|K)Y uan = − log |K̂|+ tr{K̂Σ}+ λ
∑
i≤j

Kij (2.35)

where λ = logn
n

is the regularization parameter to control the sparseness of the graph.

Interestingly, a larger value of λ corresponds to a sparser solution that �ts the data less

well. A smaller λ corresponds to a solution that �ts the data well but is less sparse.

Therefore, the choice of λ is an important issue and it should be data dependent.

Whereas, the regularization parameter proposed by M. Yuan and Lin (2007) is not well

de�ned.

In parallel to M. Yuan and Lin (2007), Banerjee, Ghaoui, and d'Aspremont (2007)

used the Block Coordinate Descent algorithm to estimate the precision matrix. They



Background and literature review 39

also de�ne a new penalized objective function to estimate GGMs better, which is as

follows:

L(D|K)COV SEL = − log |K̂|+ tr{K̂Σ}+ λ‖K‖ (2.36)

They estimate λ in the following manner:

λ = arg max
K

N (D, 0,Σ)√
n− 2 +N (D, 0,Σ)2

(2.37)

Banerjee et al. (2007) call their method COVSEL. COVSEL is not scalable method to

discover GGMs. Therefore, J. Friedman et al. (2008) improve COVSEL with respect

to faster computation and call it Graphical Lasso or GLasso. Later, T. Wang et al.

(2016) improve GLasso in terms of the computational time by using cyclical coordinate

descent algorithm. This improved GLasso is known as FastGGM. COVSEL, GLasso,

FastGMM use the same objective function to estimate the optimal graphical structure.

(Ledoit & Wolf, 2004) showed that the largest and the smallest sample eigenvalues

tend to increase with d/n and a�ect the stability of GLasso. To improve the stability of

Glasso, Avagyan et al. (2017) propose using the k-root of the sample covariance matrix,

with k ≥ 1, to attain less spread eigenvalues, and therefore, obtain a more stable estima-

tion of K̂− 1
k and also K̂. The proposed k-root Glasso algorithm is a simple modi�cation

of Glasso, but now subject to its k-root inverse to be close to the k-root of Σ. Note

that although the proposed methodology needs to select an additional parameter k, it

improves the statistical performance without increasing the computational time signi�-

cantly. Moreover, once the speci�c k-root and the penalty parameter (associated with

the original Glasso framework) are selected, the proposed procedure requires less com-

putational time than that of Glasso. Therefore, they propose a new k-root l1 penalized

maximum likelihood estimates as the objective function, which is as follows:

L(D|K)r-GLasso = log |K̂−
1
k | − tr{Σ

1
k K̂−

1
k } − λ‖K̂−

1
k ‖ (2.38)

Other than GLasso and its modi�ed versions, several Lasso based methods have been
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developed to discover GGMs by proposing either new objective function or regularization

parameters. Rothman, Bickel, Levina, and Zhu (2008) use the matrix decomposition to

estimate the precision matrix, which can be simply written as

K = W TW (2.39)

where,W = [wij] is a lower triangle matrix. They call their method Sparse Permutation

Invariant Covariance Estimator or SPICE. Rothman et al. (2008) de�ne a new objec-

tive function, which is as follows:

L(D|K)SPICE = trKΣ− log |K|+ λ
∑
i 6=j

|Kij|q (2.40)

SPICE also su�ers from the slow computation.

Lam and Fan (2009) modi�ed SPICE (Rothman et al., 2008) to improve the rate of

convergence and sparsity of the precision matrix by introducing a new penalised MLE,

and a new regularization parameter. They use Gaussian quasi-likelihood:

L(D|K)SCAD = trΣK − log |K|+
∑
i 6=j

pλ(|Kij|) (2.41)

where, pλ = λ2 − (|K| − λ)2 is the new regularization parameter.

Shen, Pan, and Zhu (2012) focus on consistent and sharp parameter estimation to

improve rate of covergence by computing L0-constrained likelihood. According to Shen

et al. (2012), L0-constrained or regularized likelihood is as below:

L(D|K)Shen = trKΣ− log |K|+ λ1

λ2

d∑
i=1

min(|Σi|, λ2) (2.42)

where λ1 is the regularization parameter (i.e.λ = logn
2
) to control the sparsity. λ2 is

another regularization parameter which controls the degree of approximation (i.e. de-

cides which individual coe�cient to be shrunk towards zero.) None of the regularization

parameters are data-dependent.
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T. Sun and Zhang (2013) identify that previous Lasso based methods su�er from

the problem of poor rate of convergence. T. Sun and Zhang (2013) assume that Σ

is a nonnegative-de�nite data matrix and K is a positive-de�nite target matrix with

ΣK ≈ I. They describe the relationship between positive-de�nite matrix inversion

and linear regression, and propose an estimator for K via scaled Lasso. They use the

same objective function of GLasso, but new regularization parameter λ =
√

2 log d
n

is

estimated. All of the above methods specify a speci�c sparsity pattern through a single

regularization parameter. But in the real world, sparsity pattern is node speci�c.

From the compressed sensing and high dimensional linear regression literature, it

is now well understood that constrainted l1 minimization provides an e�ective way for

reconstructing a sparse signal without specifying the sparsity pattern. Therefore, Cai

et al. (2011) introduce constrained l1 minimization in their linear programming method

and penalized likelihood to estimate the precision matrix. They call their method

Constrained l1-minimization for Inverse Matrix Estimation (CLIME ). The penalized

likelihood of CLIME is as follows:

L(D|K)CLIME = − log |K̂|+ tr{ΣK̂}+ λ‖K̂‖∞ (2.43)

Moreover, W. Liu and Luo (2015) focus on both rate of convergence and node spe-

ci�c sparsity pattern. Their method adds a separate regularization parameters to each

column (assuming the sparsity of each node are di�erent from others). Instead of using

row fashion, they use column-by-column fashion for faster computation. They call their

approach Sparse Column-wise Inverse Operator (SCIO). The new objective function

proposed in SCIO is as follows:

L(D|K)SCIO = − log |K̂|+ tr{K̂Σ}+
d∑
i=1

λi‖K‖ (2.44)

where λi = 4i
n
. Though SCIO performs well in predicting the precision matrix on

synthetic data, but due to the poor estimation of regularization parameter, it predicts
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many false associations.

All of the above mentioned methods su�er from the estimation of regularization pa-

rameter. H. Liu (2017) proposed a tuning insensitive method based on SQRT Lasso.

It automatically adapts the unknown sparsity pattern by setting regularization param-

eter λ constant to π
√

log d
n
. They call this method TIGER (Tuning-Insensitive Graph

Estimation and Regression).

However, current Lasso based methods for graphical model structure discovery with

continuous variables su�er from the following drawbacks:

• discover many false edges i.e. the false discovery rate is higher (T. Wang et al.,

2016)(Avagyan et al., 2017)(Chiong & Moon, 2017).

• sacri�cing the computational cost (Avagyan et al., 2017),(H. Liu, 2017).

• The regularization parameters are not data dependant (Chiong & Moon,

2017),(Hirose, Fujisawa, & Sese, 2017).

In this thesis, we propose a method with an minimum message length based objective

function to discover the many true edges and reduce the false discovery rate.

2.5 Context-speci�c graphical models structure dis-

covery

Graphical models represent multivariate distributions by explicitly expressing inter-

dependencies, particularly suitable in the analysis of the high dimensional data

(Lauritzen, 1996). In standard GGM, it is assumed that all observations are gen-

erated from the same graphical model (Meil  & Jordan, 2000). However, the real

datasets exhibit heterogeneity, which can be accommodated through the use of mix-

tures of GGMs, to let each cluster exhibit di�erent inter-dependencies among variables,

a.k.a �context-speci�c-dependencies� (Meil  & Jordan, 2000; Rodriguez et al., 2011).

Moreover, typically there are far less number of samples (i.e. observations) compared to
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the number of variables, from an unknown number of components (i.e. cluster) which

makes the conditional dependency discovery challenging, particularly for the high di-

mensional heterogenous data. Therefore, some methods have been developed to discover

the context-speci�c GGMs from heterogeneous data.

Methods that discover the structure of context-speci�c graphical models �rst cluster

the data into K components, and then estimate the precision matrix of each component.

Meil  and Jordan (2000) are the pioneers to discover context-speci�c dependencies from

the high dimensional continuous data. They use K-mean clustering to cluster the data

into K components, and Chow and Liu (1968) proposed ChowLiu algorithm to predict

context-speci�c trees. This method uses the MLE as the objective function. Moreover,

this method is developed for both discrete and continuous data. Due to the use of MLE

as objective function, this method is not e�cient when the number of samples is far less

than the number of variables. It also does not discover the context-speci�c graphical

models.

Guo et al. (2011) �rst develop a method to discover context-speci�c Gaussian graph-

ical models by cluster the data into K components, and then predict the GGM of each

component separately using J. Friedman et al. (2008)'s proposed GLasso. They mod-

i�ed GLasso for heterogeneous data using two regularization parameters λ1 and λ2 to

control the sparsity of the precision matrices. λ1 and λ2 control the sparsity of the pres-

ence of an edge between two nodes in any of the categories and the di�erence between

categories, respectively. Guo et al. (2011) call their modi�ed GLasso Fused Graphical

Lasso (FGL). To estimate context-speci�c GGMs, Guo et al. (2011) propose a penalized

likelihood as the objective function:

L(D|K)FGL =
K∑
k=1

[
− log |K(k)|+ tr{Σ(k)K(k)}

]
+λ1

∑
k

∑
i 6=j

|Kk,ij|+λ2

∑
k<k′

∑
i,j

|Kk,ij −Kk′,ij|

(2.45)

Guo et al. (2011) assume that the number of components K in the data is user de�ne.

Rodriguez et al. (2011) propose a Bayesian approach to predict context-speci�c



Background and literature review 44

GGMs from data. They use Dirichlet prior process to compute the prior probabili-

ties of the mixture model, and structures of context-speci�c graphical models. They use

MCMC sampling to �nd the optimal graph structures. The advantages of Rodriguez

et al. (2011)'s proposed method are two-fold: (a) the number of the components in the

data is not user de�ned and (b) using sampling to estimate optimal graph structures

and clusters. Mohan et al. (2012) observe that all context-speci�c GGMs shares almost

similar graphical structure with small di�erence. Whereas, both FGL and Rodriguez et

al. (2011)'s proposed method do not predict the common graph structure.

Danaher, Wang, and Witten (2014) improve FGL for predicting the common graph

structure along with context-speci�c GGMs by proposing a new objective function. This

objective function captures not only the information across the clusters but also similar

pattern of sparsity across all of the precision matrix. Danaher et al. (2014) call their

method Joint Graphical Lasso (JGL). The modi�ed objective function is as follows:

L(D|K)JGL =
1

2

K∑
i=1

{
ni

(
log |Ki| − tr{ΣiKi}

)}
− P (θ) (2.46)

where P (θ) is the penalized function, which encourages precision matrices K1, · · · ,KK

share certain characteristics, such as values of the non-zero elements. Moreover, they

consider that estimated precision matrices tend to be sparse. The penalty function is

P (θ) = λ1

∑
k

∑
i 6=j

|Kk,ij|+ λ2

∑
k<k′

∑
i,j

|Kk,ij −Kk′,ij|︸ ︷︷ ︸
penalty-1

+λ2

∑
i 6=j

( K∑
k=1

K2
k,ij

) 1
2

︸ ︷︷ ︸
penalty-2

(2.47)

where, λ1 and λ1 are non-negative tuning parameters. The penalty-1 term borrows

information aggressively across classes, encouraging not only similar network structure

but also similar edge values. On the other hand, the penalty-2 term encourages a similar

pattern of sparsity across all the precision matrices. Later, Ma and Michailidis (2016)

improve JGL using group Lasso (Breheny & Huang, 2009) instead of using GLasso

(J. Friedman et al., 2008), named as JSEM. In JGL and JSEM, it is assumed that the

number of components in the data is user-de�ned.
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Peterson, Stingo, and Vannucci (2015) improved the Rodriguez et al. (2011) pro-

posed Bayesian approach to discover the common graph structure. They use a Markov

Random Field prior (F. Li & Zhang, 2010; Stingo & Vannucci, 2011) for graph struc-

tures, spike-and-slab prior (George & McCulloch, 1997) on the o�-diagonal entries for

network similarity. One common limitation of the above mentioned methods is that

they only borrow strength in the graph space, leaving the strength of selected edges

(e.g. partial correlation) to be modeled/estimated independently.

Tao, Huang, Wang, Xi, and Li (2016) address the above mentioned drawback by

assuming that all Gaussian graphs share a similar structure, but the values of the same

edges in each graph can be di�erent. The corresponding non zero elements in each

precision matrix are allowed to have di�erent signs. They combine the fast coordinate

descent algorithm of GLasso with the majorization-minimization algorithm18 to derive

a new re-weighted algorithm which compute values of the same edges in each graph.

They modi�ed the P (θ) term of the objective function of JGL to discover the better

graphs structures, which is as below,

P (θ) = λ1

K∑
i=1

‖Ki‖0 + λ2

K∑
i=1

{ K∑
j=1,i 6=j

‖D(Ki, 0)
⊙
Kj‖0

}
(2.48)

where, D(Ki, 0) is an indicator matrix where each element dij is de�ned as:

dij =

 1 if |Kij| ≥ τ

0 Otherwise.
(2.49)

D(Ki, 0)
⊙
Kj only keeps elements of Ki, where the corresponding elements of Kj are 0,

and
⊙

stands for dot product. The advantage of using updated P (θ) is that it maintains

di�erences of corresponding edge values among graphs when estimating similarities in

structure.

Except methods proposed by Rodriguez et al. (2011) and Peterson et al. (2015), all

18The MM algorithm is an iterative optimization method which exploits the convexity of a function
in order to �nd their maxima or minima.
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methods predict the components of the data at once. Therefore, Gao et al. (2016) uses

the EM algorithm to cluster the data and to estimate context-speci�c GGMs. In the

E-step, they use multivariate Gaussian mixture model to cluster the data. In the M-

step, they use JGL to predict context-speci�c GGMs with their common structure and

estimates their parameters. Gao et al. (2016) modi�ed the P (θ) term of the objective

function of JGL, which is as follows

P (θ) = λ1

∑
k

∑
i 6=j

JT (|Kk,ij|) + λ2

∑
k<k′

∑
i,j

JT (|Kk,ij −Kk′,ij|) (2.50)

where JT (|z|) = min(|z|, τ) is the truncated Lasso penalty (TLP) (Shen et al., 2012) to

control the degree of approximation. Gao et al. (2016) call their method New-Structural-

Pursuit (New-SP).

At the same time W. Sun, Hao, Liu, and Cheng (2016) also proposed another similar

EM algorithm, where in the E-step the method clusters the data and in the M-step

estimates γi and µi (where γi and µi are the mixing coe�cient and mean of the cluster

i) and context-speci�c GGMs via a penalized procedure. They named their framework

Simultaneous Clustering And estimatioN of heterogeneous graphical models (SCAN).

In the E-step, they also de�ne the penalized log-likelihood function for complete data,

which is as follows:

L(D|K)SCAN =
1

n

n∑
i=1

{ K∑
j=1

(
log γj + Lj(Dj, θj)

)
− P (θi)

}
(2.51)

where, P (θi) = λ1

K∑
j=1

( d∑
l=1

|µjl|
)

︸ ︷︷ ︸
P1(θ1)

+λ2

K∑
j=1

(∑
i 6=l

|Kijl|
)

︸ ︷︷ ︸
P3(θ1)

+λ3

∑
i 6=l

( K∑
j=1

K2
jil

) 1
2

︸ ︷︷ ︸
P3(θ1)

is the

penalty function which impose sparsity of the estimated cluster mean by P1(θi), preci-

sion matrix by P2(θi) and similarity between among all estimated precision matrices by

P3(θi). In the M-step, the update of the coe�cient of class member is as below:

γi =
1

n

n∑
j=1

γiP (Dij, θi)∑K
k=1 γlP (Dkj, θk)

(2.52)
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W. Sun et al. (2016) uses JGL to estimate the precision matrices K.

Later, Fop, Murphy, and Scrucca (2017) improved the EM based methods to dis-

cover context-speci�c GGMs by introducing N. Friedman (1998)'s proposed structural

EM algorithm (SEM algorithm). The algorithm allows the estimation of model pa-

rameters and inferring graph con�gurations by combining the standard EM algorithm

and the penalized EM algorithm with a graph structure search. The SEM algorithm is

used to maximize the penalized likelihood with respect to model parameters and graph

structures. The algorithm alternates between the two standard steps, Expectation and

Maximization. In addition, the M step includes the structure learning step to search

for the optimal graph con�gurations within the mixture components. The penalised

likelihood is as shown as below:

L(D|K)Fop =
K∑
i=1

( n∑
j=1

{
ẑji log γipdf

i(Dji|µi,Σi, Gi)
})
−

K∑
i=1

P (θ) (2.53)

where, P (θ) is a function that penalizes the graph complexity. In the context of Gaus-

sian graphical model selection, a natural penalty function is such that the score cor-

responds to the Bayesian Information Criterion (BIC) (Schwarz, 1978) of a Gaussian

graph covariance model. In this case the function is given by:

PBIC(θ) =
|Ei| log n

2
(2.54)

For large dataset, when n and d are of comparable size, this score may select graphs

that are overly complex. In this case, Foygel and Drton (2010) suggest an extended

Bayesian information criterion (eBIC). The corresponding P (θ) function is given by:

PeBIC(θ) =
|Ei| log n

2
+ 2

(
mE

Ei

)
Ei log d (2.55)

The Erdos-Rényi model is a popular model for random graphs. Under this model, the

probability of a graph Gi with Ei arcs is given by αEi(1 − α)T−Ei , where α is the

probability that two nodes are associated (Erd®s & Rényi, 1959). From this quantity,



Background and literature review 48

the following penalty function can be derived:

PRL(θ) = −Ei logα− (T − Ei) log (1− α) (2.56)

The previous P (θ) functions penalize in the same way graphs with equal number of

edges but dissimilar con�gurations. However, in some situations some form of associa-

tion structures may be preferred to others a priori. To assign di�erent penalization to

di�erent structures de�ned on the same number of arcs, Fop et al. (2017) consider the

following penalty function:

PPL(θ) = γi

d∑
j=1

log (degji + 1) (2.57)

where is degji is the degree of node j of graph Gi. The penalty is derived from a power

law on the nodes of a graph of the form
∏

j(degji + 1)γi .

All of the methods use a speci�c sparsity pattern on each context-speci�c GGMs.

Whereas, Cai et al. (2011) observed that the sparsity pattern of each node is di�erent

from others. B. Wang, Singh, and Qi (2016) focus on this issue and extend the CLIME

(Cai et al., 2011) for multi GGMs settings. They named extended CLIME, SIMULE

(detecting Shared and Individual parts of MULtiple graphs Explicitly).

However, current methods to discover the context-speci�c GGMs su�er from the

following drawbacks:

• discover many false edges i.e. the false discovery rate is higher.

• sacri�cing too much the computational cost.

• The objective function is not well de�ned.

In this thesis, we propose a method with an minimum message length based objective

function to discover the context-speci�c GGMs with their common structure which

reduces the false discovery rate.

In conclusion of this chapter, we focus on resolving the major drawbacks of existing
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methods by setting four research objectives (discussed in Chapter 1). In next subsequent

four chapters, we discuss our methods to resolve drawbacks of the all of the above

mentioned methods.



Chapter 3

Tumour heterogeneity prediction -

Single sample

The research in this chapter has been published in the following

article: Mohammad S Rahman, Ann E. Nicholson and Gholamreza Ha�ari

�HetFHMM: A novel approach to infer tumour heterogeneity using factorial hid-

den Markov model", Journal of Computational Biology, 25(2): 182-193, 2018,

https://doi.org/10.1089/cmb.2017.0101

3.1 Introduction

In the chapter, we present a statistical model to identify cancer clones and their genetic

make-up from mixed and noisy short reads of a tumour sample. Our model discov-

ers cancer clones harbouring copy number variations (CNV) and/or single nucleotide

variations (SNV) as mutations. It allows mutations to belong to multiple clones, a

phenomenon exhibited in cancer biology (Stratton et al., 2009), hence leading to more

accurate modelling and prediction.(c.f. experiments in Section 3.4). Furthermore, it

infers the size of cancer clones through a notion called clonal frequencies, showing the

relative number of cells belonging to a cancer clone in a tumour sample.

In Section 3.2, we present our model called HetFHMM (Tumour Heterogeneity pre-

50
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diction by Factorial Hidden Markov Model) for detecting heterogeneity in cancer,

which is based on factorial hidden Markov models. Given NGS (next generation se-

quencing) short reads of a patient, we present inference algorithm for predicting clonal

frequency and genetic architecture. Since the gold-labeled data for this problem is not

readily available, we then outline our evaluation setup in Section 3.4 to assess model pre-

dictions in this unsupervised learning scenario. We provide empirical results in Section

3.5 comparing our model against strong existing models from the literature in predicting

clonal frequency and genetic make up.

3.2 Model

Our goal is to identify the tumour clones and their genetic make up from NGS short

reads of a tumour sample. The genetic make up of a clone is the set of mutations

harboured by the clone, and the genotype of those mutations. We use similar genotypes

as of Table 2.1 by considering that they not only represent a point mutation but also

the copy number of the mutated part of the genome.

The input to our model includes a list of mutated genome locations, the number

of NGS short reads with match and mismatch nucleotides to the reference genome at

those genomic locations, and the number of maximum clones believed to exist in the

sample. The output of our model is then the set of mutations belonging to each clone,

the genotype of those mutations in each clone, and the frequency of each clone.

The basis of our model is that proximity on the genome induces inter-dependencies

among mutations, in the sense that adjacent mutations tend to have similar genotypes

and belong to the same clone (Ha et al., 2012). More speci�cally, we model each clone as

a sequence of random variables where each of which corresponds to a mutated location

on the genome. Each random variable takes a genotype as its value, and the genotype of

consecutive random variables are inter-dependent. These random variables are �latent�,

but we note that they give rise to the �observed� counts from the data. We suggest a

probabilistic graphical model which postulates a generative model of how the data is
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generated; we then reason about the latent variables of the model using the statistical

inference.

Let us assume that we are given a collection of T mutated genome locations to

�nd the genetic make up of a maximum of K clones. We denote the genotype of the

clone k at the genomic location t by Gt,k, and the frequency of the clone k by φk where∑K
k=1 φk = 1. We assume that the clone 1 corresponds to the normal cells, where

the genotype for all genomic locations is AB where A and B represent the two alleles

inherited from parents (A. Li et al., 2011). To infer the genotypes Gt,k as well as the

cellular frequencies φi, the observed data for our model include the total short reads Nt

covering the mutation t (aka the read depth), the number of matched at and mismatched

āt short reads (note that Nt = at + āt), and log ratio of the read depths in the tumour

and normal samples.

Our statistical model is based on factorial hidden Markov models (FHHMs)

(Ghahramani & Jordan, 1997), where each chain corresponds to a clone and the obser-

vations correspond to the counts observed from the NGS data see Figure-3.1.

In our model, henceforth referred to by HetFHMM, the joint probability of the latent

variables and the observations is written as

P (GGG,OOO|φφφ) =

(( K∏
k=1

P (G1,k)
)
P (OOO1|GGG1,φφφ)

)(
T∏
t=2

( K∏
k=1

P (Gt,k|Gt−1,k)
)
P (OOOt|GGGt,φφφ)

)
(3.1)

where GGGt is the vector of genotypes for all clones at mutation t, OtOtOt = {at, Nt, lt} is the

observed data at mutation t, and φφφ is the vector of clonal frequencies for all clones. Let's

have a closer look into the elements of the model: (i) the term P (Gt,k|Gt−1,k) is called

the �transition probability� and determines the dependency of the genotype of the next

mutation conditioned on that of the current mutation, and (ii) the term P (OOOt|GGGt,φφφ) is

called the �emission probability� and determines the relationship of the observed data

OOOt and the latent variables GGGt at mutation t (conditioned on the clonal frequencies φφφt).

In what follows, we provide in-depth explanation of these terms.

Transition Probability: The transition probability P (Gt,k = q|Gt−1,k = r), which



Tumour heterogeneity prediction - Single sample 53

Figure 3.1: The probabilistic graphical model of our Factorial Hidden Markov Model
for analysing heterogeneity (HetFHMM). Here, at, Nt and lt are observation OtOtOt of the
model.
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is denoted by At,k(q, r) from the transition matrix At,k, captures the interdependencies

between genotypes of adjacent mutations. Following Colella et al. (2007), we de�ne the

transition matrix for each chain as follows:

P (Gt,k = q|Gt−1,k = r)︸ ︷︷ ︸
At,k(q,r)

=

 ρt if q=r

1−ρt
Dk−1

Otherwise.
(3.2)

The stickiness of the genotype Markov process ρt is de�nes as

ρt = 1− 1

2
(1− e

−dt
L ) (3.3)

where L is the average length of the sequence reads1. Dk is the dimension of the state

space (i.e. the number of genotypes, which is 21 from Table 2.1), and dt is the genomic

distance between the mutant locations t and t− 1.

Emission Probability: We decompose the emission probability for generating the

observation OOOt = {at, Nt, lt} based on the hidden variables GGGt and φφφ, as follows:

P (OOOt|GGGt,φφφ) = P (at|Nt,GGGt,φφφ)P (lt|GGGt,φφφ) (3.4)

where at, Nt, and lt are de�ned as before. We now elaborate the above two terms in

the emission probability.

Following the previous work (Ha et al., 2012), we assume that at follows binomial

distribution where the number of trials is Nt and the probability of success is as follows:

Pbt =

∑K
k=1 φk.rgkt∑K
k=1 φk.cgkt

(3.5)

where rgkt and cgkt are number of reference allele and the copy number of the genotype

in Gt,k. For example, if the genotype is AAB, then rgkt=2 and cgkt=3.

The number of the short reads of tumour and normal cells are more than billion. As

1It was observed to be 2 Megabases (2 × 106 bases) in 104 breast tumours (rounded to the nearest
Mb.) (Colella et al., 2007; Ha et al., 2012).
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per central limit theorem, it is assumed that the log ratio of tumour-normal read depth

is Gaussian distributed with mean µt and standard deviation σ. Mean of the log ratio

of tumour-normal read depth is:

µ̃t =

∑K
k=0 φk.cgkt

φ0.cg0t .
∑K

k=1 φk.ψ
(3.6)

where ψ be tumour ploidy2 parameter which is set to 33. cg0t is the copy number of

genotype of normal clone at location t.

3.3 Inference

In order to infer the hidden variables GGG and φφφ, we look for an imputation which max-

imises the likelihood of the data:

P (GGG, lll, aaa|φφφ,NNN, σ) =
∏K

k=1 A1,k(G1,k)
∏T

t=2

∏K
k=1 At,k(Gt,k|Gt−1,k)∏T

t=1 Bin(at|Nt, Pbt)×N (lt|µ̃t, σ2)
(3.7)

We repeatedly alternate between inferring the clone speci�c genotypes and the clonal

frequencies until the convergence condition is met, i.e. we alternate between φφφ and GGG

to maximise the above likelihood function In what follows, we elaborate on these two

phases of our optimisation algorithm.

Optimising φφφ while GGG is �xed. Maximising the likelihood function over φφφ is a

constrained optimisation problem since φφφ is constrained to be a probability vector, i.e.∑
k φk = 1 and φk are non-negative. We make use of the exponentiated gradient (EG)

algorithm to solve this constrained optimisation problem.

More formally, the constrained optimisation problem is as follows:

min
φφφ∈4
−L(φφφ) (3.8)

2Ploidy is a measure of the number of chromosomes in a cell.
3According to Navin et al. (2014); Davoli, Uno, Wooten, and Elledge (2017), a typical tumour is

triploid.
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where L(φφφ) = − logP (GGG, lll, aaa|φφφ,NNN, σ), and 4 is the simplex containing all probability

vectors. To solve the above minimization problem, the EG updates are as follows:

φnewk ∝ φke
−(η∇φkL(φφφ)) (3.9)

where η is the learning rate. After updating each component of the latent vector φφφ,

the values are normalised so that they sum to one. For the EG updates, we need the

derivatives, which are derived using the chain rule.

L(φφφ) =
∑
t

log

(
Nt

at

)
+ at logPbt + (Nt − at) log(1− Pbt)

+ log(
1

σ
√

2π
)− (lt − µ̃t)2

2σ2
+ const (3.10)

∇L(φφφ) =
∑
t

[(
at
Pbt
− Nt − at

1− Pbt
) · ∇µ̃t +

lt − µ̃t
σ2

· µ̃t] (3.11)

dPbt
dφk

=
cgkt · (rgkt − Pbt)∑K−1

k=0 φi · cgkt
(3.12)

dµ̃t
dφ0

=
cg0t · (1− µ̃t)

φ0 · cg0t +
∑K−1

k=1 φk · ψ
(3.13)

dµ̃t
dφk

=
cg0t · ψµ̃t

φ0 · cg0t +
∑K−1

k=1 φk · ψ
(3.14)

Substitute
dPbt
dφk

and dµ̃t
dφk

back to L(φφφ), the gradient of the objective function can be found

with respect to variable φφφ. We summarise the EG algorithm in algorithm 3.1.

Optimising GGG while φφφ is �xed. Since the exact inference in FHMM is intractable

(Ghahramani & Jordan, 1997), we make use of Gibbs sampling as a Markov chain Monte

Carlo (MCMC) method for approximate inference. Initially, we uniformly at random

choose a genotype value for genotype variables in all chains except the normal chain

where the genotypes are �xed to AB. Then, we sample each variable while the states of

the rest of the variables are �xed. That is, the posterior probability of each genotype
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Algorithm 3.1 EG algorithm for inferring clonal frequencies

1: while !converged do
2: for Clone k = 0 to K do
3: φnewk ← φoldk × exp−η∇F (φoldk )
4: end for
5: φφφnew ← normalize(φφφnew)
6: Compute F (φφφold)
7: Compute F (φφφnew)
8: if F (φφφold)− F (φφφnew) > 0 then
9: φφφ ← φφφnew

10: end if
11: end while

for a hidden variable Gt,k is :

P (Gt,k) ∝ At,k(Gt,k|Gt−1,k)At+1,k(Gt+1,k|Gt,k)× Bin(at|Nt, Pbt)N (lt|µt, σ) (3.15)

The Gibbs sampling algorithm is shown in Algorithm 3.2.

Algorithm 3.2 Gibbs samplers for inferring clone speci�c genotypes

1: while !converged do
2: for mutation t = 1 to T do
3: for clone k = 1 to K do
4: for genotype g = 1 to 20 do
5: Pat ← Bin(at|Nt, Pbt) B Pbt is de�ned in eqn (3.5)
6: Plt ← N (lt|µ̃t, σ2, ψ) B µ̃t is de�ned in eqn (3.6)
7: posterior[g] ← P (Gt,k = g|Gt−1,k)P (Gt+1,k|Gt,k = g)PatPlt
8: end for
9: Sample Gt,k from normalised posterior
10: end for
11: end for
12: end while

3.4 Evaluation Framework

No existing model infers tumour clones and their genomic make-up along with the

clonal frequencies from the tumour samples. Hence it is challenging to evaluate our

model due to the lack of (a) appropriate data annotated with clones' details, (b) the

most compatible models for comparison, and (c) suitable evaluation metrics. We focus
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on these issues in the rest of this section.

3.4.1 Real and Synthetic Data

Real Cancer Data. We make use of laboratory experimented Acute Myeloid Leukemia

(AML) (Ding et al., 2012) as the real data. The data includes samples of 7 patients

which were obtained after the chemotherapy treatment. The data is annotated with

the clones and their mutations based on laboratory experiments which we use as gold

standard; however, the annotation does not include the cellular prevalence of the clones.

Furthermore, Ding et al. (2012) performed the experiments in the laboratory to �nd

the tumour heterogeneity evolution/ progression after the chemotherapy treatment. Due

to unavailability of the real data, we use these available datasets. It is not a concern

for our model whether the data is taken after or before the chemotherapy treatment.

Synthetic Cancer Data. To assess di�erent aspects of our model, we generate

synthetic cancer data containing the clone speci�c genotypes and their clonal frequencies

(Table 3.1); Algorithm 3.3 summarises the process.

Table 3.1: Clone con�gurations for the synthetic data

Con�guration Clone data Normal tissue
Tumour clones

1 2 3 4 5 6 7

1

3 0.20 0.28 0.52 - - - - -
4 0.10 0.04 0.30 0.65 - - - -
5 0.01 0.05 0.12 0.22 0.60 - - -
6 0.01 0.04 0.08 0.13 0.25 0.49 - -
8 0.01 0.02 0.04 0.07 0.13 0.15 0.22 0.36

1

3 0.30 0.20 0.50 - - - - -
4 0.20 0.08 0.12 0.60 - - - -
5 0.18 0.06 0.09 0.15 0.52 - - -
6 0.17 0.04 0.08 0.11 0.13 0.47 - -
8 0.15 0.02 0.04 0.06 0.08 0.10 0.13 0.42

1

3 0.17 0.38 0.45 - - - - -
4 0.20 0.12 0.12 0.56 - - - -
5 0.11 0.11 0.11 0.15 0.54 - - -
6 0.09 0.10 0.11 0.12 0.13 0.45 - -
8 0.03 0.05 0.07 0.09 0.10 0.10 0.16 0.40

To generate synthesis data, we �rst specify the number of clones and their clonal

frequencies. We then generate the location of mutations on the genome. After ran-

domly generating the location of the �rst mutation, we generate the gap between two

consecutive mutations from a uniform distribution on [6K,7K] since the average dis-

tance between two consecutive mutations in the AML data is 6679 base-pair (Ding et
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al., 2012). After generating the locations, the genotypes and observations are sampled

based on eqn (3.3) and eqn (3.5), respectively.

We would like to assess our model in data conditions where the interdependency

assumptions made in the model about the adjacent genotypes do not hold. Therefore,

we generate two more versions of the aforementioned datasets where the gap dt in the

computation of the stickiness of the genotypes Markov process ρt in eqn (3.3) is scaled

by 3 and 1/3, which correspond to stronger and weaker interdependencies, respectively.

This also provides a compelling test bed for the comparison against the competing

models, PyClone and PhyloSub, which assume no dependency between the genotypes

of adjacent mutations.

Algorithm 3.3 Synthetic data generation algorithm

1: Specify the clonal frequencies of clones Φ
2: Generate mutation locations {1,..,T}
3: Set G1,0 .... GT,0 to AB B the genotype of the normal clone
4: Uniformly at random generate the genotypes of G1,1... GK,1 B �rst mutations
5: for each location t ∈ {1....T} do
6: for each clone k ∈ {1....K} do
7: Sample Gt,k from the transition matrix At,k B refer to eqn (4.3)
8: end for
9: Generate at and lt based on the emission probability B refer to eqn (3.4)
10: end for

3.4.2 Baseline Models

PyClone (Roth et al., 2014) and PhyloSub (Jiao et al., 2014) models discover the clonal

architecture of a tumour, i.e. the frequency of clones and the set of mutations belonging

to each clone. They cluster the mutations to identify the clones and to infer the clonal

frequencies. PyClone takes the frequency of a cluster as the clonal frequency, whereas

PhyloSub estimates the clonal frequencies di�erently.

HetFHMM produces two outputs: the clonal frequency and the clone speci�c geno-

types (it is important to note that there is no existing method which infers the �clone

speci�c genotypes� from the short reads). In HetFHMM, Gt,i speci�es the genotype of

the mutation t in the clone i, and whether the clone harbours this mutation or not.
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Therefore, we can obtain the set of mutations belonging to a clone as well as the clonal

frequencies from the output of HetFHMM, which can be then compared with the output

of PyClone and PhyloSub.

3.4.3 Evaluation Metrics

We make use of V -Measure (Rosenberg & Hirschberg, 2007) and root mean-square

distance (RMSD) to compare mutation clusterings and the clonal frequencies.

3.4.3.1 V -Measure

Rosenberg and Hirschberg (2007) has introduced an external based cluster evaluation

metric V -Measure to quantify the quality of a predicted clustering with respect to the

gold standard. It is an entropy-based measure which is a function of the completeness

and homogeneity of predicted clusters with respect to the gold standard.

Homogeneity: Homogeneity is measure which computes the proportion of the

members of a cluster contains only members of a single gold standard class (Rosenberg

& Hirschberg, 2007). The notion of homogeneity is de�ned as follows:

h = 1− H(Clsg|Clsp)
H(Clsg)

(3.16)

where

H(Clsg|Clsp) = −
|Clsp|∑
j=1

Clsg∑
i=1

bij
|T |

log
bij∑Clsg

k=1 bik
(3.17)

and

H(Clsg) = −
Clsg∑
j=1

∑Clsp

i=1 bij
|Clsgj |

log

∑Clsp

i=1 bij
|Clsgj |

Clsg, Clsp, |T |, and bij are the set of gold standard clones, the set of the predicted

clusters, the number of data points, and the number of data points that are the members

of ith gold standard clone and jth predicted cluster.

Completeness: Completeness is measure which computes the proportion of the

members of a gold standard clone contains only members of a predicted cluster
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(Rosenberg & Hirschberg, 2007). The notion of completeness is de�ned as follows:

c = 1− H(Clsp|Clsg)
H(Clsp)

(3.18)

where

H(Clsp|Clsg) = −
|Clsg |∑
j=1

Clsp∑
i=1

bij
|T |

log
bij∑Clsp

k=1 bik
(3.19)

and

H(Clsg) = −
Clsp∑
j=1

∑Clsg

i=1 bij
|Clsgj |

log

∑Clsg

i=1 bij
|Clsgj |

H(Clsg|Clsp) and H((Clsp|Clsg) compute the non-homogeneity and incompleteness

of the output, respectively. When H(Clsg|Clsp) or H(Clsp|Clsg) is zero, the out-

put is either homogeneous or complete to the gold standard clone respectively. More-

over,the non-zero value of H(Clsg|Clsp) and H(Clsp|Clsg) express the degree of non-

homogeneity and incompleteness, computed by equations 3.17 and 3.19 respectively.

The V -measure is then de�ned as the harmonic mean of the homogeneity and com-

pleteness scores:

V -measure =
2× h× c
h+ c

(3.20)

For the prefect clustering4, the V -Measure is one, and it is less than one for any im-

perfect clustering. V -Measure computes the degree of relative perfectness of clustered

output.

3.4.3.2 RMSD:

We evaluate the predicted clonal frequencies with respect to the gold standard using

Root mean square distance or RMSD. It is used to compute the distance or error

between the clonal frequencies of predicted clusters and the gold standard:

RMSD =

√√√√ 1

|Clss|

|Clss|∑
i=1

‖φClssi − φClsgi ‖
2 +

1
¯|Clss|

Cls
s∑

i=1

‖φClssi − 0‖2 (3.21)

4Perfect clustering is the clustering output in which the predicted clusters are fully complete (i.e.
c=1) and homogeneous (h = 1) to the gold standard clones.
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where Clss and Cls
s
are the signi�cant and insigni�cant predicted clusters, respectively.

Most of the methods produce many clusters than the gold standard. Among the pre-

dicted clusters, the some of the clusters contain the signi�cant/ maximal number of

mutations of gold standard clones, known as the signi�cant clusters. The remaining

clusters are known as the insigni�cant clusters. The better the quality of the predicted

clones and their prevalences, the lower would be RMSD.

3.5 Results and discussions

In this section, we �rst compare the performance of HetFHMM vs PyClone and Phy-

loSub on synthetic data. Afterwards, we compare these models using real AML cancer

data.

3.5.1 Synthetic Data

We investigate the mutation clusters and prediction accuracy of the cellular prevalence

of each clone by computing V -Measure and RMSD scores, respectively. We let the

number of clones in our model to be {3, 4, 5, 6, 7, 8}, and choose the one which produces

the highest log-likelihood. For the synthetic data, we consider the clusters identi�ed

by the sampled clone-speci�c genotypes and prede�ned clonal frequencies as the gold

standard.

Figure-3.2 shows the average V -Measure results on the synthetic data. It contains

four plots, where each of which corresponds to the results on data containing strong,

normal, weak, and no dependency between the adjacent mutations. In each plot, there

are �ve groups of results corresponding to synthetic data with di�erent number of gold

clones {3, 4, 5, 6, 8}. Based on Figure-3.2, some remarks are in order. Firstly, on all

synthetic data conditions the performance of HetFHMM is superior compared to Py-

Clone and PhyloSub. Further investigation of the results have revealed that HetFHMM

has detected the same number of clones as the gold standard. However, PyClone and

PhyloSub have detected much more clusters than the gold standard, which in turn has
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Figure 3.2: Average V -measure of outputs of HetFHMM, PyClone and PhyloSub on
synthetic data. The four panels show the results on data generated with di�erent degree
of interdependency between adjacent mutations including strong, moderate, weak, and
not interdependency. In each panel, there are multiple syntactic data, each of which
corresponds to a di�erent number of clones in {3, 4, 5, 6, 8}. For each data condition,
our model (red bars) is compared with PhyloSub (green bars) and PyClone (blue bars).

a�ected their average V -Measure scores. Secondly, as the interdependency between the

adjacent mutations becomes stronger, the performance of HetFHMM improves. This

is in contrast to the performances of PyClone and PhyloSub which do not change as

adjacent mutations' in�uence changes. This is due to the fact that HetFHMM models

the dependency between the adjacent mutations via the value of ρ in the transition

probability (equation-4.3). Hence, in the data including strongly in�uenced adjacent

mutations, ρ helps to predict the genotype of a mutation more accurately compared to

the data containing weaker in�uence between adjacent mutations. On the other hand,

PyClone and PhyloSub do not take into account the dependency between adjacent mu-

tations, hence their performances do not change as the strength of the in�uence changes.

Thirdly, the accuracy of cluster identi�cation of HetFHMM decreases as the number of

clones increase. This is in contrast to PyClone and PhyloSub which showed little im-

provement when the number of clones is increased (but still signi�cantly outperformed

by HetFHMM).
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In the previous section, we have mentioned that a special type of synthetic data

is generated where mutations do not have in�uences among themselves, which is the

assumption made in PyClone and PhyloSub. Based on Figure-3.2, it is interesting to

see that HetFHMM performs better than PyClone and PhyloSub even on this data

condition. It indicates that HetFHMM can work better than the baselines no matter

whether there is an interdependency between the adjacent mutations.

Figure 3.3: Average RMSD of outputs of HetFHMM, PyClone and PhyloSub on syn-
thetic data. The four panels show the results on data generated with di�erent degree
of interdependency between adjacent mutations including strong, moderate, weak, and
not interdependency. In each panel, there are multiple syntactic data, each of which
corresponds to a di�erent number of clones in {3, 4, 5, 6, 8}. For each data condition,
our model (red bars) is compared with PhyloSub (green bars) and PyClone (blue bars).

In addition to V -Measure to evaluate the cluster output, we have evaluated the

clonal frequencies predicted by HetFHMM, PyClone and PhyloSub using the RMSD

score. Figure-3.3 presents the average RMSD errors for our model and the baselines

on all synthetic data conditions. We see the similar trend that HetFHMM outperforms

the baseline models on all data conditions. This is in part due to the more correctly

predicted clones by HetFHMM.
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3.5.2 Real Cancer Data

We apply our model to Ding et al. (2012)'s AML (described in subsection3.4.1) data,

which is annotated with gold clones based on laboratory experiments. However, it is not

annotated with the cellular prevalence of clones; therefore, we can only use V -Measure

to test the quality of the predicted clones as RMSD is not applicable. For HetFHMM,

we run the model with di�erent number of clones from 3 to 10, and choose the one with

the highest log likelihood.

Figure-3.4 shows the V -Measure scores as per patient sample. Based on the results,

it is clear that HetFHMM has predicted the clusters more accurately than PyClone and

PhyloSub for all patients. The accuracy of PyClone and PhyloSub has been almost the

same for all cases, except the patients UPN869586 and UPN933124 where PhyloSub

has detected more accurate clones compared to PyClone.

Figure 3.4: V -Measure of the clusters output of HetFHMM (red bars), PyClone (blue
bars) and PhyloSub (green bars) on real cancer data from di�erent AML patients.
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3.6 Conclusion

We have develop a novel model, called HetFHMM, to identify the clonal architecture of

a tumour sample based on next generation sequencing data. Our model discovers the

mutations as well as the cellular prevalence of the clones in the sample. HetFHMM is

based on Factorial Hidden Markov Models, whereby the genomic composition of each

clone is represented by a hidden chain. The basis of the model is that the observed

data is generated by a mixture of the underlying chains, where the mixing coe�cients

are the clonal prevalences. We make use of Gibbs sampling and exponentiated gradient

algorithms to infer the clonal genomic compositions represented by the hidden chains as

well as the clonal prevalences. The empirical results on synthetic and real cancer data

con�rms that our model outperforms strong baseline models PhyloSub and PyClone

based on two evaluation metrics, i.e. V -Measure and RMSD . The key to the stronger

performance of HetFHMM compared to the baseline models is that it jointly infers the

clone speci�c mutations and clonal frequencies to identify the tumour clones.

Following the literature, recent methods to infer tumour heterogeneity, are de-

signed for multiple sample data and show better performance on multiple samples data.

Whereas, HetFHMM can work on single sample data to infer tumour heterogeneity.

Therefore, following research questions need to investigate to improve the performance

of HetFHMM:

• How accurately will HetFHMM work on multiple sample data?

• How many samples will require to predict accurate or near accurate clone speci�c

allelic composition of the mutations and clonal frequencies?

• Will HetFHMM perform better by incorporating long-range mutational inter-

dependency?

We address the research questions as mentioned above to improve the performance of

HetFHMM in next chpater.



Chapter 4

Tumour heterogeneity prediction -

Multiple samples and long-range

mutational in�uences

4.1 Introduction

In HetFHMM, as described in the Chapter 3, we identify tumour clones and their ge-

netic make-up from short reads of a single tumour sample by assuming that tumour

clones are not concentrated in a speci�c region. However, we know from the literature,

this assumption is not realistic. More speci�cally, Ellenbroek and v. Rheenen (2014)

found that each clone of a tumour forms and condenses inside a particular area of a

tumour bulk. Since tumour sample specimens of a patient are taken from di�erent parts

of tumour bulk, clonal frequencies of clones within a tumour sample will be di�erent

depending on the area from which the sample was taken. Consequently, since observa-

tions (the count of short reads and log ratio of normal-tumour content) are interrelated

with clone speci�c genotypes1 and clonal frequencies, observations of each sample would

be di�erent from others. In contrast, the allelic composition of mutations will be the

same irrespective of where the sample was taken.

1Clone speci�c allelic composition of mutations of clones

67
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However, another limitation of the original version of HetFHMM is that it only

represents inter dependencies between adjacent mutations. Ji et al. (2016) investigated

that the relationship between mutations of cancer from three-dimensional mapping of

the human genome, and found that due to the three-dimensional structure of DNA,

cancer-causing genes with driver mutations mask the genomic functionalities of their

nearest proteins and genes which cause the appearance of other mutations. However, if

the DNA helix has unwrapped in one dimension, these driver mutations and the newly

appeared mutations are not close to each other, and certainly will not be not adjacent.

This type of in�uence among mutations is known as long-range mutational in�uences.

Thus, the next challenge is to discover clones with genetic make-up from multiple sample

data and long-range mutational in�uences.

In this chapter, we extend HetFHMM for multiple samples and long-range muta-

tional in�uences. More speci�cally, we propose a factorial hidden Markov model as

the extension of HetFHMM to identify tumour clones with their genetic make-up from

multiple tumour samples by capturing long-range mutational in�uences. We call the ex-

tended HetFHMM method extended multiple sample Tumour Heterogeneity prediction

by Factorial Hidden Markov Model (emHetFHMM ). We test emHetFHMM against

existing baselines: PyClone, PhyloSub and HetFHMM, and our method outperforms

these baselines in the synthetic and the cancer data experiments.

We detail emHetFHMM with inference in Sections 4.2 and 4.3 respectively. We

describe the experimental setup in Section 4.4 and present the experimental results

comparing our method against strong baselines to infer clones in Section 4.5.

4.2 Model

HetFHMM identi�es tumour clones and their genetic make-up from short reads of a

tumour sample. We, now, extend HetFHMM to infer clones and their genetic make-up

from short reads of multiple sample data, which also incorporates long-range mutational

in�uences.
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The input to emHetFHMM is similar to that of HetFHMM, but slightly di�erent:

(a) a list of mutated genome locations,

(b) the number of NGS short reads with match and mismatch nucleotides to the

reference genome at those genomic locations, which are sample speci�c as opposed

to HetFHMM,

(c) the number of maximum clones believed to exist in the sample, and

(d) a list of mutations having long range in�uences among themselves.

The output of emHetFHMM is then (a) the set of mutations belonging to each clone

and the genotype of those mutations in each clone, and (b) the frequency of each clone in

each sample. The �rst output (genetic make-up of each clone) is identical to HetFHMM.

Whereas, the sample speci�c clonal frequency is not the same as that of HetFHMM.

The observed dataOOOt,x at a location t of sample x includes the total short reads Nt,x,

the number of matched at,x and mismatched āt,x short reads (note thatNt,x = at,x+āt,x),

and log ratio of the read depths lt,x in the tumour and normal samples. The observed

data is used to infer the genotype of mutation t in the kth clone Gt,k as well as the

clonal frequency of kth clone of the x sample φk,x. Similar to HetFHMM, emHetFHMM

is based on Factorial Hidden Markov Model (FHHM) (Ghahramani & Jordan, 1997),

where each chain corresponds to a clone and observations correspond to the counts

collected from the data. In addition to the model, we consider the extra dependencies

between genotypes to capture long-range mutational in�uences (see Figure-4.1). In

emHetFHMM, the joint probability of latent variables and observations is written as

P (GGG,OOO|ΦΦΦ) =

(( K∏
k=1

P (G1,k)
)( ∏

x∈X
P (OOO1,x|GGG1,ΦxΦxΦx)

))( T∏
t=2

( K∏
k=1

P (Gt,k|Gt−1,k
~G−t,k)

)( ∏
x∈X

P (OOOt,x|GGGt,ΦxΦxΦx)
))

(4.1)

where GGGt is the vector of genotypes of all clones at location t. OOOt,x = {Nt,x, at,x, lt,x} is

the observed data at mutation t of sample x. ΦΦΦ is the matrix of sample speci�c clonal

frequencies of all clones and ΦxΦxΦx is the vector of frequencies of all clones of sample x.

The elements of the model are as follows:
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Figure 4.1: Probabilistic Graphical model of emHetFHMM for predicting tumour het-
erogeneity from multiple sample by capturing long range in�uences. Red arcs are repre-
senting the long-range in�uences among the mutations. The sample speci�c observations
(((Ot,x = {Nt,x, at,x, lt,x} and clonal frequencies are shown in red box.
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(i) the term P (Gt,k|Gt−1,k, ~G−t,k) is called the �transition probability� which deter-

mines the dependency of the genotype of the current mutation of kth clone Gt,k

conditioned on that of the previous mutation Gt−1,i and on mutations having long-

range in�uences over current mutation ~G−t,k. ~G−t,k is the vector of the genotype

of mutations having long-range in�uences over the current mutation t.

In HetFHMM, we assume that only the adjacent mutations have e�ect on the

current mutation. But in emHetFHMM, we include the long-range in�uences

along with adjacent mutations as well.

(ii) the term P (OOOt,x|GGGt,ΦxΦxΦx) is called the �emission probability� and determines the

relationship of the observed data OOOt,x = {Nt,x, at,x, lt,x} and the latent variables

GGGt at mutation t (conditioned on the clonal frequencies φφφk,x).

In what follows, we provide in-depth explanation of these terms.

4.2.1 Transition Probability:

The transition probability P (Gt,k|Gt−1,k, ~G−t,k) captures long-range mutational depen-

dencies along with adjacency in�uences, which is as followed:

P (Gt,k|Gt−1,k, ~G−t,k) = P (Gt,k = q|Gt−1,k = r)︸ ︷︷ ︸
At,k(q,r)

×
∏

j∈~G−t,k

P (Gt,k = q|~Gj−t,k)︸ ︷︷ ︸
Ejt,k(q)

(4.2)

where At,k(q, r) and Ej
t,k(q) are transition probabilities to capture inter-dependencies

between the genotypes of adjacent and all long-range in�uenced mutations (located on

the left and right side of the current mutation t), respectively. Following Colella et al.

(2007), we de�ne the transition probability matrix for adjacent mutations of each chain

as follows:

P (Gt,k = q|Gt−1,k = r)︸ ︷︷ ︸
At,k(q,r)

=

 ρt if q=r

1−ρt
Dk−1

Otherwise.
(4.3)
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ρt is an exponential function to de�ne a prior probability that some genetic event (hidden

state change) occurs between adjacent SNP loci a distance dt apart:

ρt = 1− 1

2
(1− e

−dt
L ) (4.4)

where L is the average length of the sequence reads2. Dk is the dimension of the state

space (i.e. the number of genotypes, which is 21 from Table 3.1, and dt is the genomic

distance between the mutant locations t and t− 1. In emHetFHMM, we use also same

transition probabilities for adjacent mutations.

Additionally, we handle the presence of long-range mutational in�uences in

emHetFHMM as follows. Long-range dependencies among mutations are special type

of spatial e�ect. According to Ji et al. (2016), since the existence of three dimensional

structure of DNA, mutations with long-range in�uences are located close to each other

and the genes of these mutations form a pathway. Therefore, genes of the same pathway

will skeleton the list of mutations having long-range in�uences. We use known gene-gene

interaction networks to �nd genes and their pathways. From genes, their pathways, and

their gene locations, we can identify mutations with long-range inter-dependencies.

In emHetFHMM, we introduce a new transition probabilities to capture long-range

mutational in�uences in addition to exiting transition probabilities for adjacent mu-

tations. The new transition probability that the genotype of mutations of the same

pathways having long range dependencies is as followed:

P (Gt,k = q|~Gj−t,k)︸ ︷︷ ︸
Ejt,k(q)

=

 τ if q=~Gj−t,k
1−τ
Dk−1

Otherwise
(4.5)

where ~Gj−t,k is the genotype of the mutation at location j of kth clone having long-range

dependencies with current mutation t in the same pathway, and τ is the prior probability

that genetic event occurs between two mutations having long-range dependencies.

2It was observed to be 2 Megabases (2 × 106 bases) in 104 breast tumours (rounded to the nearest
Mb.) (Colella et al., 2007; Ha et al., 2012).
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Since three dimensional location of mutation is not available, we propose three al-

ternative ways to compute τ :

• Using one dimensional location, available in the data, to compute τ .

τ = 1− 1

2
(1− e

−djt
L ) (4.6)

where djt is the one dimensional (1D) distance between jth and tth mutations.

• As mentioned earlier, Ji et al. (2016) investigated that due to the three-dimensional

structure of DNA, cancer-causing genes with driver mutations mask the genomic

functionalities of their nearest proteins and genes. This in turn causes the appear-

ance of other mutations and the genotype of mutations of the same gene will be

the same. Therefore, the gene location of a mutation is also an important factor

to compute transition probabilities to capture long-range mutational in�uences.

However, gene locations are not available in the observation OOO. On the contrary,

many tools are available to predict locations of pathways, genes and mutations

accurately. From these tools, it is easy to predict the location of genes of the same

pathway. We incorporate the gene location of mutations to compute τ which as

follows:

τ =
(

1− 1

2
(1− e

−djt
L )
)

(e

−d
g
j
t

LG ) (4.7)

where dgjt
is the scalar distance between genes having current and jth mutations.

LG is the average gene length3.

• Two user-de�ne values of τ which are 0.5 and 0.8

3The average gene length is 8446 base pairs (Jareborg, Birney, & Durbin, 1999).
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4.2.2 Emission probabilities:

We decompose the emission probability for generating the observation OOOt,x =

{Nt,x, at,x, lt,x} given that the hidden variables GGGt and ΦxΦxΦx, as follows:

P (OOOt,x|GGGt,ΦxΦxΦx) =
∏
x∈X

P (at,x|Nt,x,GGGt,ΦxΦxΦx)P (lt,x|GGGt,ΦxΦxΦx)

=
∏
x∈X

Bin(at,x|Nt,x, Pbt,x ,GGGt,ΦxΦxΦx)N (lt,x|σ2, µ̃t,x,GGGt,ΦxΦxΦx) (4.8)

where at,x, Nt,x, and lt,x are sample speci�c observations as de�ned previously. As for

basic HetFHMM (Chapter 3), we assume that at,x follows the binomial distribution

where the number of trails is Nt,x and the probability of success Pbt,x is as follows:

Pbt,x =

∑K
k=1 φk,x.rgkt∑K
k=1 φk,x.cgkt

(4.9)

where rgkt and cgkt are number of reference allele and the copy number of the genotype

in Gt,k respectively.

Following HetFHMM, we assume that the log ratio of tumour-normal read depth is

a Gaussian distributed with mean µt,x and standard deviation σx. The mean of the log

ratio of tumour-normal read depth is:

µ̃t,x =

∑K
k=0 φk,x.cgkt

φ0,x.cg0t .
∑K

k=1 φk,x.ψ
(4.10)

where ψ is the tumour ploidy4 parameter, which is set to 3.

4.3 Inference

emHetFHMM infers the clonal frequencies and genetic make-up of clones from multiple

sample data, which also incorporate long-range mutational dependencies. Therefore, we

must modify the inference algorithm of HetFHMM described in Section 3.3 for multiple

4Ploidy is a measure of the number of chromosomes in a cell.
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sample data and for capturing the long range in�uences.

Since the exact inference in FHMM is intractable (Ghahramani & Jordan, 1997),

we make use of Gibbs sampling as a Markov chain Monte Carlo (MCMC) method for

approximate inference. To initialize, we randomly choose a genotype value for genotype

variables in all chains except the normal chain where the genotypes are �xed to AB.

Furthermore, we assign uniform clonal frequency to each sample. After initialization,

�rst we infer the clone speci�c genotype from all of the samples, given that the sample

speci�c clonal frequencies ΦxΦxΦx are �xed. The algorithm for sampling the clone speci�c

genotypes from each sample x is shown in Algorithm 4.1.

Algorithm 4.1 Gibbs samplers for inferring clone speci�c genotypes

1: while !converged do
2: for mutation t = 1 to T do
3: for clone k = 1 to K do
4: for genotype g = 1 to 20 do
5: Pat,x ← Bin(at,x|Nt,x, Pbt,x) B Pbt,x is de�ned in eqn (4.9)
6: Plt ← N (lt,x|µ̃t,x, σx, ψ) B µ̃t,x is de�ned in eqn (4.10)
7: Et,k ← 1

8: for each mutation i ∈ ~G−t,k do
9: Et,k ← P (Gt,k|~Gi−t,k) B P (Gt,k|~Gi−t,k) is de�ned in eqn (4.5)
10: end for
11: posterior[g] ← Et,k × P (Gt,k = g|Gt−1,k)× P (Gt+1,k|Gt,k = g)× Pat × Plt
12: end for
13: Sample Gt,k from normalised posterior
14: end for
15: end for
16: end while

After sampling genotypes, we predict sample speci�c clonal frequencies given that

the clone speci�c genotypes are �xed. This step is discussed in detail in the Section

3.3. The algorithm to infer the sample speci�c cellular prevalences for each sample x is

shown in Algorithm 4.2.

We repeatedly alternate between inferring the clone speci�c genotypes and clonal

frequencies until a convergence condition is met, i.e. we alternate between ΦΦΦ and GGG to

maximise the above likelihood function. The complete likelihood function of the data
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Algorithm 4.2 EG algorithm for inferring cellular prevalences of sample x

1: while !converged do
2: for Clone k = 0 to K do
3: φnewk,x ← φoldk,x × exp−η∇F (φoldi,x)
4: end for
5: ΦxΦxΦx

new ← normalize(ΦxΦxΦx
new)

6: Compute F (ΦxΦxΦx
old)

7: Compute F (ΦxΦxΦx
new)

8: if F (ΦxΦxΦx
old)− F (ΦxΦxΦx

new) > 0 then
9: ΦxΦxΦx ← ΦxΦxΦx

new

10: end if
11: end while

is as follows:

P (GGG, lll, aaa|NNN,ΦΦΦ, µ̃, σ, ψ) =
∏K

k=1

(∏T
t=1At,k(Gt,k|Gt−1,k)

∏
j∈~G−t,k

(
Ej
t,k(q)

))
∏

x∈X

(∏T
t=0 Bin(at,x|Nt,x, Pb)N (lt,x|µ̃t,x, σ2)

)
The inference algorithm for emHetFHMM is shown as Algorithm 4.3.

Algorithm 4.3 Inference algorithm for emHetFHMM

1: Initialization of S
2: for Sample x = 1 to X do
3: for Clone k = 0 to K do
4: φk,x ← 1

K

5: end for
6: end for
7: Initialization of Gibbs Sampling
8: for Clone k = 1 to K do
9: for Location t = 0 to T do
10: Gt,k ← randomly generated genotype
11: end for
12: end for
13: while (!converged) do
14: for sample x = 1 to X do
15: Gibbs-Genotype(x); keeping Φ is �xed B Algorithm-4.1
16: end for
17: for sample x = 1 to X do
18: EG(x); keeping G is �xed B Algorithm-4.2
19: end for
20: end while
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4.4 Evaluation Framework

No existing model infers tumour clones and their genomic make-up along with the clonal

frequencies from multiple tumour samples. Hence it is challenging to evaluate our model

due to the lack of (a) appropriate data annotated with details of clones, (b) the most

compatible models for comparison, and (c) suitable evaluation metrics. We focus on

these issues as we describe the evaluation framework for emHetFHMM in the rest of

this section.

4.4.1 Synthetic data

To assess di�erent aspects of our model, we generate synthetic cancer data containing

clone speci�c genotypes and sample speci�c clonal frequencies. To generate synthetic

data, in step 1, we specify the number of clones |K| and samples n. In this step,

the number of samples for each patient would be 1, 2, 5, 10, 15, 20, 25 and 30. In

step 2, we then specify the sample speci�c clonal frequencies. In the next step (step

3), we generate the mutant locations. First, we specify the �rst location randomly.

Following the synthetic data generation of HetFHMM, we then generate the gap between

two consecutive mutations from a uniform distribution on [6K,7K], since the average

distance between two consecutive mutations in the AML data is 6679 base-pair (Ding

et al., 2012).

After specifying the locations, we follow a couple of steps to generate genotypes of

the clone speci�c mutations. In step 4, we set AB to genotypes of the normal clone.

We then generate the genotype of the �rst location of each clone by random in step

5. In next the step (step 6), we generate genotype of the clone speci�c mutations.

To generate the clone speci�c genotype of mutations, we use long-range mutational

in�uences along with adjacent in�uences. We consider that τ is uniformly distributed

in [0,1] to capture long-range mutational in�uences. As discussed earlier, mutations

having long range dependencies can be found from the gene-gene interaction networks.
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Algorithm 4.4 Synthetic data generation algorithm for multiple sample with long
range in�uences

1: Step 1: Specify the number of clones |K| and samples N =
{1, 2, 5, 10, 15, 20, 25, and 30} of a patient.

2: Step 2: Specify sample speci�c clonal frequencies φφφ = {φ1φ1φ1...φkφkφk}
3: Step 3: Generate the location of mutations 1, 2, ...T .
4: Step 4: Set G1,0.....GT,0 to AB B Genotype sequence of normal clone.
5: Step 5: Uniformly at random generate the genotypes of G1,1... G1,K B �rst muta-

tions.
6: for each location t ∈ {1....T} do
7: for each clone k ∈ {1....K} do
8: Step 6: Sample Gt,k from transition matrix B Equation 4.2
9: end for
10: for each number of samples N = 1, 2, 5, 10, 15, 20, 25, and 30 do
11: for sample x=1 to N do
12: Step 7: Generate at,x, Nt,x and lt,x based on Emission probability matrix B

Equation 4.8
13: end for
14: end for
15: end for

We use the Reactome web database5 to �nd the gene-gene interaction networks. In

the Reactome database, all gene-gene interactions are experimentally con�rmed in the

laboratory. We used this open-source and peer-reviewed pathway database to �nd the

possible gene-gene interactions when capturing the long-range mutational in�uences.

We then do gene mapping to �nd out the location of the genes of the same pathway using

Geneloc6. By comparing the locations of genes and mutations we tag the mutations,

having long-range in�uences. Using the equation 4.2, we generate the clone speci�c

genotypes. Finally in step 7, sample speci�c observations are sampled based on equation

4.8. We detail our synthetic generating process in Algorithm 4.4.

Following the synthetic data experiments of HetFHMM, we would like to assess

emHetFHMM in data conditions where the inter-dependency assumptions made in the

model about the adjacent genotypes do not hold. Therefore, we generate two more

5Reactome is a free, open-source, curated and peer-reviewed pathway database. The goal of this
database is to provide intuitive bioinformatics tools for the visualization, interpretation and analysis
of pathway knowledge to support basic research, genome analysis, modeling, systems biology and
education. The weblink: http://www.reactome.org/pages/download-data/

6Geneloc (http://genecards.weizmann.ac.il/geneloc/index.shtml) is a web source to �nd
the location of each gene in the human genome.
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versions of the aforementioned datasets where the gap (dt in the computation of the

stickiness of genotypes Markov process ρt in eqn (4.4)) is scaled by 3 and 1/3, which

correspond to stronger and weaker interdependencies, respectively. This also provides

a compelling test bed for the comparison against the competing models, PyClone and

PhyloSub, which assume no dependency between genotypes of adjacent mutations.

4.4.2 Real cancer data

We use two types of laboratory experimented cancer data, downloaded from The Cancer

Genome Atlas TCGA7

• Acute Myeloid Leukemia (AML): This dataset has specimens from 2 patients.

For the simplicity, we call the tumour specimen from the �rst patient LAML-1

and from the second LAML-2. LAML-1 and LAML-2 contained 3 and 5 samples

respectively.

• Breast Invasive Carcinoma (BRCA): We download BRCA specimen data on three

patients from TCGA. In the experiments we call data of the �rst patient BRCA-1,

the second BRCA-2, and the third one BRCA-3. BRCA-1, BRCA-2 and BRCA-3

contained 2, 6 and 2 samples respectively.

All of these downloaded data were processed in the National Human Genome Re-

search Institute (NHGRI)8. We use the laboratory experimented results (i.e. the clusters

of the mutations of these data) from the same web source, which are considered as the

gold standard.

4.4.3 Baseline Models

We compare the performance of emHetFHMM with PyClone, PhyloSub and HetFHMM.

As mentioned in Chapter 3, PyClone (Roth et al., 2014) and PhyloSub (Jiao et al., 2014)

models discover the clonal architecture of a tumour, i.e. the frequency of clones and

7TCGA is an useful web source which facilitates free cancer data for the researchers. Data portal
address: https://tcga-data.nci.nih.gov/docs/publications/tcga/?

8https://www.genome.gov/27569636/gds-data-access/
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the set of mutations belonging to each clone. They cluster the mutations to identify

clones and to infer the clonal frequencies. PyClone takes the frequency of a cluster as

the clonal prevalence, whereas PhyloSub estimates the clonal frequencies di�erently.

Similar to HetFHMM, emHetFHMM produces two outputs: the clonal frequencies

and the clone speci�c genotypes (it is important to note that there is no existing method

which infers the �clone speci�c genotypes� from the short reads except HetFHMM). In

HetFHMM and emHetFHMM, Gt,k speci�es the genotype of the mutation t in kth clone,

and whether the clone harbours this mutation or not. Therefore, we can obtain the set

of mutations belonging to a clone as well as the clonal prevalence from the output of

emHetFHMM, which can be then compared with the output of PyClone, PhyloSub and

HetFHMM.

4.4.4 Evaluation Metrics

We make use of V -Measure (Rosenberg & Hirschberg, 2007) and root mean-square dis-

tance (RMSD) to compare mutation clusterings and the clonal frequencies, respectively

which are already de�ned in the previous chapter.

4.5 Results

In this section, we �rst compare the performance of emHetFHMM9 vs PyClone, Phy-

loSub and HetFHMM on the synthetic data. Afterwards, we compare these models

using real cancer data (mentioned in section 4.4.2). In experiments on both synthetic

and real cancer data, we also compare the performance of multiple sample exten-

sion of HetFHMM, which does not use long-range mutational in�uences and called

mHetFHMM.

Moreover, we implement emHetFHMM with alternative calculated τ (the prior prob-

ability that genetic event occurs between two mutations having long-range dependencies

discussed earlier) on synthetic data to select the best suitable way to compute τ based

9emHetFHMM is implemented in Matlab version 2014b



Tumour heterogeneity prediction - Multiple samples and long-range mutational
in�uences 81

on the V -Measure and RMSD errors. We call the emHetFHMM that uses one dimen-

sional location to calculate τ as emHetFHMM (1D distance). As mentioned earlier, we

also use gene location as the alternative computing of τ to capture genotypes of muta-

tions having long-ranges dependencies. Therefore, we call the gene location variant of

τ used in emHetFHMM as emHetFHMM (Gene location). Moreover, we also use two

user-de�ned alternative of τ (discussed earlier). These two user-de�ned τ create two

variants of emHetFHMM which are called emHetFHMM(τ = 0.50) and emHetFHMM(τ

= 0.80).

4.5.1 Synthetic Data

We investigate the mutation clusters and prediction accuracy of the clonal frequencies of

each clone by computing V -Measure and RMSD scores, respectively. For the synthetic

data, we consider the clusters identi�ed by the sampled clone-speci�c genotypes and

prede�ned sample speci�c clonal frequencies as the gold standard.

4.5.1.1 Experiments on the data having single sample

We �rst carry out experiments on the single sample data with 3 clones. Figure

4.2 presents the average V -Measure of outputs of HetFHMM, mHetFHMM and

emHetFHMM with four alternative calculated τ (1D distance, gene location, 0.5 and

0.8). For single sample data, mHetFHMM detected statistically similar clustered output

as that of HetFHMM. V -Measure calculated on the output of mHetFHMM is 0.516.

Whereas, the accurate detection of clustered mutations of 3 clone data by HetFHMM

is around 50.1% (On average V -Measure is 0.501 for all type of inter adjacent muta-

tions dependencies: independent, weak, normal and strong). Both mHetFHMM and

HetFHMM perform similarly on single sample data.

All variants of emHetFHMM outperform both mHetFHMM and HetFHMM. Since

one of the important biological features of tumour (long-range mutational in�uences) is

captured by emHetFHMM, it performs better than both mHetFHMM and HetFHMM.

In addition, Fig 4.2 shows that gene location alternative computation of τ of
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emHetFHMM performs best over the other alternative computation of τ . As men-

tioned earlier that, the genotype of the mutations in the same gene are the same. Gene

location variant of τ of emHetFHMM considers this feature to compute the transition

probability to sample the genotype of mutations. Whereas, the 1D distance between the

mutations and two user de�ned τ do not mention whatever these mutations are located

in same gene or not. Therefore, these variants of τ of emHetFHMM do not perform

well as gene location variant does. It helps to capture better long-range mutational in-

�uences and improves the clone speci�c genotypes prediction. Gene location variant of

emHetFHMM performs very well over the other variants of emHetFHMM, mHetFHMM

and HetFHMM. Therefore, it can be said that emHetFHMM is the generalized versions

of HetFHMM.

4.5.1.2 Experiments on the data having more than 1 sample

We further carry out experiments on the 3 clone data with 2, 5, 10, 15, 20, 25 and 30

samples by mHetFHMM and emHetFHMM. Figure 4.4 presents the average V -Measure

of outputs of mHetFHMM and emHetFHMM with its di�erent variants. Similar to the

previous experiment, gene location variants of emHetFHMM outperforms mHetFHMM

and other variants of emHetFHMM.

Furthermore, Figure 4.4 shows that as the number of samples increases, both

emHetFHMM and mHetFHMM predict clusters of mutations more accurately. There-

fore, the availability of more samples from a cancer patient would help emHetFHMM

to infer more accurate clones.

Observing V -Measure scores corresponding to the di�erent number of samples,

there is no statistically signi�cant change in clusters predicted by emHetFHMM and

mHetFHMM. The highest V -Measure is pretending when the number of samples is

more than 25. Both emHetFHMM and mHetFHMM need approximately 25 to 30

samples to predict statistically better clusters of the mutations compare to PyClone

and PhyloSub (Figure 4.3). Therefore, we can claim that, after capturing long-range

mutational in�uences and multiple samples features into emHetFHMM, it can predict
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Figure 4.4: Improvement trend of outputs of emHetFHMM and its variants; and
mHetFHMM on 3 clones synthetic data with four adjacent e�ects.
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clone speci�c genotype of mutations from the data with 25 to 30 samples e�ciently.

4.5.1.3 Investigating the performance on di�erent adjacent e�ect

We also investigate the performance of emHetFHMM on four types of adjacent in-

ter dependencies (discussed in previous section in details). Figure 4.4 shows that

emHetFHMM with its di�erent variants perform very well when mutations have strong

e�ect on their adjacent mutations. Moreover, emHetFHMM performs well on moderate

e�ect comparing to weak e�ect. Transition probabilities of emHetFHMM is also de-

pendent on the distance between two adjacent mutations. Two mutations with strong

adjacent e�ect are located very close to each other, and the probability that the geno-

type of these two mutations would be the same. Whereas, for two distant adjacent

mutations, the probabilities of the genotypes may be di�erent. Following the equation

4.2, emHetFHMM samples any of 19 di�erent genotypes (other than same genotype)

with equal probability, which might sample the genotype of a mutation di�er from gold

standard. Hence it a�ects the clustered outputs of emHetFHMM for 3 clone data with

di�erent adjacent e�ect.

Interestingly, Fig 4.4 narrates that emHetFHMM needs 20 to 25 samples of the data

with strong adjacent e�ect, to infer accurate clone speci�c genotypes. Whereas data

with other e�ects requires around 25 to 30 samples.

4.5.1.4 Performance of PyClone and PhyloSub on the same data

We compare outputs of PyClone and PhyloSub by computing V -Measure. Figure 4.3

shows the average V -Measure of emHetFHMM, mHetFHMM, PyClone and PhyloSub.

Similar to HetFHMM, both PyClone and PhyloSub are outperformed by all variants

of emHetFHMM and mHetFHMM. The number of clusters predicted by PyClone and

PhyloSub are quite larger than the gold standard. Even PhyloSub inferred around

3 to 6 more clusters than PyClone. Moreover, both methods depend on the existing

genotype prediction methods to compute clonal frequencies of clones. Existing genotype

prediction methods are not predicting clone speci�c genotypes and do not consider
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the presence of long-range mutational in�uences. Hence, it a�ects the performance of

PyClone and PhyloSub.

Moreover, both PyClone and PhyloSub perform well as the number of samples in-

creases. According to the �gure 4.3, PyClone and PhyloSub do not perform signi�cantly

statistically well when the number of sample is 30 as emHetFHMM does. Based on the

results of this experiment, emHetFHMM outperforms the baselines PyClone and Phy-

loSub.

4.5.1.5 Experiments on the data with more than 3 clones

Figures from 4.5 to 4.7 present results of emHetFHMM, mHetFHMM, PyClone and

PhyloSub. Similar to 3 clone experiments, gene location variant of emHetFHMM per-

forms well for the data with 4, 5 and 6 clones. In addition, The number of samples

a�ects outputs of emHetFHMM. Results of this experiment show that mHetFHMM,

PyClone and PhyloSub are not as good as emHetFHMM.

4.5.1.6 Performance on predicting clonal frequencies

We next evaluate the inferred sample speci�c clonal frequencies based on RMSD (dis-

cussed in details in previous section). Figures from 4.8 to 4.11 depict the average RMSD

of predicted clonal frequencies comparing with gold standard. Over the increase of the

number of samples, RMSD of predicted clonal frequencies are in the trend of decreas-

ing. As we know that clonal frequencies are inter-related with clone speci�c genotypes.

As the number of samples increases, emHetFHMM predicts more accurate clone spe-

ci�c genotypes and improves the estimation of clonal frequencies. Hence, the number

of sample a�ects the accurate prediction of clonal frequencies.

Similar to the average V -Measure, gene location variants of emHetFHMM outper-

forms PyClone, PhyloSub and mHetFHMM on 3, 4, 5 and 6 clones' data. PyClone and

PhyloSub do not infer the sample speci�c clonal frequencies. These models consider

that clonal frequencies of all of the clones are same in all samples. Due to the assump-

tion about clonal frequencies and the less accurate prediction of the clusters a�ected the
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prediction of clonal frequencies of PyClone and PhyloSub. Hence, from Figures from

4.8 to 4.11, we found that RMSD error of PyClone and PhyloSub were larger than

emHetFHMM. Based on results of these experiments on synthetic data, we can claim

that emHetFHMM is one of the best methods for inferring tumour heterogeneity.

4.5.2 Real cancer data

We apply emHetFHMM and mHetFHMM to the cancer data downloaded from TCGA

(described in Section 4.4.2), which is annotated with gold standard clones based on

laboratory experiments. However, the data is not annotated with the clonal frequencies

of clones; therefore, we only use V -Measure to test the quality of the predicted clones

as RMSD is not applicable. For emHetFHMM and mHetFHMM, we run the model

with di�erent number of clones from 3 to 10, and choose the one with the highest log

likelihood. In the synthetic data experiments, gene location variants of emHetFHMM

performed well. It inspires us to use the gene location variants of emHetFHMM for

TCGA real cancer data. Moreover, we also use the τ=0.8 variants of emHetFHMM.

Figure 4.12 presents the average V -Measure of the output, inferred by

emHetFHMM, mHetFHMM, PyClone and PhyloSub. Based on the average

V -Measure, it is clear that gene location variant of emHetFHMM predicts clusters more

e�ciently than mHetFHMM, PyClone and PhyloSub for all AML and BRCA cancer

data. Moreover, on BRCA-3 data, mHetFHMM predicts less than the number of gold

clones and outperformed by PhyloSub and . We investigate the data of BRCA-3 and

�nd that the distance between the most of the adjacent mutations are large. For having

weak adjacent a�ect between mutations, mHetFHMM was not performed well as same

as the data having the mutation with strong adjacent a�ect. Therefore, it a�ects the

output of mHetFHMM on BRCA-3. Whereas, emHetFHMM captures the long-range

mutational in�uences, which improves the performance and outperforms PhyloSub in

BRCA-3 data.



Tumour heterogeneity prediction - Multiple samples and long-range mutational
in�uences 95

2 
sa

m
pl

es
5 

sa
m

pl
es

10
 s

am
pl

es
15

 s
am

pl
es

20
 s

am
pl

es
25

 s
am

pl
es

30
 s

am
pl

es

6 
cl

on
es

 (
N

o 
de

pe
nd

en
ci

es
)

0

0.
51

RMSD

em
H

et
F

H
M

M
(1

D
 d

is
ta

nc
e)

em
H

et
F

H
M

M
(

 =
 0

.5
0)

em
H

et
F

H
M

M
(

 =
 0

.8
)

em
H

et
F

H
M

M
(G

en
e 

lo
ca

tio
ns

)
m

H
et

F
H

M
M

P
yC

lo
ne

P
hy

lo
S

ub

2 
sa

m
pl

es
5 

sa
m

pl
es

10
 s

am
pl

es
15

 s
am

pl
es

20
 s

am
pl

es
25

 s
am

pl
es

30
 s

am
pl

es

6 
cl

on
es

 (
W

ea
k 

de
pe

nd
en

ci
es

)

0

0.
51

RMSD

2 
sa

m
pl

es
5 

sa
m

pl
es

10
 s

am
pl

es
15

 s
am

pl
es

20
 s

am
pl

es
25

 s
am

pl
es

30
 s

am
pl

es

6 
cl

on
es

 (
N

or
m

al
 o

r 
m

od
er

at
e 

de
pe

nd
en

ci
es

)

0

0.
51

RMSD

2 
sa

m
pl

es
5 

sa
m

pl
es

10
 s

am
pl

es
15

 s
am

pl
es

20
 s

am
pl

es
25

 s
am

pl
es

30
 s

am
pl

es

6 
cl

on
es

 (
S

tr
on

g 
de

pe
nd

en
ci

es
)

0

0.
51

RMSD

F
ig
u
re

4.
11
:
A
ve
ra
ge

R
M
S
D

er
ro
r
of

th
e
co
m
p
u
te
d
cl
on
al

fr
eq
u
en
ci
es

b
y
em

H
et
F
H
M
M

an
d
it
s
va
ri
an
ts
;
m
H
et
F
H
M
M
,
P
y
C
lo
n
e
an
d

P
h
y
lo
S
u
b
on

6
cl
on
es

sy
n
th
et
ic
d
at
a
w
it
h
fo
u
r
ad
ja
ce
n
t
e�
ec
ts



Tumour heterogeneity prediction - Multiple samples and long-range mutational
in�uences 96

LAML-1 LAML-2 BRCA-1 BRCA-2 BRCA-3

Real data

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

V
-m

ea
su

re
emHetFHMM(Gene location) emHetFHMM (  = 0.8) mHetFHMM PyClone PhyloSub

Figure 4.12: Average V -Measure of outputs of emHetFHMM and its gene location and
τ = 0.8 variants; mHetFHMM, PyClone and PhyloSub on real cancer data.

4.6 Conclusion

We extend HetFHMM to multiple samples data and long-range mutational dependen-

cies, to identify the clonal architecture of a tumour more accurately from the next gen-

eration sequencing data. The resulting model emHetFHMM discovers mutations and

their types in each clone along with sample speci�c clonal frequencies from the data.

emHetFHMM is based on Factorial Hidden Markov Models, whereby the genomic com-

position of each clone is represented by a hidden chain. The basic idea of the model is

that the observed data is generated by a mixture of the underlying chains, where the

mixing coe�cients are clonal frequencies. We make use of Gibbs sampling and expo-

nentiated gradient algorithms to infer the clonal genomic compositions represented by

hidden chains as well as clonal frequencies. The empirical results on the synthetic and

the cancer data con�rms that our model outperforms strong baseline models PhyloSub

and PyClone based on two evaluation metrics, i.e. V -Measure and RMSD. Moreover,

according to results on the synthetic data, emHetFHMM requires comparatively smaller

number of samples with respect to PhyloSub and PyClone. Key to the stronger per-
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formance of emHetFHMM compared to the baseline models is that it uses the multiple

samples and long-range mutational in�uences.

emHetFHMM infers tumour heterogeneity from multiple sample data and capture

long-range mutational inter-dependency. We use the Reactome database10 to �nd the

gene-gene interaction networks and Geneloc11 to �nd the location of each gene in the

human genome. Using these two databases, we identify the long-range mutational de-

pendencies. However, in the cancer data, many gene-gene interactions are hidden and

not presented in Reactome database. Therefore, the cancer data can be used to reveal

mutations with this new in�uences, which are missing in the gene-gene interaction net-

works available in Reactome or alike databases. Therefore, we extend our research to

discover the gene-gene interaction networks from the cancer data from which �nd more

long-range inter-dependency among the mutations will be captured. This unknown

long-ranges dependencies certainly improve tumour heterogeneity prediction.

10http://www.reactome.org/pages/download-data/
11http://genecards.weizmann.ac.il/geneloc/index.shtml



Chapter 5

Network Structure Learning with

Gaussian Graphical Models

The research in this chapter has been published/ submitted in the fol-

lowing article: Mohammad S Rahman and Gholamreza Ha�ari, �A statistically

e�cient and scalable method for exploratory analysis of high-dimensional data",

Revised version submitted to Journal of Data Mining and Knowledge Discovery.

In emHetFHMM, we use Reactome database to �nd out the available gene-gene

interaction network (i.e. gene-pathways) and GeneLoc to �nd out the location of the

genes. Cordell (2009) has discovered that the genetic factor function primarily involves

multiple other genes through a complex mechanism to play a signi�cant role in the

development of cancer cells. All of the interactions between the genes are not possible

to predict through laboratory experiments which do not consider all potential genetic

factor functions. Performing network analysis using large-scale gene expression datasets

is an e�ective way to uncover new biological knowledge (Su, Meng, Ma, Bai, & Liu,

2016). Statistical interaction between two genes can describe the relationship between

these two genes. However, large scale gene expression data involves continuous valued

random variables, where it is critical to uncover the associations among the variables

from the large sample data. Typically there are fewer samples compared to the number

98
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of variables, which makes the association discovery challenging, particularly for high-

dimensional data.

Association discovery among data variables can be casted as discovering statistical

dependencies among the random variables, expressed by the structure of an underlying

probabilistic graphical model (Petitjean et al., 2013). However, current methods for

graphical model structure discovery with continuous variables either do not scale well

to datasets with large sample sizes (Yang & Lozano, 2015; H. Liu, 2017; Hirose et al.,

2017); or poor objective function (J. Friedman et al., 2008; H. Liu, 2017); or su�er from

high false discovery rates when the number of dimensions is much larger than the sample

size (T. Wang et al., 2016; Avagyan et al., 2017; Chiong & Moon, 2017); or sacri�cing

too much the computational cost (Avagyan et al., 2017; H. Liu, 2017).

In this chapter, we propose a scalable and statistically e�cient approach for undi-

rected graphical model structure discovery for exploratory analysis of high-dimensional

continuous data. Starting from the null graph, our approach incrementally adds the

best edge maximising a test statistic using the graphical model. We start from the

log-likelihood ratio test and note that it leads to small number of edges in the estimated

graph, hence missing a large number of true associations. We then present a novel test

statistic based on the minimum message length (MML) principle for statistical infer-

ence, where candidate models compete based on the length of their lossless compression

of the data. An integral part of our test statistics is the maximum likelihood estimate

for the parameters of the competing models. As we desire our method to be computa-

tionally e�cient, we restrict the structure of the competing models to chordal graphs.

They characterise decomposable probabilistic graphical models, which enjoy analytical

solution for the maximum likelihood estimates of their parameters. As such, chordal

graphs have been popular in probabilistic graphical models, eg see (Beeri, Fagin, Maier,

& Yannakakis, 1983; Deshpande et al., 2001).

Our MML-based structure discovery is an information-theoretic method enjoying

(a) low false discovery rate, (b) suitability for small number of samples when discov-

ering statistical dependencies (associations) among large number of variables, and (c)
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scalability to large-scale problems involving thousands of variables. We call our method

ContChordalysis, naming it after Chordalysis (Petitjean et al., 2013) which is a method

for chordal graphical model structure discovery for discrete-valued random variables.

We present extensive empirical results on synthetic and real-life datasets, and show

that our method outperforms strong baselines in terms of both speed and the accuracy

of the predicted associations between the random variables in the graphical model.

5.1 Structure Discovery in Decomposable Gaussian

Graphical Models

Let D = {X1, . . . , Xn} be a training set consisting of n data points where Xi ∈ Rd and d

is the number of dimensions (equivalently attributes, or random variables). Our aim is to

discover the unobserved undirected graphical structure based on the observed/sampled

vectors in D.

We are interested in the undirected graphical structure G = (V,E), where V is

the set of vertices each of which corresponds to a random variable (or a dimension

of the input vectors), and E is the set of edges capturing the statistical associations

between random variables. A parameterisation of the model corresponds to multivariate

functions assigned to subset of variables in maximal cliques of the graph. The probability

density function corresponding to the graph is de�ned as

f(D) ∝
∏
C∈C

P (DC)

where C is the set of maximal cliques, and P (DC) is a clique-speci�c function de�ned

on the subset of variables appearing in a clique C. In any distribution resulting from

the graphical model, two random variables are statistically independent conditioned on

the variables in a cut separating the two.

In this chapter, we assume that the observed input vectors have been generated

from a multivariate Gaussian distribution D ∼ Nd(µ,Σ), which means the cliques are
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also parameterised by Gaussian distributions. Therefore, our aim is to discover the

structure of the so-called Gaussian graphical model. For computational convenience,

we work with chordal graphical structures, leading to decomposable models covered in

the next subsection.

5.1.1 Decomposable Models

Decomposable Models is a subclass of undirected graphical models which provides a

usefully constrained representation in which model selection and parameter estimation

can be done e�ciently, which makes it suitable for large-scale problems.

De�nition 5.1.1. (Deshpande et al., 2001) A graphical model is decomposable if the

associated graph G is chordal. A chordal graph is one in which all cycles of four or

more vertices have a chord, which is an edge that is not part of the cycle but connects

two vertices of the cycle.

LetM be a decomposable model, and fM be the probability density function of a

Gaussian distribution corresponding toM. It can be shown that (Lauritzen, 1996):

fM(X) =

∏
C∈C P (DC)∏
S∈S P (DS)

(5.1)

where C is the set of maximal cliques and S is the set of minimal separators corre-

sponding to the chordal graph of the modelM. The importance of this result is that it

relates the Gaussian distribution over all variables to those on the subsets of variables,

i.e. Gaussian distributions over the variables involved in maximal cliques P (DC) or

minimal separators P (DS). This amounts to a closed form solution for the maximum

likelihood estimate (MLE) of the covariance matrix Σ̂ of the Gaussian graphical model

PM, through the MLE of the covariance matrices of the component models.

Theorem 1. (Lauritzen, 1996) For a Gaussian graphical model corresponding to a
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chordal graph G = (V,E), the maximum likelihood estimate of the covariance matrix is:

Σ̂−1 = n

{∑
C∈C

[(ssdC)−1]V −
∑
S∈S

[(ssdS)−1]V

}
(5.2)

where [A]V denotes extending a small matrix A de�ned on a subset of variables

V to a larger matrix on all variables by setting extra entries to zero. ssd

(Sum of Squared Distance) is de�ned as

ssd =
n∑
i=1

(Xi − X̄)(Xi − X̄)T

where X̄ = 1
n

∑n
i=1Xi is the empirical mean. The determinant of the estimate can be

calculated as (Lauritzen, 1996):

|Σ̂−1| = n|V |
∏

S∈S | ssdS|∏
C∈C |ssdC |

. (5.3)

The inverse of the covariance matrix is called the precision matrix K = Σ−1. Inter-

estingly, the non-association between the variables expressed in the graph G = (V,E)

of the Gaussian graphical model translates to pattern of zeros in the precision matrix,

i.e. K has zero for all entries where there is no edge between the corresponding pairs of

vertices in E.

In order to discover the optimal decomposable graphical structure from a given

training data, typically one of the following strategies is employed (Deshpande et al.,

2001), (Petitjean et al., 2013):

• Forward Selection: Starting with the simplest model with no edge (i.e. E = ∅).

Edges are added incrementally, as long as the new hypothesised models are not

rejected according to an appropriate test statistics.

• Backward Elimination: Starting with the complete graph over the |V | vertices,

edges are deleted incrementally, as long as the new hypothesised models are not

rejected according to an appropriate test statistics.
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In this chapter, in order to make the graphical model discovery simple and easy, we

adopt the forward selection strategy, and add the edges incrementally. As we want the

resulting model to be decomposable, the addition of an edge has to be done with care.

5.1.2 Structure Discovery by Hypothesis Testing

Let S+(G) denote all positive de�nite matrices whose zero patterns are consistent with

the graph G, i.e. they have zero for all entries corresponding to non-existent edges of the

graph G. Let G′ be a candidate graph resulting from adding an edge (a, b) to the graph

G, that is G′ = G ∪ {(a, b)}. In the forward selection strategy, we test the hypothesis

that K ∈ S+(G) under the assumption that K′ ∈ S+(G′) .

Theorem 2. (Lauritzen, 1996) The exact deviance test for testing a decomposable model

K ∈ S+(G) assuming a decomposable model K′ ∈ S+(G′) can be performed by rejecting

the small values of

r =
|K̂|
|K̂′|

(5.4)

which is distributed as a beta distribution B( |V |−|Cab|
2

, 1
2
) where Cab is the maximal clique

that contains the newly added edge (a, b). K̂ and K̂′ are the maximum likelihood estimates

for the precision matrix of the Gaussians corresponding to G and G′, respectively.

We will discuss how the test statistics can be computed e�ciently in Section 5.1.3.

As the graphical model is learnt incrementally by adding one edge at a time, we make

intensive use of statistical testing. Multiple hypothesis testing is prone to many false

discoveries. This is critical in our approach where we need to do a lot statistical testing

due to the large size of the search space, which may lead to accepting modi�cations

of the models more often than needed. This can be avoided by using layered critical

values (Webb, 2008), a variant of the Bonferroni correction that increases the number

of signi�cant patterns discovered while still maintaining strict control over the risk of

false discoveries. Given the p-value threshold β (usually β = 0.1), the layered p-value

at iteration t of the algorithm is

βt =
β

2t|Gt|
(5.5)
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Algorithm 5.1 ContChordalysis

1: Input: Dataset D = {Xi}ni=1, Signi�cance level β
2: Output: The graph G = (V,E)
3: Initialise G to be the graph without any edges
4: t← 1
5: repeat
6: Ec ← CandidateEdge(G) B see Section 5.1.3
7: for e ∈ Ec do
8: re = testStatistic(D,G, e) B based on eqn (5.6)
9: end for
10: e∗ ← arg mine∈Ec re
11: pval = β

2t|Ec|
12: if re∗ ≤ pval then
13: G← addEdge(G, e∗) B see Section 5.1.3
14: end if
15: t← t+ 1
16: until (re∗ > pval) or (t > |V |(|V |−1)

2
)

where t is the number of edges in the current best model, and GGGchordal is the number of

chordal graphs that can be formed by adding an edge to the current model.

The resulting structure discovery algorithm is presented in Algorithm 5.1. We call

our algorithm ContChordalysis, to highlight that it is for structure discovery of chordal

graphs for continuous valued variables.

5.1.3 E�cient Computation of the Test Statistics

We now turn to the question of how to e�ciently compute the test statistics in eqn

((5.4)), which is particularly important for large-scale datasets.

(Deshpande et al., 2001) characterises the edges that can be added to a decompos-

able model while retaining its decomposability. Furthermore, it presents an e�cient

algorithm to enumerate all such edges in O(|V |2). This is achieved by a data structure

called the clique graph, which keeps track of the maximal cliques C and minimal sep-

arators S. Adding an edge to the graph and updating the underlying data structures

also takes O(|V |2).

Theorem 3. (Deshpande et al., 2001) If two decomposable modelsM⊂M′ di�er only

in one edge (a, b), (i.e., (a, b) ∈M′ and (a, b) 6∈ M), then the maximal cliques and the
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Figure 5.1: Structure of (i) the cliques Ca, Cb and separator Sab in reference model; and
(ii) newly formed clique Cab and separators Cab ∩ Ca and Cab ∩ Cb in candidate model.

minimal separators (C, S) and (C ′, S ′) in these two models di�er as follows:

• If Ca 6⊂ Cab and Cb 6⊂ Cab, then C
′ = C+Cab and S

′ = S+Cab∩Ca+Cab∩Cb−Sab

• If Ca ⊂ Cab and Cb 6⊂ Cab, then C
′ = C + Cab − Ca and S ′ = S + Cab ∩ Cb − Sab

• If Ca 6⊂ Cab and Cb ⊂ Cab, then C
′ = C + Cab − Cb and S ′ = S + Cab ∩ Ca − Sab

• If Ca ⊂ Cab and Cb ⊂ Cab, then C
′ = C + Cab − Ca − Cb and S ′ = S − Sab

where Cab and Sab are the maximal clique and minimal separator for the nodes a and b,

and Ca and Cb are the maximal cliques including each of these nodes.

Thus, the change in the determinant of the MLE estimates of the precision matrix

after adding an edge (a, b) is only dependent on the minimal separator of the two vertices

Sab, the newly formed clique Cab, and the newly formed separators Cab∩Ca and Cab∩Cb.

This means we only have to compute the determinant terms relevant to the candidate

edges that can be added to the current model. This immediately leads to the following

theorem.

Theorem 4. If two decomposable modelsM⊂M′ di�er only in one edge (a, b), (i.e.,

(a, b) ∈M′ and (a, b) 6∈ M), then

|K̂|
|K̂′|

=
|ssdCab| · |ssdSab |

|ssdCab∩Ca| · |ssdCab∩Cb |
(5.6)
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Proof. From Theorem 2, we need to compute the test statistics r = |K̂|
|K̂′| . From the

equation (5.3) and Theorem 3, the test statistics is calculated as:

|K̂|
|K̂′|

=
n|V |

∏
S∈S |ssdS |∏
C∈C |ssdC |

n|V |
∏
S∈S′ |ssdS |∏
C∈C′ |ssdC

|
=

∏
S∈S |ssdS |∏
C∈C |ssdC |∏

S∈S+Cab∩Ca+Cab∩Cb−Sab
|ssdS |∏

C∈C+Cab
|ssdC |

which immediately gives the test statistics in the equation 5.6. We have considered the

�rst case in Theorem 3 in above; moreover, considering the other three cases results in

the same expression for the test statistics.

5.1.4 Time Complexity Analysis

We now turn to the time complexity analysis of ContChordalysis in Algorithm 5.1. At

the step t of the main loop of the algorithm, all candidate next graphs have t edges.

The computation of the test statistics in line 8 is upper bounded by the evaluation

of the maximal clique that can be formed by adding the tth edge to the graph. In

the extreme case where all t edges form one clique, the maximum size of the clique

would be1 k = 1+
√

1+8t
2

. Hence the time complexity of computing the test statistics is

O(k3) = O(t
3
2 ), assuming computing the determinant of a k-by-k matrix is O(k3). The

time complexity of enumerating the candidate edges in line 6 and adding a selected edge

in line 13 is O(|V |2). Therefore, the time complexity of one pass over the main loop is

O(|V |2 + |Ec|t 32 ) = O(|V |2t 32 ) since the number of candidate edges Ec is upper bounded

by the number of edges of the complete graph |V |(|V |−1)
2

.

5.2 A Statistically E�cient Method for Structure Dis-

covery

ContChordalysis is based on the maximum likelihood estimation, and uses multiple test

correction to reduce the false discovery rate. However, the low-rate of false discoveries

1A clique of k nodes contains k(k−1)
2 edges. Setting the number of edges to t and solve the resulting

quadratic equation yields k = 1+
√

1+8t
2 . (Petitjean et al., 2013)
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comes at a price: it requires many samples to accept correct hypotheses. Moreover,

ContChordalysis has a major functional drawback: it relies on the existence of the

maximum likelihood estimates, which may not exist if the number of samples is less

than the size of the largest clique in the graph. To overcome these drawbacks, we

propose a new test statistic based on the minimum message length (MML).

The MML criterion provides an information-theoretic objective for statistical infer-

ence to �nd the best hypothesis for the observed data (Wallace & Boulton, 1968). It

controls the false discovery rate, requiring far fewer samples to accept true hypothe-

ses. MML relies on quantifying the amount of information required to convey losslessly

the observed data in an explanation message. The best hypothesis is the one that can

convey the entire data set in the shortest possible explanation message.

Let us consider a hypothesis (or model)M that o�ers an explanation of the observed

data D. Based on the fundamental rules of probability:

p(M,D) = p(M)× p(D|M) = p(D)× p(M|D)

where p(M) is the prior over hypotheses/models, p(D|M) is the likelihood, p(D) is the

prior probability of data, and p(M|D) is the posterior ofM given D. Using Shannon's

communication theory, the amount of information for explaining D withM is:

I(M,D) = I(M) + I(D|M) = I(D) + I(M|D) (5.7)

where I(a) = − log(p(a)) gives the optimal code length to convey an event a whose

probability is p(a). This results in an objective criterion to compare two competing

modelsM1 andM2 given the same data D:

I(M1|D)− I(M2|D) = I(M1) + I(D|M1)− I(M2)− I(D|M2). (5.8)

A possible realisation of this framework is the transmission of data over a communication

channel between the sender and the receiver. The sender sends D with an explanation
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message, so that the receiver can reconstruct back the original data losslessly from

the message. The sender's message encodes both the model M and the data residual

p(D|M). The receiver then reads in the model from the message, and decodes the

original data from the residual. The goal of this communication game is to minimise

the length of the explanation message, hence the use of the communication channel and

resources (Wallace & Boulton, 1968). If the sender can �nd the best model on the data,

the receiver will receive the most economic decodable explanation message; this is the

basis of statistical inference based on the MML principle (Wallace & Boulton, 1968).

For our structure discovery setting, the encoding of the model in the message consists

of the encoding of the chordal graph's topology G and the associated model parameters,

which we elaborate in the rest of this section.

5.2.1 Encoding of the Graph

We now describe the encoding of the graphical structure G associated with the modelM

based on (Allisons, 2017) and (Petitjean et al., 2014). For this purpose, it is su�cient

to send the edges of the graph: (a) the number of edges |E|, and (b) the particular

combination of the edges that the graph exhibits if we have an enumeration of all

possibilities. We do not need to encode the variables since it is common across all

models, hence does not change the outcome of comparing messages.

We need log(|EComplete| + 1) to encode the number of edges2, where |EComplete| =

|V |×|V−1|
2

. For a given number of the edges, we ideally need to index and send only the

chordal graphs. However, we are not aware of an analytical expression for the number

of chordal graph with a �xed number of edges. Hence, we use the number of all graphs

as an upper-bound, which results in sending more bits than necessary. The number of

all possible graphs with a �xed number of edges |E| is log
(|Ecomplete|

|E|

)
. Hence, the length

of encoding the graph's topology is:

I(G) = log(|Ecomplete|+ 1) + log

(
|Ecomplete|
|E|

)
. (5.9)

2This includes zero for the null graph.
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5.2.2 Encoding of the Parameters and the Data

Once the graph's topology has been encoded, we encode the parameters of the model

as well as the data. To encode model parameters, we encode the parameters of all

maximal cliques and minimal separators and then combine them. Let k << |V | be the

number of nodes in a maximal clique C (or alternatively, a minimal separator). Let DC

be the part of data set D corresponding to the variables in C. According to (Wallace

& Boulton, 1968), the MML encoding of DC and the parameters of the multivariate

Gaussian distribution corresponding to a maximal clique (or minimal separator) C is:

I(C,DC)
def
=
mC

2
log(q) +

mC

2
−

Prior︷ ︸︸ ︷
log(h(θC)) +

Fisher information︷ ︸︸ ︷
log
√
|F(θC)|︸ ︷︷ ︸

I(C)

−
log-likelihood︷ ︸︸ ︷
L(DC |θC)︸ ︷︷ ︸
I(DC |C)

(5.10)

wheremC = d2+3d
2

is the number of free parameters, q is the lattice quantisation constant

to reduce the quantisation error3, and θC = (µC ,ΣC). In what follows, we compute

various components of I(C,DC) in eqn (6.4), i.e. the prior probability, the Fisher

information matrix, and the likelihood.

5.2.2.1 Prior probability of the parameters

Following (Dowe et al., 1996), we use a �at prior for µC and a conjugate inverted Wishart

prior for ΣC . Hence, the prior joint density over the parameters is h(θC) ∝ |ΣC |− k+1
2

where k is the size of the clique C.

5.2.2.2 Likelihood

The log-likelihood L(DC |µC ,ΣC) of the relevant part of the data based on the multi-

variate Gaussian distribution corresponding the maximal clique C is

−nk
2

log 2π − n

2
log |ΣC | − 1

2

n∑
i=1

(Xi − µC)ΣC−1

(Xi − µC)T (5.11)

3Quantisation error results from limited precision in machines when representing real numbers.
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where k is the size of the clique |C|. The MLE estimates are given by:

µ̂C =
1

n

n∑
i=1

XC
i , Σ̂C =

1

n− 1

n∑
i=1

(XC
i − µ̂C)(XC

i − µ̂C)T (5.12)

5.2.2.3 Fisher information of the parameters

We need to evaluate the second order partial derivatives of −L(DC |µC ,ΣC) for com-

puting the Fisher information for the parameters (Wallace & Boulton, 1968). Let

|F(µC ,ΣC)| represent the determinant of the Fisher information matrix which is the

product of |F(µC)| and |F(ΣC)|, i.e. the determinant of the Fisher information matri-

ces of µC and ΣC , respectively.

Taking the second order partial derivatives of −L(DC |µC ,ΣC) with respect to µC ,

we get −∇µC2L = nΣC−1
. So the determinant of the Fisher information matrix for µC

is |F(µC)| = nk|ΣC |−1.

To compute |F(ΣC)|, (Magnus & Neudecker, 1988) derived an analytical expression

using the theory of matrix derivatives based on matrix vectorization:

|F(ΣC)| = n
k(k+1)

2 2−k|ΣC |−(k+2). (5.13)

Hence, the determinant of the Fisher information matrix for µC and ΣC is,

|F(µC ,ΣC)| = n
k(k+3)

2 2−k|ΣC |−(k+2). (5.14)

5.2.2.4 Putting it all together

Substituting the prior probability, Fisher information and log-likelihood into eqn (6.4),

the encoding of the parameters and data of a maximal-clique/minimal-separator is

I(C,DC) =
n− 1

2
log(|ΣC |) +

1

2

n∑
i=1

(xi − µC)Σ−1
C (xi − µC)T + c (5.15)

where c is a constant.

After encoding the data and parameters corresponding to all maximal cliques and
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minimal separators, we need to combine them to get the length of the message needed

to be sent from the sender to the receiver. Let us start by an example graphical model

consisting of C{A;B} and C{B;C} as maximal cliques where SB is their minimal separator.

To send the parameters of this simple graphical model, one may think of sending the

parameters of the multivariate Gaussian distributions corresponding to the maximal

cliques and the separator {P (A,B), P (B,C), P (B)}, which include their means and

covariance matrices. However, this encoding has redundancy as the parameters of the

separator P (B) can be reconstructed by the receiver from either P (A,B) or P (B,C) via

marginalisation. Therefore, a more e�cient encoding consists of sending the parameters

of {P (A,B), P (B,C)}. This idea can be pushed further to send the parameters of

P (C|B) instead of P (B,C), as the joint can be constructed from the conditional as

well as the marginal P (B) which is already computable from P (A,B). Hence, a more

e�cient encoding may be that for sending {P (A,B), P (C|B)} or {P (B,C), P (A|B)}.

In general, there are exponentially many non-redundant sets of conditional and joint

factors, from which the original joint distribution can be constructed. To �nd the

minimum message length, we would need to have a search over this exponential space of

sets. To avoid such search, we resort to a measure which sums up the encoding needed

for the parameters of the maximal cliques, and deducts the encoding of the minimal

separators to remove redundancy.

We resort to the following e�ciently computable expression to approximate the

message length consisting of the model and the data:

I(M|D) = I(G) +
∑
C∈C

I(C,DC)−
∑
S∈S

I(S,DS) (5.16)

where C and S are the set of maximal cliques and minimal separators, respectively. A

similar expression has been used in (Petitjean et al., 2014) to encode model parameters

and data for discrete-valued graphical models.
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Algorithm 5.2 ContChordalysis-MML

1: Input: Dataset D = {Xi}ni=1

2: Output: Graph G = (V,E)
3: t← 0
4: Initialise G to be the graph without any edges
5: repeat
6: Ec ← CandidateEdge(G) B see Section 5.1.3
7: for e ∈ Ec do
8: se = MMLScore(D,G, e) B based on eqn (5.17)
9: end for
10: e∗ ← arg maxe∈Ec se
11: if se∗ > 0 then
12: G← addEdge(G, e∗) B see Section 5.1.3
13: end if
14: t← t+ 1
15: until (se∗ < 0) or (t > |V |(|V |−1)

2
)

5.2.3 MML as Test Statistics

As mentioned earlier, we use forward selection to discover the graphical model. In

forward selection, the reference model M and a candidate model M′ are di�ered by

and edge (a, b). According to MML theory, M′ replaces M if encoding the message

based onM′ requires fewer bits than that ofM i.e. I(M|D, G) − I(M′|D, G′) > 0.

Therefore, the MML score for comparing the reference and a candidate model is:

I(M|D, G)− I(M′|D, G′) =

log

(
|Ecomplete| − |E|
|Ecomplete| − |E| − 1

)
+ I(Cab,DCab) + I(Sab,DSab)

− I(Cab ∩ Cb,DCab∩Cb)− I
(
Cab ∩ Ca,DCab∩Ca

)
. (5.17)

The resulting method, which we call ContChordalysis-MML, is summarised in Al-

gorithm 5.2; it di�ers from Algorithm 5.1 only in lines from 8 to 11.

The time complexity of computing I(C,DC) is O(|C|3), since it contains the inverse

and the determinant of |C|-by-|C| matrices. Therefore, the time complexity of Algo-

rithm 5.2 is similar to that of the Algorithm 5.1, where one pass over the main loop is

O(|V |2 + |Ec|t 32 ) = O(|V |2t 32 ) in the round t of the main loop.
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5.2.4 Relationship between Kolmogorove complexity and MML

Kolmogorov complexity has a similar objective function as MML. According to Wallace

and Dowe (1999), there is no essential di�erence between Kolmogorov Complexity and

Minimum Message Length approaches. They di�er only in the choice of reference Turing

machines. Any Universal machine is regarded as acceptable in Kolmogorov complexity,

whereas MML usually restricts the reference machine to a non-universal form in the

interest of computational feasibility. Furthermore, MML chooses the machine in form

of the prior probabilities which are data dependent. This attention to the choice of

machine allows MML, in domains where the possible theories are computable, to esti-

mate complexities with errors of only a few digits. As a result, MML can be, and has

routinely been, applied with some con�dence to many problems of machine learning,

inductive and statistical inference from �nite bodies of real data.

5.3 Experiments and results

We compare the performance of our methods (ContChordalysis and ContChordalysis-

MML) with �ve baselines on both synthetic and real-life datasets. We implement Con-

tChordalysis and its variants in Matlab 2014b. All experiments are run on a desktop

with Intel Core i5 3.2GHz CPU and 8GB of RAM.

5.3.1 Baselines

We compare our methods with �ve strong competing methods: TIGER (H. Liu, 2017),

CLIME (Cai et al., 2011), Graphical Lasso (GLasso) (J. Friedman et al., 2008), rooted

Graphical Lasso (r-GLasso) (Avagyan et al., 2017) and a recently proposed greedy ap-

proach called FoBa-gdt (J. Liu et al., 2014). TIGER uses SQRT-Lasso from (Belloni,

Chernozhukov, & Wang, 2012) for estimating both the graph G and the precision matrix

K. CLIME (Cai et al., 2011) uses linear programming in Lasso to estimate the precision

matrix. GLasso (J. Friedman et al., 2008) uses coordinate descent algorithm in Lasso

to estimate the precision matrix and the graph structrue G. r-GLasso (Avagyan et al.,
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2017) is the most recent variant of the GLasso approach which estimates the kth rooted

precision matrix to predict more accurate Gaussian graphical model structure. Finally,

FoBa-gdt (J. Liu et al., 2014) is a forward-backward greedy approach to discover the

graph G. All of the baselines use penalized log-likelihood as the objective function.

Moreover, all of the baselines discover the Gaussian graphical model structures. For

these two reasons, we compare our methods with the above mentioned baselines to eval-

uate the performance. All of the baselines are implemented in R packages and publicly

available through CRAN.

5.3.2 Other scoring functions

In this chapter, we have proposed two test statistics based on MML and p-value to

select an optimal solution. We compare the performance of the proposed test statistics

to two scoring functions: (Altmueller & Haralick, 2004)'s proposed MDL (Minimum

Descriptor Length) score and BIC (Bayesian Information Criterion) (Foygel & Drton,

2010).

Altmueller′s score =− L(D|θ) + log n (5.18)

+

|C|∑
i=1

(|Ei| log n) +

|C|∑
i=1

|Vi| −
|S|∑
i=1

|Vi|

BIC = −2L(D|θ) + |E| log n (5.19)

where L(D|θ) =
∑|C|

c=1 L(Dc|θc)−
∑|S|

s=1 L(Ds|θs) .

We employ BIC and Altmueller's MDL scores to form additional variants of Con-

tChordalysis, and call them ConChordalysis-BIC and ContChordalysis-Altmueller , re-

spectively.
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5.3.3 Performance Metrics

We evaluate results using standard performance metrics: precision, recall, and FMea-

sure. Precision is the fraction of correctly predicted edges (i.e. associations) with

respect to all predicted edges. Recall is the fraction of correctly predicted edges with

respect to the correct edges. Fmeasure is the harmonic mean of precision and recall, i.e.

Fmeasure = 2×Precision×Recall
Precision+Recall

.

In our synthetic data experiments, the graphs used for generating synthetic data are

considered the gold standard. Both ContChordalysis and ContChordalysis-MML use

decomposable model to discover the GGM.

5.3.4 Synthetic data

We generate synthetic data based on the various combinations of the number of data

points n and the number of variables/dimensions |V |, where n ∈ {100, 1000, 20000} and

|V | ∈ {100, 1000}. For each combination, we generate graphs with di�erent properties:

random networks (RN) and small world network (SWN). We have 2 graph types and

6 combinations of the number of data points and variables. For each case, we generate

a positive de�nite precision matrix K, where Kij is nonzero if the corresponding edge

exists in the graph. For each 2× 6 = 12 con�guration, we generate 3 datasets from the

corresponding multivariate Gaussian distribution, and report the average results over

these three randomly generated datasets.

In both synthetic data experiments, we make use of �ve-fold cross validation, thereby

dividing the dataset into �ve partitions. We take any of these �ve partitions as the test

set and use the other four partitions as the training sets to learn the regularization

parameters of the competitive methods.

5.3.4.1 Random network (RN)

We carry out experiments on the datasets of random networks. Random network (RN)

generation is a process where each edge is chosen with probability p as the result of
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a coin toss. To generate the random network, we consider a random ordering of all

possible edges, and process them from left to right. For each edge, we toss a coin with

probability p to see whether it should be chosen. We discard the edge if it does not

form a chordal graph with all previously selected edges. We have generated graphs with

the coin parameters p = 0.5. In this experiment, we evaluate the performance of our

methods and baselines on chordal graphs.

Table 5.1 compares our methods with the baselines on synthetic data generated

from random networks. ContChordalysis-MML outperforms the other methods in all

con�gurations in terms of Precision, Recall, and FMeasure. As expected, for a particular

dimension size, the FMeasure of all methods improves as the sample size n increases.

Likewise, in almost all cases, the FMeasure decreases for a particular sample size as the

number of dimensions increases. In other words, ContChordalysis-MML requires fewer

samples compared to other methods to discover meaningful associations between the

variables.

Interestingly, ContChordalysis-MML outperforms ContChordalysis based on the em-

pirical results in Table 5.1. In ContChordalysis, the threshold αt is geometrically de-

creased as new edges are added to the graph. Hence after a few steps, the threshold

becomes very small, stopping the addition of new edges. Therefore, the number of edges

in graphs discovered by ContChordalysis is small, which leads to missing a large num-

ber of true edges. This is con�rmed by inspecting the number of edges in the graphs

discovered by di�erent methods, reported in TP and FP columns of Table 5.2.

MML extensively uses the covariance matrix to predict the association between the

random variables. Whereas, MDL (Altmueller & Haralick, 2004) and BIC (Foygel &

Drton, 2010) use the number of edges instead of the covariance matrix to resolve the

over �tting problem of MLE and ignore the e�ect of covariance matrix. Therefore, MDL

and BIC do not perform as well as MML.

(Giraud, 2014) point out the limitation of BIC on high dimensional data and per-

forms well for data having small number of variables. We con�rm this observation

by noting that, it discovers smaller number of associations (TP and FP columns of
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the table 5.2) than ContChordalysis. This consequently a�ects its recall, precision

and FMeasure. (Altmueller & Haralick, 2004)'s score is a variant of BIC. Therefore,

(Altmueller & Haralick, 2004)'s score performs similar to BIC and is outperformed by

both ContChordalysis-MML and ContChordalysis.

TIGER, CLIME, GLasso and r-GLasso use Lasso to estimate the precision matrix.

In Lasso, the regularization parameter λ in the penalized likelihood objective functions

signi�cantly a�ects the precision matrix estimation process. TIGER, CLIME, GLasso

and r-GLasso are outperformed by ContChordalysis-MML. Similar to other baselines,

FoBa-gdt is also outperformed by ContChordalysis-MML. FoBa-gdt uses a penalized

likelihood as the objective function and it removes edges at backward elimination step

until the objective function �nds an optimal solution. Therefore, it removes many true

edges which a�ects the recall, precision and FMeasure.

Particularly in the case when n=100 and |V |=1000, ContChordalysis-MML's pre-

cision is comparable with TIGER and CLIME. Whereas the recall and FMeasure of

ContChordalysis-MML is much better.

Table 5.1 also shows that ContChordalysis runs faster than the baselines, although

it su�ers from the inaccurate prediction of associations. ContChordalysis-MML runs

much faster than the baseline methods: TIGER, CLIME, GLasso, r-GLasso and FoBa-

gdt. Therefore, ContChordalysis-MML is a statistically e�cient and scalable method

for predicting associations.

5.3.4.2 Synthetic data experiments: Small world network (SWN)

Small-world network (SWN) generation process where the resulted graphs have the

power-law property. Many real-life networks are SWNs, e.g. social networks and gene

networks (Watts & Strogatz, 1998). To generate a SWN, we make use of the Watts-

Strogatz algorithm (Watts & Strogatz, 1998). In small world network experiment, we

did not check chordality of the gold standard graph during generating the data. We

observe similar trends to random network experiments in that ContChordalysis-MML

outperforms other methods in terms of FMeasure. Speedwise, ContChordalysis is faster
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than the other methods followed by ContChordalysis-MML which is much faster than

the baselines.

Interestingly, precision of ContChordalysis and its variants are not as good as

TIGER. In the small world network experiments, we did not check the chordality of

the graphs when generating the dataset. Therefore, to maintain the chordality, Con-

tChordalysis and its MML variant predict many edges (showed in table 5.4) which

a�ected the precision.

5.3.5 Acute Myeloid Leukemia gene expression data

We also apply our methods to TCGA cancer gene expression datasets: AML (Acute

Myeloid Leukemia) to discover the gene network. We download both gene expression

datasets from cBioPortal4. In the experiments, we focus on the cancer related tran-

scription factors (TFs). The AML gene expression dataset contains 51 TFs5 and 173

samples. For the gold standard, we use the regulatory potential scores6 between a pair of

genes, i.e. TFs for AML cancer based on TF ChIP-seq binding data from the Cistrome

Cancer Database7. Following the previous work (C. Wang et al., 2013), an edge exist

between two TFs if their regulatory potential score is at least 0.5.
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Figure 5.2: Average recall (Re), precision (Pr), Fmeasure (FM) and computational
times (in seconds) of the discovered graphical structures by di�erent methods for the
AML cancer gene expression data.

Table 5.5 presents the number of edges predicted by the baselines and the variants of

our method. ContChordalysis-MML recovers not only more edges than other methods

4http://www.cbioportal.org
5This dataset contains only TFs, no other genes
6Regulatory potential scores are a computational tool to aid in the identi�cation of putative regu-

latory sites of the human genome
7http://cistrome.org/CistromeCancer
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(column-2 of Table 5.5) but also more �unique edges" (column-4 of same table), i.e.

those correct edges which are not detected by other methods. Figure 5.2 depicts the

results, and shows that ContChordalysis-MML outperforms the other methods in terms

of FMeasure.

We also compare the run time of the di�erent methods to discover the graphical

structures. As shown in Figure 5.2, the speed trend is similar to those observed in the

synthesis experiments, where ContChordalysis-BIC is the fastest method, followed by

ContChordalysis-MML, which is in turn faster than the baselines.
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Figure 5.3: Average recall (Re), precision (Pr) and Fmeasure (FM) of the discovered
graphical structures by di�erent methods for the moralized AML cancer gene expression
data.

The gold standard graph of the AML dataset is not chordal. Hence, we add some

edges to the gold standard graph to make it chordal, which should give an upper bound

on the performance of our methods along with the baselines. Therefore, we use the mor-

alized AML dataset to �nd the upper bound on the performance of all of the comparing

methods. Columns 5 to 7 of table 5.5 present the recovery of the number of moralized

AML gold standard edges by the baselines and our method. Figure 5.3 depicts the

upper bound on FMeasure/Precision/Recall of our methods and the baselines. Original

gold standard graph is nearly chordal, and we add only 19 edges to make it chordal.

Therefore, there is not a signi�cant di�erence between the upper bound FMeasure and

the original FMeasure. Most important �ndings of this experiment is that TIGER,

CLIME, GLasso, r-GLasso and FoBa-gdt do not perform well on chordal graphs, which

is re�ected in their FMeasures.
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5.3.6 Breast cancer gene expression data

We also apply our methods to TCGA cancer gene expression datasets: BRCA (Breast

invasive Carcinoma) to infer the gene network. We download BRCA gene expression

datasets from cBioPortal. Similar to AML experiments, we focus on the cancer related

transcription factors (TFs). The BRCA gene expression dataset contains 729 TFs8 and

528 samples. For the gold standard, we use the regulatory potential scores between a

pair of genes, i.e. TFs for BRCA cancer based on TF ChIP-seq binding data from the

Cistrome Cancer Database. Following the previous work: (C. Wang et al., 2013) and

AML experiment, an edge exist between two TFs if their regulatory potential score is

at least 0.5.
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Figure 5.4: Average recall (Re), precision (Pr), Fmeasure (FM) and computational
times (in seconds) of the discovered graphical structures by di�erent methods for the
breast invasive carcinoma (BRCA) gene expression data.

Figure 5.4 presents recall, precision, FMeasure and the running time of the variants

of our method versus the baselines. We again see the same trend that ContChordalysis-

MML outperforms other methods in terms of the performance measures. We list the

number of edges predicted by ContChordalysis (including its variants) and the baselines

in Table 5.6. We see that ContChordalysis-MML discovers more true edges than any

other of compared methods. It also detects more than 3000 true gene-pairs which are

not detected by the baselines.

BRCA_1 is an important susceptible gene that may cause the appearance of breast and

ovarian cancers in human body (Miki et al., 1994; Brose et al., 2002; Finch et al., 2006).

(Pujana et al., 2007) has identi�ed the list of genes which have interacted with BRCA_1 to

8This dataset contains only TFs, no other genes
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Figure 5.5: Discovery of interacting gene with BRCA_1 which causes the appearance the
breast cancer (BRCA) by di�erent methods.

create cancer cells in breast and ovary. We are interested to assess the methods by com-

paring their discoveries on genes having interaction with BRCA_1. Figure 5.5 shows that

ContChordalysis-MML spots 13 true gene-pairs, whereas TIGER/CLIME/GLasso/r-

GLasso/FoBa-gdt detect 11/3/7/12/9 true gene-pairs respectively.

It is known that many gene-pairs can be responsible for the appearance of cancer

cells in human body. We are also interested in knowing which important gene-pairs

have been detected by the di�erent methods. According to (Qin et al., 2016), gene-

pairs with higher RTS (regulatory potential scores) are the important gene-pairs for

the appearance of breast cancer. We select 50 important gene-pairs based on the RTS

between the gene-pairs. Figure 5.6 shows that ContChordalysis-MML detected 37 gene-

pairs, while TIGER the strongest baseline method and r-GLasso detect just 27 gene-

pairs. CLIME, GLasso and FoBa-gdt discover fewer than 25 TF-pairs. Based on this

evaluation, our method ContChordalysis-MML outperforms existing strong baselines by

discovering more true important gene-pairs.

We also analyse the computational time of the di�erent methods for discovering

associations among the variables. Figure 5.4 shows that the variants of our method are

faster than all the baselines.

Similar to the moralized experiment on AML gene expression data, we carry out an

experiment to measure the upper bound on the performance of our methods and the

baseline by making the gold standard graph chordal. Columns 5 to 7 of table 5.6 present
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Figure 5.6: Discovery of 50 prominent gene-pairs, causing the breast cancer (BRCA),
by di�erent methods.

the recovery of the number of moralized BRCA gold standard edges by the baselines

and our method. Figure 5.7 depicts the upper bound on FMeasure/Precision/Recall

of our methods and baselines on BRCA dataset. Our MML approach predicted more

accurate edges than other methods and outperformed the baselines.
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Figure 5.7: Average recall (Re), precision (Pr) and Fmeasure (FM) of the discovered
graphical structures by di�erent methods for the moralized BRCA cancer gene expres-
sion data.

5.3.7 Ancestry gene expression data

We also perform experiment on another real dataset that was used by TIGER, one of

the most competitive baselines. This dataset contains unrelated individuals of Northern

and Western European ancestry from Utah (CEU), whose genotypes are available from
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the Sanger Institute website9 (Bhadra & Mallick, 2013). The number of samples n is

60 and the dimension size d is 100. (Bhadra & Mallick, 2013) have analyzed the data

and found 55 signi�cant interactions among the 100 chosen traits. (Mohammadi & Wit,

2015) used a Bayesian method to infer the gene network with 281 edges which include all

of the signi�cant interaction discovered by (Bhadra & Mallick, 2013). Moreover, among

the 281 edges, (Mohammadi & Wit, 2015) identi�ed 86 edges as signi�cant interactions.

(H. Liu, 2017) used this dataset to evaluate the performance of TIGER. We only

test ContChordalysis and ContChordalysis-MML on this data. Table 5.7 presents the

number of edges predicted by the TIGER10 and the variants of our method. From Table

5.7, we can say that our ContChordalysis-MML discovered more accurate graphical

structure than TIGER and outperformed TIGER and ContChordalysis.

Table 5.7: The number of edges predicted by ContChordalysis, its MML variant
and TIGER including the signi�cant edges found by (Bhadra & Mallick, 2013) and
(Mohammadi & Wit, 2015) from human gene expression data ancestry.

Methods
The number of gold standard edges predicted by

Total (Bhadra & Mallick, 2013) (Mohammadi & Wit, 2015)

ContChordalysis-MML 618 45 74
ContChordalysis 108 13 19

TIGER (H. Liu, 2017) 306 40 70

5.3.8 Patient classi�cation data

We carry out another experiments on the problem of predicting the breast cancer patient

with their types. In this experiment, r-GLasso (Avagyan et al., 2017), GLasso and

CLIME predict the cancer patients with pCR (pathological complete response) and

residual disease (RD) from the graphical model structure. These baselines predict the

relationships between the patients, instead of the genes. Patients having the same

disease type will be connected with each other, otherwise they are not connected. In

this experiment, we use the same dataset11 that (Avagyan et al., 2017) used which

contains 22,283 gene expression levels of 133 patients. There are 34 patients with pCR

9ftp://ftp.sanger.ac.uk/pub/genevar
10This experiment is already carried out by (H. Liu, 2017) and reported in their chapter.
11available at http://bioinformatics.mdanderson.org/pubdata.html
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Table 5.8: Average pCR and RD classi�cation measurements

Method Speci�city Sensitivity MCC

ContChordalysis-MML 0.91 0.86 0.74
ContChordalysis 0.90 0.41 0.36

GLasso(J. Friedman et al., 2008) 0.75 0.61 0.33
r-GLasso(Avagyan et al., 2017) 0.69 0.84 0.48

CLIME(Cai et al., 2011) 0.71 0.84 0.49

and 99 patients with RD. Similar to (Avagyan et al., 2017), we consider the results of

(Hess et al., 2006) as the gold standard.

To measure the prediction accuracy, (Avagyan et al., 2017) used speci�city, sensitiv-

ity and Matthew correlation coe�cient12 (MCC). Moreover, they consider TP and TN

as the number of correctly predicted pCR and RD patients, respectively, and FP and

FN as the number of erroneously predicted pCR and RD patients, respectively. There-

fore, we use speci�city, sensitivity and MCC instead of recall, precision and FMeasure

to evaluate the performance. (Avagyan et al., 2017) also compared their method with

GLasso and CLIME on this dataset.

Table 5.8 presents the pCR and RD patients classi�cation results. In the table,

we have reported the results of GLasso, r-GLasso and CLIME from (Avagyan et al.,

2017)'s paper. Based on the results of table 5.8, our method ContChordalysis-MML

outperformed CLIME, GLasso and r-GLasso.

5.3.9 Real-life data experiment on Finance stock performance

of the companies

We carry out further experiments on another real dataset: �Finance stock performance

of the companies� used in (Petitjean & Webb, 2015), which contains 20 years �nancial

performance of 490 companies. The number of samples in the dataset is 3450, where

the �nancial footprints in individual days are considered as samples. Using this dataset,

we identify the �nancial relationship between the companies. As we do not have any

gold standard data for this dataset, we compute the log-likelihood of the held-out data

12The Matthews correlation coe�cient (MCC) is used in machine learning as a measure of the
quality of binary (two-class) classi�cations. MCC = TP×TN−FP×FN√

(TP+FP )(TP+FN)(TN+FP )(TN+FN)
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to evaluate the performance of the methods.

We make use of �ve-fold cross validation, thereby dividing the dataset into �ve

partitions of size 690 samples. We take any of these �ve partitions as the test set and

use the other four partitions as the training sets to learn the structure of the graphical

model.

Table 5.9 shows the average log-likelihood of the models recovered by

ContChordalysis-MML is higher than that for the other methods. Furthermore, the av-

erage log-likelihood per edge for ContChordalysis-MML is higher than the other meth-

ods. Overall, these results indicate that ContChordalysis-MML is more accurate in

predicting the association between variables compared to the baselines.

Table 5.9: Average log-likelihood of di�erent methods on the dataset of �nance stock
performance of the companies

Method
Log- Log-

Likelihood Likelihood
per edge

ContChordalysis-MML -895.29 -0.19
ContChordalysis -989.72 -1.44

ContChordalysis-Altmueller -922.53 -1.82
ContChordalysis-BIC -995.61 -2.09

TIGER -908.76 -0.24
CLIME -969.63 -1.25
GLasso -993.75 -0.39
rGLasso -1011.17 -0.34
FoBa-gdt -973.6 -1.17

5.4 Conclusion

We have proposed a scalable and statistically e�cient approach for graphical model

structure discovery involving continuous variables for exploratory data analysis. We

introduce ContChordalysis and it variants, including a novel MML-based criterion, for

structure discovery of Gaussian graphical models. Our methods are step-wise algo-

rithms, where they add edges maximising a test statistics incrementally to the estimated

graph. ContChordalysis makes use of log-likelihood ratio test, and ContChordalysis-
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MML uses an information theoretic criterion based on minimum message length prin-

ciple. Our methods work with chordal graphs and decomposable models to make the

computation of the test statistics e�cient. We have presented extensive empirical results

on synthetic and real-life datasets, and shown that our ContChordalysis-MML method

outperforms strong baselines in terms of both speed and the accuracy of the predicted

associations from the data.

ContChordalysis-MML discovers the dependencies between random variables more

accurately in faster ways and outperforms strong baselines, assuming that all obser-

vations are generated from the same underlying multivariate distribution. However,

recent studies on cancer genome atlas network have found that gene expression data

can be described as the mixtures of the small number of components harbouring di�erent

expression pathways (Mukherjee & Roriguez, 2016). Thus, real-life datasets exhibit het-

erogeneity, which can be accommodated through the use of mixtures of graphical models

to let each component exhibit di�erent conditional dependencies among variables, a.k.a

�context-speci�c-dependencies� (Meil  & Jordan, 2000; Rodriguez et al., 2011). More-

over, Guo et al. (2011) and Rodriguez et al. (2011) emphasized that context-speci�c

graphical structures share some edges with each other. Hence, as the next research

goal, we investigate the discovery of context-speci�c dependencies among random vari-

ables in faster way with lower false discovery rate while there are far less number of

samples (i.e. observations) compared to the number of variables generated from a mix-

ture with unknown number of components. We address this target to improve the

graphical model discovery method for the heterogeneous dataset in next chapter.



Chapter 6

Structure Learning with Mixture of

Gaussian Graphical Models

6.1 Introduction

In ContChordalysis and its MML variant's setting, it is assumed that all observations

are generated from a single underlying multivariate Gaussian distribution. However,

recent studies on Cancer Genome Atlas Network have found that gene expression data

can be better described by mixtures where di�erent components harbour di�erent ex-

pression pathways (Mukherjee & Roriguez, 2016). Typically there are far less number

of samples (i.e. observations) compared to the number of variables, generated from the

mixtures with unknown number of components. Therefore, real-life datasets exhibit

heterogeneity, which can be better modeled through the use of mixtures of GGMs to let

each component exhibit di�erent conditional dependencies among the variables, a.k.a

context-speci�c-dependencies (Meil  & Jordan, 2000; Rodriguez et al., 2011). However,

high-dimensional heterogenous data make the context-speci�c conditional dependencies

discovery challenging.

Initial methods: Chow and Liu (1968); Meil  and Jordan (2000) to discover context-

speci�c graphical models predict the context-speci�c associations without any common

133
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conditional dependencies1. However, Guo et al. (2011); Rodriguez et al. (2011) empha-

sized that context-speci�c graphical structures share most of the edges, which are not

well discovered by the above mentioned methods. Moreover, these methods discover

context-speci�c graphical models with common dependencies by predicting many false

edges.

In this chapter, we address and resolve the above issues (predicting many false con-

ditional dependencies and discovering less common dependencies) by proposing a novel

method to learn the mixtures of GGM based on an iterative algorithm, which iterates

over the following two steps. First, it clusters the data into distinct clusters. Second,

it employs the forward selection algorithm (Deshpande et al., 2001) for discovering the

graphical model structure of each cluster. To discover context speci�c graphical models

and their common structure, our method incrementally adds the best edge maximising a

scoring function in the forward selection algorithm. In both steps of iterative algorithm,

we use minimum message length (MML) as the objective function. Our MML-based

approach is an information theoretic method enjoying (a) low false discovery rate, (b)

suitability for the small number of samples when discovering statistical dependencies

(associations) among large number of variables, and (c) scalability to large-scale prob-

lems involving thousands of variables. As mentioned in Chapter 4, an integral part of

our MML based objective function is the maximum likelihood estimate for the param-

eters of the competing models, we restrict the structure of the competing models to

chordal graphs which leads to decomposable models.

N. Friedman (1998) proposed a similar method called Structural EM algorithm to

predict the cluster and their graphical models. But there are signi�cant di�erences be-

tween the structural EM and our iterative algorithm. Structural EM algorithm is devel-

oped for directed acyclic graphs. Whereas our algorithm is proposed for decomposable

undirected graph. Moreover, in each iteration, structural EM algorithm maximizes the

maximum likelihood based scoring function. Whereas, our proposed iterative algorithm

uses MML which is subject to minimize. Furthermore, instead of a single objective

1Common conditional dependencies are the conditional dependencies present in all components of
the mixture.
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function, we use two MML based objective functions: one for clustering and another for

predicting context-speci�c GGMs.

We present extensive empirical results on synthetic and real-life datasets and show

that our method leads to more accurate prediction of context-speci�c dependencies

among variables, compared to the previous works.

6.2 Discovering a mixture of the decomposable GGMs

Let D = {X1, . . . , Xn} be a training set consisting of n data points where Xi ∈ Rd and d

is the number of dimensions (equivalently, the number of random variables). We assume

the data have been generated from a mixture of multivariate Gaussian distributions,

where each component corresponds to a graphical model. Our aim is to discover the

unobserved structure of undirected Gaussian graphical models, corresponding to the

mixture components, based on the observed data D:

P (D) =
K∑
i=1

γiP (Di) (6.1)

where γi is the mixing coe�cient and Di is the datapoints of cluster i. K is the number

of the clusters/ components

Speci�cally, we are interested in the undirected graphical structures GGG =

{G1, G2, ..., Gk} where Gi = {V,Ei} is the context speci�c graphical structure of the

component i, V is the set of vertices corresponding to random variables (or dimensions

of the input vectors), Ei is the set of edges capturing context-speci�c statistical associ-

ations between random variables, and K is the number of components in the mixture

model.

The input to the algorithm is the number of components K believed to exist in the

data. The output is then the partitioned data with context-speci�c graphical model

structures. The algorithm consists of two steps: (a) the clustering step, similar to

the E step in the hard-EM algorithm, to partition the data and (b) the structure and
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parameter estimation step, similar to the M-step of the EM algorithm. In the estimation

step, we employ ContChordalysis-MML, described in section previous chapter). Our

algorithm keeps repeating the clustering, and structure and parameter estimation steps

until it converges with respect to the objective function.

Our algorithm optimizes a minimum message length (MML) based objective func-

tion for estimating the structure of the context-speci�c graphical models. We call our

iterative algorithm: Partition and Graphical model discovery Iterative Algorithm based

on MML or PaGIAM, as summarized in Algorithm 6.1.

Algorithm 6.1 PaGIAM

1: INPUT: Data D and the number of components k
2: OUTPUT: Context speci�c graphical structures of the mixture model G and par-

titioned data.
3: Initialization:
4: Randomly partition D into K cluster(s)
5: Compute γ from partitioned D
6: MMLc ←∞
7: repeat
8: MMLp ←MMLc
9: structure and parameter estimation step:
10: for i← 1 to K do
11: Gi ← ContChordalysis-MML(Di)
12: end for
13: Clustering step:
14: for i← 1 to n do
15: a← argmaxt∈k

(
γtP (Di|Gt, θt)

)
16: Da ← Da

⋃
Di

17: end for
18: Compute γ from new partition of D
19: Compute MMLc using equation 6.10
20: until MMLc ≥MMLp

The computational time complexity of ContChordalysis-MML is O(|V |2t1.5)2, where

t is the number of iteration. It is a time ine�cient algorithm for the large dataset which

2In the Chapter 5, we describe that the computation of the MML based objective function of
ContChordalysis-MML is upper bounded by the evaluation of the maximal clique that can be formed

by adding the tth edge to the graph. Let consider a clique of x nodes contains x(x−1)
2 edges. Setting

the number of edges to t and solve the resulting quadratic equation yields x = 1+
√

1+8t
2 . (Petitjean

et al., 2013). In the extreme case where all t edges form one clique, the maximum size of the clique

would be x = 1+
√

1+8t
2 . Hence the time complexity of computing the test statistics is O(x3) = O(t

3
2 ),

assuming computing the determinant of a x-by-x matrix is O(x3).
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Figure 6.1: Structure of (i) the cliques Ca, Cb and separator Sab in reference model; and
(ii) newly formed clique Cab and separators Cab ∩ Ca and Cab ∩ Cb in candidate model.

further slow down our mixture model structures discovery. In the next section, we

propose a more scalable version of ContChordalysis-MML for faster computation. After

discussing the scalable ContChordalysis-MML algorithm, we detail our MML based

objective function for mixture model structure discovery.

6.2.1 Scalable ContChordalysis-MML

ContChordalysis and its MML variant are forward selection algorithms which adds the

best edge to the candidate graphical structure, check the candidature of remaining

edges, and re-compute the scoring function (i.e. objective function) for all candidate

edges. However, the edge candidature checking and score computation make the forward

selection strategy slow for a very large number of random variables.

6.2.1.1 Faster computation of MML scores of the edges

In ContChordalysis and its variants, we re-examine and re-compute the score of each

candidate edge. According to the theorem 3 of the Chapter 5, addition of an edge (a, b)

in a candidate model a�ects the separator between the two nodes a and b: Sab and

creates one new clique Cab and two new separators Cab ∩Ca and Cab ∩Cb. All the other

separators and cliques remain unchanged. Figure 6.1(i) shows that the reference graph

structure before adding the edge (a, b). Figure 6.1 (ii) shows that an edge (a, b) is added

to candidate graph structure which forms new clique Cab (red coloured) by merging the

minimal separator Sab and, nodes a and b and two new separators Cab∩Ca and Cab∩Cb

(red coloured). All other maximal cliques (black colours) and minimal separators are
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Figure 6.2: After adding the edge (a, b) (green coloured edge) changes the status of
candidate edges

una�ected. Therefore, it leads to following theorem

Theorem 5. For any edge (a, b), MML score at any step t would remain unchanged if

the minimal separator Sab between nodes a and b is unchanged.

Proof. According to ContChordalysis, the e�cient computation of the change in the

MML score for encoding the data and parameters due to add an edge (a, b) follows

following equation:

∆MML∗ab = I(Cab,DCab) + I(Sab,DSab)− I(Cab ∩ Cb,DCab∩Cb)− I
(
Cab ∩ Ca,DCab∩Ca

)
(6.2)

In this equation, Sab is the minimal separator between the nodes a and b. Between the

steps t and t− 1, when Sab is unchanged, Cab, Cab∩Ca and Cab∩Cb are also unchanged

where Cab = Sab ∪ {a, b}. Hence, the change in the MML score for encoding the

parameters and data due to the edge (a, b) would remain unchanged.

Based on the above theorem, it is not required to re-compute the MML score for

all candidate edges at every step. Re-computation of the score is only required for

the candidate edges whose minimal separator have been changed after adding the edge

(a, b). According to Petitjean and Webb (2015), the addition of an edge (a, b) to the

candidate model a�ects the minimal separators between following pairs of nodes: (i) a

and the neighbours of b, (ii) b and the neighbours of a, and (iii) neighbours of a and

b. Figure 6.2 shows that after adding the edge (a, b) (green coloured edge) into the

candidate model, the edges between the node b and the neighbours of node a (blue
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coloured edges) (similarly the node a and the neighbours of node b) form the cycle with

length 3 and maintain the chordality in the graph structure. Therefore, �rst two types

of pairs of nodes ((i) and (ii) types of pairs of nodes) form cycles with length of 3.

Therefore, the edges whose scores need to be re-computed after the addition of the edge

(a, b) to the model are: (a,N(b)) and (N(a), b), where N(a) and N(b) be the neighbours

of node a and b respectively. The number of edges whose scores are re-computed, would

be at most 2n. Hence, the computational complexity of each step, compared to before

is improved to O(|V |).

6.2.1.2 Faster computation of candidature checking of the edges

According to Petitjean and Webb (2015), addition of an edge (a, b) changes the minimal

separators between the nodes pairs between the neighbours of nodes a and b. Node

pairs between neighbours of nodes a and b may form a cycle in the model whose length

would be more than 3. Figure 6.2 shows that after adding the edge (a, b) (green coloured

edge) into the candidate model, the edges between the neighbours of node a and node

b (red coloured edges) form the cycle with length 4. The length of a cycle must not be

4 or more in a chordal graph those edges which form a cycle with length 4 or more,

would loose their status to become candidate edges. Therefore, instead of re-examine

the candidature of all edges, we only check the candidature of node pairs between the

neighbours of nodes a and b.

The computational time complexity to re-examine candidature of the node pairs be-

tween the neighbours of nodes a and b would be O(|V |). Based on the above observation,

the computational time complexity improves toO(|V |). The Improved ContChordalysis-

MML algorithm is summarised in Algorithm 6.2.

6.2.2 The MML objective function for mixture of GGMs

The MML based objective function encodes the hypothesis in a message including the

encoding of the clusters of the data and the associated cluster parameters, and the graph-

ical model structures including its maximal cliques and minimal separators parameters.
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Algorithm 6.2 Scalable ContChordalysis-MML
Require: D
Ensure: Graphical structure G = {V,E}.
1: Initial step:
2: all edges are candidate edges.
3: E ← ∅
4: for each edge (a, b) ∈ Ec do
5: MML∗

(a,b)
← I(Cab,DCab ) + I(Sab,DSab )− I(Cab ∩ Ca,DCab ∩ Ca)− I(Cab ∩ Cb,DCab ∩ Cb)

6: end for

7: repeat
8: MML∗

(a,b)
← argmin(x,y)∈EcMML∗

(x,y)

9: MML(a, b)← I(G′)− I(G) +MML∗
(a,b)

10: if MML(a,b) < 0 then

11: E ← E + (a, b)
12: Ec ← Ec − (a, b)
13: Readjust Ec B discussed in Section 6.2.1.2
14: Recompute ML(x,y) B discussed in Section 6.2.1.1

15: t← t+ 1
16: end if

17: until MML(a,b) > 0 or t =
n(n−1)

2

As we use the ContChordalysis-MML to discover the graphical model structure of each

cluster, therefore, we use same encoding of the maximal cliques and minimal separators

parameters and the graphical model structures (discussed in details in Chapter 5). In

this section, we elaborate the encoding of the clusters of the data and the associated

cluster parameters and the data.

6.2.2.1 Encoding the clusters

We now describe the encoding of clusters which includes their contents and coe�cient;

and the number of clusters in the mixture. Firstly, we encode the number of clusters,

for which we need log (K) bits. We then encode the coe�cient of clusters (i.e. mixing

coe�cient). According to (Boulton & C.S.Wallace, 1969), to encode the coe�cient

of each cluster, we need log ni − log n bits, where n and ni are the total number of

datapoints in D and Di respectively. Therefore, to encode coe�cients of all of the

clusters , we need
∑k

i=1

(
log ni − log n

)
bits. Finally, we encode the content of clusters

by encoding the cluster indicator vector ~zi for reach data point Di. The cluster indicator

vector ~zi contains a numerical value between 1 and K to indicate cluster membership

of datapoints. To encode ~zi vectors, we need
∑n

i=1 logK bits in total. Therefore, the
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minimum message length to encode all clusters is:

I(H) = logK +
K∑
i=1

(
log ni − log n

)
+

n∑
i=1

logK (6.3)

6.2.2.2 Encoding of the Parameters and the Data

Once clusters have been encoded, we encode parameters of clusters as well as the data.

We encode parameters and data of all clusters separately and then combine them.

According to (Wallace & Boulton, 1968), the MML encoding of Di and parameters of

the multivariate Gaussian distribution corresponding to a cluster i, denoted by I(Di, θi),

is:

I(Di, θi) =

(
−

Prior︷ ︸︸ ︷
log(p(θi)) +

Fisher information︷ ︸︸ ︷
log
√
|F(θi)|

)
︸ ︷︷ ︸

I(θi)

+

(
−

log-likelihood︷ ︸︸ ︷
L(Di|θi)

)
︸ ︷︷ ︸

I(Di|θi)

(6.4)

where θi = (µi,Σi). In what follows, we compute various terms of I(θi,Di) in eqn (6.4),

i.e. the prior probability, the Fisher information matrix, and the likelihood.

Prior probability of the parameters: Following the previous work (Dowe et al.,

1996), we use a �at prior for µi (Oliver et al., 1996) and a conjugate inverted Wishart

prior for Σi (Guavain & Lee, 1998). Hence, the prior joint density over the parameters

is:

p(θi) ∝ |Σi|−
d+1
2 (6.5)

Likelihood: The log-likelihood L(Di|µi,Σi) of the relevant part of the data is

−ni
2

log 2π − ni
2

log |Σi| −
1

2

ni∑
j=1

(Dij − µi)Σ−1
i (Dij − µi)T (6.6)

where, µi = 1
ni

∑ni
j=1 Dij and Σi = 1

ni−1

∑ni
j=1 (Dij − µi)(Dij − µi)T .

Fisher information of the parameters: We need to evaluate the second order par-

tial derivatives of −L(Di|µi,Σi) to compute the Fisher information for the parameters
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(Wallace & Boulton, 1968). Let |F(µi,Σi)| represent the determinant of the Fisher infor-

mation matrix which is the product of |F(µi)| and |F(Σi)|, i.e. the determinant of Fisher

information matrices of µi and Σi, respectively (Oliver et al., 1996). Taking the second

order partial derivatives of −L(Di|µi,Σi) with respect to µi, we get −∇2
µi
L = niΣ

−1
i .

So the determinant of the Fisher information matrix for µi is |F(µi)| = ndi |Σi|−1. To

compute |F(Σi)|, (Dwyer, 1967) derived an analytical expression using the theory of

matrix derivatives based on matrix vectorization:

|F(Σi)| = n
d(d+1)

2
i 2−ni |Σi|−(d+2)

Hence, the determinant of the Fisher information matrix for µi and Σi is

|F(µi,Σi)| = n
d(d+3)

2
i 2−d|Σi|−(d+2) (6.7)

Putting it altogether, we have

I(θi) = −1

2
log |Σi| (6.8)

Substituting prior probabilities, Fisher information and log-likelihood in equation 6.4,

encoding of parameters and data of a particular cluster is

I(Di, θi) =
ni − 1

2
log(|Σi|) +

1

2

ni∑
j=1

(Dij − µi)Σ−1
i (Dij − µi)T (6.9)

Therefore, MML to encode the both hypothesis (i.e. clusters and graph structures, and

their parameters) and data is:

MML = logK +
n∑
i=1

logK +

K∑
i=1

logni − logn︸ ︷︷ ︸
Encoding the cluster

+
K∑
i=1

ni − 1

2
log(|Σi|) +

1

2

ni∑
j=1

(Dij − µi)Σ−1
i (Dij − µi)T︸ ︷︷ ︸

I(Di, θi)

+

K∑
i=1

(
(ni − 1)

{∑
c∈C

log |Σci | −
∑
s∈S

log |Σsi |
}

︸ ︷︷ ︸
encoding clique and separator parameters

+ log (|Ecomplete|+ 1) + log
(|Ecomplete|

|Ei|

)
︸ ︷︷ ︸

Graph structure

)
(6.10)
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where Dij is the jth data point of cluster i. |Ecomplete| is the number of edges of a

complete graph. ΣC
i is the covariance matrix of a clique (separator) C of cluster i. Ei

is a set of context-speci�c associations of cluster i.

Guo et al. (2011) investigated that all context speci�c graphical models share many

edges among themselves. Whereas, ContChordalysis-MML does not discover the shared

dependencies from the mixture of data. Moreover, it discovers each graphical model

independently which makes the PaGIAM method slower. In next section, we detail a

new GGM discovery method to discover shared and context speci�c graphical model

structures using decomposable models and MML.

6.3 Capturing shared edges to improve the mixture of

GGMs discovery

The method mentioned in section 6.2 discovers the structure of context-speci�c graph-

ical models without leveraging the shared edges among them. However, in heteroge-

neous data, context-speci�c graphical structures share a signi�cant number of edges.

Modelling the shared structure can help the GGM structure discovery by pooling the

statistics together. Following the previous chapter, we �nd that MML has performed

very well as the test statistics for discovering graphical models. Therefore, we extend

our approach to discover the shared edges and use them for a more e�ective encoding of

the model in the MML sence. We learn the model based on an MML-based score. Our

approach works with chordal graphs, leading to �decomposable� probabilistic graphi-

cal models, enjoying e�cient computation of the MML scoring function. According

to Wallace and Boulton (1968), the minimum message length �nds the best model for

the observed data by comparing the two competing models given the same data D.

To �nd the best structures, we encode the graph structures of shared edges (we call

it super graph G0) along the context-speci�c GGM structures {G1, G2, ..., GK}, their

parameters and the data in messages and compare their message lengths. While using

ContChordalysis-MML in PaGIAM, we encode the graph topology Gi, the parame-
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ters θi and the data Di of each cluster i and then combine them. It does not encode

the super graph topology (See the Figure 6.3 (a)) and predicted less number of true

edges or dependencies. To improve the better structures discovery from the heteroge-

neous data, we encode the super graph G0 topology, the topology of context speci�c

GGMs {G1, G2, ..., GK}, their parameters {θ1, θ2, ..., θK} and data {D1,D2, ...,DK}. To

minimize the number of required bits of MML, we only encode the edges of the context-

speci�c GGMs which are not present in super graph, which is G∗i = Gi−G0. Figure 6.3

(b) shows the encoding of super graph, context-speci�c GGMs, their parameters and

data to compute the MML score for better discovery of the context-speci�c GGMs.

Figure 6.3: Di�erence between the computed MML scores of ContChordalysis-MML
and proposed method

Therefore, the MML to encode the super graph, context-speci�c GGMs, their pa-

rameters and the data is as follows:

Encoding all graph structures I(G)︷ ︸︸ ︷
I(G0)︸ ︷︷ ︸

Super graph

+
K∑
i=1

I(G∗i )︸ ︷︷ ︸
Context-speci�c GGMs

+

Parameters of context speci�c graphs with data, I(D, θ).︷ ︸︸ ︷
K∑
i=1

(
I(θi)︸︷︷︸

Parameters of models

+ I(Di|θi, Gi)︸ ︷︷ ︸
Data �t to the models

)
(6.11)

where G0 is the shared graphical structures which we call the super graph structure

and Gi = G∗i + G0 is the context speci�c graph structure of ith component. G∗i is the

context speci�c graphical structure of component i without shared edges. Moreover, θi

is the parameters of context speci�c model of component i. θi = {µi,Σi} where µi and

Σi mean vector and covariance matrix of graphical structure of component i. According
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to (Wallace & Boulton, 1968), equation 6.11 deduces to

I(G0) +

K∑
i=1

I(G∗i ) +

K∑
i=1

[
− log

p(θi)√
|F(θi)|︸ ︷︷ ︸

I(θi)

−
ni∑
j=1

(
L(Dij |θi) + logK

)
︸ ︷︷ ︸

I(Di|θi, Gi)

]
(6.12)

where, extra logK bits are added with each datapoint to select its component id. For

our two-level GGM structure discovery setting, the encoding of the model in the message

consists of the encoding of topologies of the super and context speci�c chordal graphs

and the associated model parameters, which we elaborate in the rest of this section.

6.3.1 Encoding the graph structures

We now describe the encoding of super and context speci�c graphical structures. For this

purpose, it is su�cient to send the number of nodes and the connected pair of edges of

each graphical structures. According to (Allisons, 2017), to encode the number of nodes,

we need log n bits. Let us consider a super graph having |E0| number of edges. Therefore,

to encode edges of super graph, we need log
(|Ecomplete|

|E0|

)
, where |Ecomplete| = d(d−1)

2
. We

encode the component speci�c edges of context speci�c graphical structure Gi to prevent

the multiple appearances of same edges in di�erent graph structures. Therefore required

bits to encode any context speci�c graph structure G∗i is log
(|Ecomplete|
|Ei−E0|

)
.

I(G0) +
K∑
i=1

G∗i = log n+ log

(
|Ecomplete|
|E0|

)
+

k∑
i=1

log

(
|Ecomplete|
|Ei − E0|

)
(6.13)

6.3.2 Encoding the parameters and data

Once the graphs' topologies have been encoded, we encode the parameters of all con-

text speci�c graphical model structures of the mixture of GGMs as well as the data

independently and then merge them. To encode parameters and data of each context

speci�c graphical structures, we encode parameters and data of all maximal cliques and

minimal separators separately and then combine them. Moreover, ContChordalysis-

MML encodes parameters and data of all maximal cliques and minimal separators of

a graphical structure separately and then combines them. According to the previous
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chapter, to encode the parameters of a maximal clique (or minimal separator) C of a

graphical model, we require

log
p(θCi )√
|F(θCi )|

=
1

2
log |ΣC

i |+ Constant (6.14)

Furthermore, we require following bits to encode the data of a maximal clique (or

minimal separator) C of each context speci�c graphical model i:

L(DCi |θCi ) = −1

2

ni∑
i=1

(DC
ij − µCi )ΣC

i (DC
ij − µCi )T − n

2
log |ΣC

i | (6.15)

6.3.3 MML based Model Selection

In forward selection, a reference modelM and a candidate modelM′ are di�ered by and

edge (a, b). According to MML,M′ replacesM if encoding the message based onM′

requires less number of bits than that ofM i.e. I(M′|D, G′)− I(M|D, G) < 0, where

G and G′ are the graphical structures of reference and candidate models, respectively.

According to Deshpande et al. (2001), the edge (a, b) removes the separator Sab from

the reference model and creates a new clique Cab and separators Cab ∩Ca and Cab ∩Cb

in the candidate model. The rest of all maximal cliques and minimal separators remain

unchanged in both models. Therefore, we only need to compute the MML score to

encode the a�ected and newly appeared maximal cliques and minimal separators and

their data (discussed in previous section in details).

In the mixture of GGMs, we follow the following steps to discover the structures of

super and context-speci�c graphical models:

1. At the beginning, we consider that the super and all context-speci�c graphs are

null graphs

2. We incrementally add the best edges e to either both the super graph G0 and

all context speci�c graphs or one of the context speci�c graphs by comparing

reference and candidate models of super and context speci�c graphical models

simultaneously.
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3. We update the candidate edge list Ec (discussed in Section 6.2.1.2).

4. We re-compute the MML scores of the edges whose minimal separators and max-

imal cliques are changed after adding the e (discussed in Section 6.2.1.1).

5. We remove the best edges e from the candidate edge lists. Moreover, since the

best edges e are added to any context-speci�c GGMs, we exclude e from the

candidate edges of other context-speci�c graphs and super graphs to make the

process simple.

Here, we present the MML based scoring function to compare the reference and the

candidate models of super and context speci�c graphical models. We compute two types

MML scoring functions:

1. MML score when an edge will be added to super and all context-speci�c graphs.

2. MML score when an edge will be added to any of the context-speci�c graphs.

6.3.3.1 MML score when an edge (a, b) is to be added to super graph

When a candidate edge is added to the super graph structure, it a�ects graph struc-

tures of both the super and context speci�c and their parameters. Therefore the MML

di�erence between the candidate and reference graphical structures is as followed:

I(G′)− I(G) = log n+ log

(
|Ecomplete|
|E0|+ 1

)
+

K∑
i=1

(
|Ecomplete|
|Ei − E0|+ 1

)
︸ ︷︷ ︸

Candidate graphical model

− log n− log

(
|Ecomplete|
|E0|

)
−

K∑
i=1

(
|Ecomplete|
|Ei − E0|

)
︸ ︷︷ ︸

Reference graphical model

= log
|Ecomplete| − |E0|
|E0|+ 1

+
k∑
i=1

log
|Ei − E0|

|Ecomplete| − Ei + E0 + 1
(6.16)

The addition of an edge to the super graph a�ects the covariance matrices of a�ected

and newly appeared cliques and separators of all context-speci�c graphical models.
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Therefore, we encode covariance matrices of a�ected and newly formed separators and

cliques of all context-speci�c graphical models and we need following bits

I(D, θ′)− I(D, θ) =
K∑
i=1

(
I(θ′i)− I(θi) + I(Di|θ′i, G′i)− I(Di|θi, Gi)

)
= −1

2

K∑
i=1

[
log

|ΣCab
i | · |Σ

Sab
i |

|ΣCab∩Ca
i | · |ΣCab∩Cb

i |

]

−
K∑
i=1

{
ni∑
j=1

(
L(DCab

ij |θ
Cab
i ) + L(DSab

ij |θ
Sab
i )− L(DCab∩Ca

ij |θCab∩Cai )

−L(DCab∩Cb
ij |θCab∩Cbi ) + logK

)}
(6.17)

Therefore, the MML score di�erence between reference and candidate models are

I(M′|D, G′)− I(M|D, G) = I(G′)− I(G)︸ ︷︷ ︸
Equation 6.16

+ I(D, θ′)− I(D, θ)︸ ︷︷ ︸
Equation 6.17

(6.18)

6.3.3.2 MML score when an edge (a, b) is to be added to a context speci�c

graph

The addition of candidate edge (a, b) to the context-speci�c graph Gi of cluster i a�ects

only the corresponding graph structure and its parameters and rest of all are remain

unchanged. Therefore the MML score di�erence between the candidate and reference

graphical structures is as followed:

I(G′)− I(G) = log (n!) + log

(
|Ecomplete|
|E0|

)
+

K and i 6=j∑
j=1

(
|Ecomplete|
|Ej − E0|

)
+ log

(
|Ecomplete|
|Ei − E0|+ 1

)
︸ ︷︷ ︸

Candidate model

− log (n!)− log

(
|Ecomplete|
|E0|

)
−

K and j 6=i∑
i=1

(
|Ecomplete|
|Ej − E0|

)
− log

(
|Ecomplete|
|Ei − E0|

)
︸ ︷︷ ︸

Reference model

= log
1

|Ei − E0|+ 1
(6.19)
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As the edge (a, b) is added to the Gi and no change in reference and candidate

model of the rest of all context speci�c graphical structures, we encode the data and

parameters of Gi is as followed:

I(D, θ′)− I(D, θ) = I(θ′i)− I(θi) + I(Di|θi, G′i)− I(Di|θi, Gi)

−1

2

[
log

|ΣCab
i | · |Σ

Sab
i |

|ΣCab∩Ca
i | · |ΣCab∩Cb

i |

]
−

ni∑
j=1

(
L(DCab

ij |θ
Cab
i )

+L(DSab
ij |θ

Sab
i )− L(DCab∩Ca

ij |θCab∩Cai )− L(DCab∩Cb
ij |θCab∩Cbi )

+ log k

)
(6.20)

Therefore, the MML score di�erence between the reference and candidate models

are

I(M′|D, G′)− I(M|D, G) = I(G′)− I(G)︸ ︷︷ ︸
Equation 6.19

+ I(D, θ′)− I(D, θ)︸ ︷︷ ︸
Equation 6.20

(6.21)

6.3.4 The forward-selection Algorithm

Our algorithm to discover the context-speci�c GGM structures along with shared

edges is presented in the Algorithm 6.3. In the algorithm, at step 1, we initialize all

graphs as null graphs. We then compute the MML score to encode the parameters and

data of all edges at step 2. In next step, we then add the best edges incrementally either

in both super and all context-speci�c graphical structures or one of the context-speci�c

graphical model structure based on the MML. After adding the best edges, we update

the candidate edge lists Ec by maintaining the chordality of all context-speci�c graph

structures and MML scores of candidate edges (discussed in Section 6.2.1 in details). We

call our MML based context-speci�c GGMs discovery algorithm as the context-speci�c

Gaussian graphical models Discovery usingMML or tGDM. In Gaussian graphical mod-

els step of the PaGIAM algorithm (algorithm 6.1), we use tGDM algorithm to discover

context speci�c graphical models instead of ContChordalysis-MML. We call the updated
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Algorithm 6.3 tGDM

1: Initialize all G to be empty graphs and Ec ← E.
2: t← 0
3: for each edge (a, b) ∈ Ec do

4: MML
∗(0)
(a,b) ← I(D, θ′)− I(D, θ) . Equation 6.17

5: for i = 1 to K do
6: MML

∗(i)
(a,b) ← I(D, θ′)− I(D, θ) . Equation 6.20

7: end for
8: end for
9: repeat
10: MML

(0)
(a,b) ←

(
argmin(x,y)∈EcMML

∗(0)
(x,y)

)
+ I(G′)− I(G) . Equation 6.16

11: for i = 1 to K do
12: MML

(i)
(a,b) ←

(
argmin(x,y)∈EcMML

∗(i)
(x,y)

)
+ I(G′)− I(G) . Equation 6.19

13: end for
14: x← arg minkMML

(i)
(a,b)

15: if MMLx(a,b) < 0 then

16: Add (a, b) to graph Gx

17: if x=0 then
18: Add (a, b) to all of the context-speci�c graphs
19: end if
20: Readjust Ec . See section 6.2.1
21: Recompute ML(x,y) . See section 6.2.1
22: t← t+ 1
23: end if
24: until MMLx(a,b) ≥ 0 or t = n(n−1)

2
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PaGIAM algorithm as the PaGIAM-tGDM algorithm.

6.4 Evaluation Framework

We compare the performance of our method: PaGIAM-HGDM with strong baselines

on synthetic data and real cancer data.

6.4.1 Synthetic data

6.4.1.1 Parameters for synthetic data

We generate synthetic multi-dimensional dataset based on the mixture of Gaussian. We

cover a wide range of datasets with di�erent properties by changing di�erent aspects,

as follows:

• V : the number of variables, ranges in {10, 100, 1000, 5000 and 10000}.

• n: the number of samples, ranges in{100, 1000, 10000, 50000}.

• K: the number of clusters, ranges {1, 2, 3, 4, 5}.

• |C|: maximal clique size for graphical structures in the mixture model. According

to (Barabási & Albert, 2002), in real-world networks, every new node is born with

some edge connections with existing nodes. It produces the connected graph.

Therefore, the minimal clique size would be at least 2. We consider that |C|

varies from 2 to 6.

• α: Controlling the spread of sampled mixing coe�cients in the mixture models.

There are two possibilities of mixing coe�cients: (a) all clusters having equal

frequencies or (b) some clusters having non-equal frequencies. We assume that

the mixing coe�cients are Dirichlet distributed, with concentration parameter α

which ranges in {100, 10, 1, 0.1}. When α = 100, approximately all coe�cient

are equal. Whereas, the frequencies (i.e., mixing coe�cient) tend to be di�erent

when α = 0.1.
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• δ: Controlling the statistical associations between random variables. The sta-

tistical association between two nodes ranges in between 1 to -1 to express the

degree of associations. As it approaches zero, two variables are not statistically

associated. Being closer to either 1 or -1 shows a the stronger association be-

tween variables. In the experiment, we consider a parameter δ which inversely

controls the statistical association between the random variable which ranges in

{1, 5, 10, 25, 50, 100, 250, 500}. We refer to this parameter as Inverse correla-

tion parameter.

To assess the performance of our methods with the baselines, we vary each of parameters

as mentioned earlier, in turn, having set base con�guration to V = 1000, n = 10000, k

= 3, |C| = 3, α = 100 and δ = 50. Moreover, we also assess the performance by varying

the number of samples as mentioned while setting the base con�guration to V=10000,

k = 3, |C| = 3, α = 100 and δ = 50.

6.4.1.2 Graph structure generation

For each experimental setup, we �rst generate the graph structures and then the

dataset. To generate the graph structures, we maintain the real-world networks proper-

ties (Clauset et al., 2007): (a) many small nodes are connected with few hubs, known as

the power-law property, (b) The average path between two nodes is short and (c) new

nodes prefer to attach to well-connected nodes over less-well connected nodes, known

as the preferential attachment property.

Barabási and Albert (2002) proposed a model to generate scale-free graphs having

the above mentioned properties. We use Barabási-Albert (BA) method to generate the

graph structures with properties of real-world networks. This model facilitates us by

controlling the number of nodes |V |, and the maximal clique size |C| which controls the

edge density of the graph.

To generate the graph structures for the synthetic data, we follow the following steps:

(a) First we generateK number of context-speci�c graphs using Barabási-Albert (BA)

method.
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(b) We then identify the super graph structure G0 = {V,E0} by E0 =
⋂k
i=1 Ei.

Moreover, as we use decomposable models to discover graphical structures, we add an

additional condition that both generated super and context-speci�c graphs are chordal.

Moreover, if the identi�ed super graph G0 is not chordal, we add edges to make it

chordal. We then added these new edges of super graph to all context-speci�c graphs..

We use candidate edge selection process of ContChordalysis algorithm to maintain the

chordality of generated graphs.

6.4.1.3 Synthetic Gaussian data generation

Having the graph structure, we generate the context-speci�c precision matrix of Gi using

following equation

Σ−1
i ∼


(1/δ) · 1/d · adji(x, y) if node x 6= node y and adji(x, y) = 1

1 · adji(x, y) if node x = node y and adji(x, y) = 1

0 adji(x, y) 6= 1

where adji is the adjacency matrix of a component i. Finally, we generate data using

D =
⋃k
i=1

{
Di ∼ Nd(0,Σi)

}
, where the number of samples of cluster i would be ni = n·γi

and γi ∼ Dir(α).

6.4.2 Real data

We use two gene expression datasets to evaluate our methods: Breast cancer and

Glioblastoma tumour data.

6.4.2.1 Breast cancer

Breast cancer is a hormone related cancer (Ma & Michailidis, 2016) and it has two

major subtypes:

• Estrogen-receptor-positive (ER+). It is estimated that around 80% of all breast

cancer are ER+. Survival rate of this cancer is better than ER-. It responds to
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Table 6.1: Presence (cross marked) of genes and their pathways in each subtype of
glioblastoma tumour cells

Gene-pair Subtype-1 Subtype-2 Subtype-3 Subtype-4 References
PIK3IP-CDKN1A X X (Verhaak et al., 2010)
PIK3IP-CDKN2C X X X (Brennan et al., 2013)
PIK3IP-CDKN3 X (Brennan et al., 2013)
AKTIP-CDKN1A X (McLendon et al., 2008)
AKTIP-CDKN2C X X (Brennan et al., 2013)
AKTIP-CDKN3 X X (Verhaak et al., 2010)
AKTIP-CCND2 X (Mirzaa et al., 2014)
IDH1-FGFR3 X X X X (Verhaak et al., 2010)
IDH1-CCND2 X (McLendon et al., 2008)
IDH1-CDKN2C X (Narita et al., 2002)

hormone therapy.

• Estrogen-receptor-negative (ER-). Its survival rate is poorer. Due to the absence

of estrogen receptor hormone, it does not respond to hormone therapy.

Presence of estrogen receptor hormone in breast cancer plays an important role in

therapeutic strategies and survival rates. We use a breast cancer dataset containing

gene expression of 4512 genes from an A�ymatrix HU95aV2 microarray for 148 samples

which have been chemically synthesized by Pittman et al. (2004). This breast cancer

data is the mixture of estrogen receptivity (ER+/ER-) subtypes, where each tumour

sample in the dataset has additional classi�cation tags based its estrogen receptivity

(ER+/ER-). Moreover, we consider Pittman et al. (2004)'s chemically discovered gene

pairs as the gold standard.

6.4.2.2 Glioblastoma tumour

Verhaak et al. (2010) studied the glioblastoma tumour samples gene expression data with

173 samples and 8271 genes. Verhaak et al. (2010)'s chemically synthesized a dataset

containing tumour samples of four disease subtypes. They did not identify whether a

gene-pair is present in a subtype or not. Whereas, Narita et al. (2002); McLendon et al.

(2008); Brennan et al. (2013); Mirzaa et al. (2014) identi�ed 10 important gene-pairs

that causes the appearance of glioblastoma tumour cells. In table 6.1, we report them

together with their presence in each disease subtype.

In the Glioblastoma tumour experiment, we investigate the performance of our meth-
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ods and the baselines to predict the above mentioned 10 prominent gene-pairs from this

large data.

6.4.3 Evaluation metrics

We evaluate results using context-speci�c recall, precision and FMeasure . Recall is the

fraction of correctly predicted edges with respect to true edges. Precision is the frac-

tion of correctly predicted edges (i.e. associations) with respect to all predicted edges.

FMeasure is the harmonic mean of precision and recall, i.e. FMeasure = 2×Precision×Recall
Precision+Recall

.

The average FMeasure is assumed as the accuracy of a method.

The algorithm tGDM generates k + 1 graphical structures. The corresponding gold

standard graph of a predicted graph is unknown in our synthetic data experiments, since

potentially each discovered graph can be matched with each of the ground truth clusters.

Therefore, we compute False Positive Rate (FPR)3, False Negative Rate (FNR)4 and

error5 for the best matched predicted graph of a gold standard graph. The predicted

network G having a minimal error with respect to a gold standard Ggold is the best

matched discovered graph G of the corresponding gold standard Ggold.

6.4.4 Baselines for synthetic data experiments

We compare the performance of our MML based scoring approach with two scoring

function: AIC (Akaike Information Criterion) (Akaike, 1973) and BIC (Bayesian Infor-

mation Criterion) (Schwarz, 1978) as variants of both PaGIAM and tGDM.

The AIC and BIC variants of PaGIAM algorithm refer to PaGIAA and PaGIAB

respectively and their AIC and BIC scoring functions are as followed:

AICPaGIAA = −2L(D|θ) + 2k and BICPaGIAB = −2L(D|θ) + k log n

3FPR = FP
TP+FP where TP is the number of the predicted edges present in gold standard and FP

is the number of the predicted edges not present in gold standard.
4FNR = FN

TN+FN where TN is the number of the predicted conditional independence present in
gold standard and FN is the number of the predicted conditional independence not present in gold
standard.

5error = FNR+ FPR.
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Similarly, the AIC and BIC variants of tGDM algorithms are referred to by tGDA and

tGDB respectively, and their AIC and BIC scoring functions are as follows:

AICtGDA = −2L(D|θ) + 2|E| and BICtGDB = −2L(D|θ) + |E| log n

In the synthetic data experiments, we consider PaGIAM-tGDA, PaGIAB-tGDM,

PaGIAA-tGDM, and PaGIAB-tGDM are the baselines of our MML based methods.

We also compare the performance of the PaGIAM-ContChordalysis-MML approach

discussed in Section 6.2.

6.4.5 Baselines for real data experiments

In real data experiments, we evaluate our methods: PaGIAM-tGDM and PaGIAM-

Contchordalysis-MML6 with recent strong baselines: New-SP (New-Structural-Pursuit)

(Gao et al., 2016) and JSEM (Joint Structural Estimation Method)(Ma & Michailidis,

2016). New-SP and JSEM estimate context-speci�c GGMs with shared edges in the

framework of a Gaussian mixture model.

New-SP uses the hard EM algorithm (Dempster et al., 1977) to cluster the data and

Danaher et al. (2014) proposed Joint Fused Graphical Lasso method to estimate the

context-speci�c GGMs. Beside, JSEM uses Graphical Lasso (J. Friedman et al., 2008)

and Group Lasso (Breheny & Huang, 2009) for inferring the context-speci�c GGM

structures. Both methods use penalized likelihood as objective function to discover the

context-speci�c GGMs.

6.5 Results

We have implemented PaGIAM-tGDM and its variants in Matlab 2016b. New-SP and

JSEM are developed by r-packages and available in CRAN. All experiments are run on

a desktop with Intel Core i5 3.2GHz CPU and 8GB of RAM.

6Except PaGIAM-tGDM and PaGIAM-Contchordalysis-MML, all other baselines of synthetic data
experiments do not perform well. For this reason, we do not use these baselines for the real world data.
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Moreover, in the experiment, we start with our PaGIAM (Algorithm 6.1) assuming

the number of components k is one in the mixture model and then keep on increasing

the number of components till MML outlines the best-partitioned data, and super and

context-speci�c graphical models.

6.5.1 Synthetic data

We �rst compare PaGIAM-tGDM with its variants to discover context-speci�c GGMs

with shared edges on the synthetic data with di�erent experimental setups (discussed

in Section 6.4.1).
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Figure 6.4: Performance of PaGIAM-tGDM and its variants on the synthetic datasets
with the di�erent number of variables |V |

Varying the number of dimensions |V |: In this experimental setup, we change the

number of variables (i.e. the number of graph nodes) in 10, 100, 1000, 5000 and 10000.

Figure 6.4 shows the recall, precision and FMeasure of the outputs of PaGIAM-tGDM

and other baselines. PaGIAM-tGDM outperforms all of the competitive baselines. From

Fig 6.4, recall, precision and FMeasure of all methods decreases with the increase in the

number of variables |V |. However, FMeasure of PaGIAM-tGDM is still higher compared

to other baselines in the high dimensional data. Therefore PaGIAM-tGDM discovers

the hierarchical Gaussian graphical models from the data with a very large number of

variables.

Interestingly, PaGIAM-ContChordalysis-MML performs well with respect to

FMeasure and edge detection and outperforms all of the methods except PaGIAM-
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tGDM. From the evaluation results of PaGIAM-tGDM and PaGIAM-ContChordalysis-

MML, we can say that PaGIAM algorithm (Algorithm 6.1) partitions the data more

accurately. The accurate clustered data helps tGDM and ContChordalysis-MML to

discover the graphical models more precisely. ContChordalysis-MML discovers each

context-speci�c graphical model as an individual entity from clustered data. Whereas,

tGDM discovers context-speci�c graphical models from clustered data along with super

graph. Therefore, the results of tGDM is better than ContChordalysis-MML.

Recall, precision and FMeasures of PaGIAB-tGDM and PaGIAA-tGDM are not

good as PaGIAM-tGDM. N. Friedman (1998) reported that BIC and AIC do not work

well to partition the data and produce many wrong clustered data. Due to the pres-

ence of wrong data in each cluster, tGDM used inside PaGIAB and PaGIAA does not

able to detect many true context speci�c edges which a�ect their recall, precision and

FMeasures.

Giraud (2014) point out limitations of BIC and AIC that they do not perform well

in large high dimension data. PaGIAM-tGDB and PaGIAM-tGDA use BIC and AIC

as the scoring functions to add edges to the candidate graphical models. tGDB and

tGDA detect less number of edges compared to other methods. Therefore, they do not

perform well as PaGIAM-tGDM does.
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Figure 6.5: Performance of PaGIAM-tGDM and its variants on the synthetic datasets
by varying the maximal clique size |C|

Varying the maximal clique size |C|: In this experiment, we vary maximal clique

sizes from 2 to 6. Fig 6.5 shows the recall, precision and FMeasure of the outputs of
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our method and other baselines. PaGIAM-tGDM outperforms all of the competitive

baselines. While the maximal clique size is two, the degree of all vertices is one. All

methods except PaGIAM-tGDB and PaGIAM-tGDA, detect most of the true edges

and their FMeasure are higher. Over the increment of the maximum size of cliques

in the graph, FMeasure of all methods decreases. In this experiment, maximal size

of cliques in the graphs inversely a�ect the FMeasure. However, among all methods,

our PaGIAM-tGDM detects many true edges than other methods whatever the size of

maximal cliques in the graph and therefore, FMeasure of PaGIAM-tGDM is higher than

others.
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Figure 6.6: Performance of PaGIAM-tGDM and its variants on the synthetic datasets
by changing the sample size n, considering the number of variables is 1K
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Figure 6.7: Performance of PaGIAM-tGDM and its variants on the synthetic datasets
by changing the sample size n, considering the number of variables is 10K

Varying the number of data points n: We carried out two experiments by varying

the size of samples where the number of variables are 1000 and 10000. In both ex-
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periments, recall, precision and FMeasure results are shown in Figures 6.6 and 6.7 and

PaGIAM-tGDM outperforms all other methods. Over the increase of the number of sam-

ples, PaGIAM-tGDM detects many true edges accurately and increases the FMeasure.

Similar trends also found in other methods, but not as good as PaGIAM-tGDM. Hence,

PaGIAM-tGDM can work on any size of multivariate Gaussian distribution data e�-

ciently.
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Figure 6.8: Performance of PaGIAM-tGDM and its variants on the synthetic datasets
by varying the number of the components k in the mixture model

Varying the number of components k: Figure 6.8 reports the performance of

methods with respect to the di�erent number of components (i.e. clusters) in the mix-

ture. As the number of clusters increases, recall, precision and FMeasure of all methods

decreases. While the number of clusters increases, the amount of wrongly clustered

data also increases which a�ect the results of all methods. Similarly, PaGIAM-tGDM

outperforms all of the competitive baselines.

Varying the concentration parameter α for controlling the mixing coe�cient:

Figure 6.9 presents the performance of methods by varying the frequency parameter.

As the frequency parameter α increases, the randomness of the cluster proportion de-

creases and tends to uniform. It a�ects the results of all methods. Our PaGIAM-tGDM

outperforms all method which indicates PaGIAM-tGDM can work on any kind of het-

erogeneous data with di�erent cluster proportion.

Varying the correlation control parameter δ: Correlation expresses the statistical

association between random variables which strongly in�uences covariance matrices.
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Figure 6.9: Performance of PaGIAM-tGDM and its variants on the synthetic datasets
by varying the frequency parameters α
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Figure 6.10: Performance of PaGIAM-tGDM and its variants on the synthetic datasets
with di�erent value of the correlation control parameter δ
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According to Figure 6.10, increase in the value of the inverse correlation parameter δ

inversely impacts the covariance matrices and causes the decrease of FMeasure. Our

PaGIAM-HGDM can detect more than 55% true edges even when very small correlation

exists between variables. Whereas, other methods cannot detect even 50% of true edges.

On account of clustering data and discovering context speci�c graphical model with

shared edges accurately, PaGIAM-HGDM outperforms all methods in di�erent experi-

mental setups. Therefore, PaGIAM-tGDM is a statistically e�cient method to predict

the context-speci�c independencies from heterogeneous data.

6.5.2 Real world data

We compare our PaGIAM-tGDM and its ContChordalysis-MML variant with strong

baselines: New-SP and JSEM to discover the context-speci�c graphical models from

the breast cancer and the Glioblastoma tumour data.

6.5.2.1 Breast cancer data

Figure 6.11 presents recall, precision and Fmeasure of our method versus baselines. We

again see the same trend that PaGIAM-tGDM outperforms other methods in terms of

the performance measures.

New-SP and JSEM use the Graphical Lasso (GLasso) and penalized likelihood as

their objective function to �nd the optimal context-speci�c graphical model structures.

In GLasso, the regularized parameter is not estimated properly from the data which

a�ected the penalized likelihood and the estimation of context-speci�c graphical mod-

els with their super graph. Hence, New-SP and JSEM statistically do not perform

signi�cantly well as PaGIAM-tGDM does.

It is known that many gene-pairs can be responsible for the appearance of the cancer

cells in human body. We are interested to know important gene-pairs that have been

detected by the methods. According to Pujana et al. (2007), we select 50 important

gene-pairs that cause the appearance of cancer cell in human breast tissues. However,

among the top 50 important gene pairs, most of them appear in both subtypes and the
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Figure 6.11: Performance of our method with existing baselines on BRCA data

rest appear in di�erent subtypes.

Figure 6.12 shows that PaGIAM-tGDM detected 22 gene-pairs present in both ER+

and ER- subtypes. Whereas, the strongest baseline JSEM detects just 15 gene-pairs

in both ER+ and ER- subtypes. New-SP and PaGIAM-ContChordalysis-MML dis-

covers less than 15 gene pairs. Based on this evaluation, our method PaGIAM-tGDM

outperforms exiting strong baselines by discovering more true important gene-pairs.
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6.5.2.2 Glioblastoma tumour data

We also test PaGIAM-tGDM on (Verhaak et al., 2010)'s Glioblastoma tumour data with

New-SP, JSEM, and PaGIAM-ContChordalysis-MML. Due to unavailability of gold

standard data, we compare the appearance of 10 gene-pairs in Glioblastoma tumour and

its subtypes discovered by di�erent methods (mentioned in Section 6.4.2.2 in details).

Figure 6.13 shows the discovery of 10 gene-pairs in di�erent subtypes of Glioblastoma

by di�erent methods along with gold standard. PaGIAM-tGDM detects eight gene-

pairs including their presence in subtypes accurately. Whereas, New-SP and JSEM

detects seven and six gene-pairs accurately. Based on the results of this experiment,

PaGIAM-tGDM detects important gene-pairs accurately including their presence in

di�erent subtypes of Glioblastoma tumour data.
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Figure 6.13: Discovery of 10 important gene-pairs of Glioblastoma tumour by competing
methods.

Overall, the results of synthetic and real cancer data indicate that PaGIAM-tGDM

is more accurate in predicting the context-speci�c dependencies compare to baselines.

6.6 Conclusion

We have proposed a statistically e�cient method to discover the context-speci�c Gaus-

sian graphical models (GGMs) structure from high dimensional heterogeneous Gaussian

data. We introduce PaGIAM-tGDM based on a novel MML-based criterion for cluster-

ing and structure discovery of the context-speci�c GGMs and their shared edges. Our
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PaGIAM-tGDM partitions and discovers the context-speci�c GGM structures from het-

erogeneous data accurately. We have presented extensive empirical results on synthetic

and real-life cancer datasets, and shown that our PaGIAM-tGDM method outperforms

strong baselines in terms of the accurate prediction of context-speci�c associations from

the data. We can claim that our PaGIAM-tGDM is one of the strong baselines to

predict the context-speci�c GGMs from heterogeneous data accurately.



Chapter 7

Conclusion

Tumour heterogeneity has been a progressive research area in recent years. While re-

searchers have been addressed many challenges in tumour heterogeneity, many other

challenges are yet to be resolved. In this thesis, we addressed a set of crucial and

paramount issues that arose from the existing research works to infer the tumour het-

erogeneity. In the previous chapters of this thesis, we proposed four methods to infer

tumour heterogeneity and gene-gene interaction networks from the real cancer data.

Here, we conclude this thesis with a summary of the research and its contributions. We

then discuss the possible future directions based on the thesis contributions.

7.1 Research summary and contribution

Cancer is a collection of cells (i.e. tumour clones) which are structurally disordered

and have a set of mutations in their DNAs. As stated at the introduction chapter,

DNA sequencing provides an opportunity to infer tumour clones, and their genomic

disorder and mutations from the collection of short reads. Therefore, tumour hetero-

geneity researches have been focused on inferring the tumour clones from short reads

by either clustering or predicting genotypes of mutations. All previous tumour hetero-

geneity inference methods assumed that (1) type of the mutation of a location is not

clone-speci�c, (2) clonal frequencies of all clones are di�erent and (3) the appearance

166
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of a mutation is strongly dependent on position of the adjacent mutation. Whereas,

according to Kandoth et al. (2013) and Vogelstein et al. (2013), the type of the mu-

tation at a genomic location varies from clone to clone (i.e. type of the mutation is

clone-speci�c.). Moreover, Ellenbroek and v. Rheenen (2014) observed that in a tu-

mour sample, multiple clones have same clonal frequencies. Ji et al. (2016) stated about

the presence of the long-range mutational e�ect along with position speci�c e�ects of

adjacent mutations in the tumour sample.

In Chapter 3, we addressed the �rst two issues (mutations are clone-speci�c and

multiple clones have same frequencies) and presented a method using Factorial Hidden

Markov Model (FHMM) (Ghahramani & Jordan, 1997). As it is known that, FHMM

is a Hidden Markov Model which has multiple chains instead of a single chain. It is

also assumed that the observations of FHMM are generated from hidden states of these

chains. We were interested to predict genotype of mutations by assuming that the type

of a mutation varies from clone to clone. FHMM gave us the facilities of multiple hidden

states of a genomic location which might be di�erent from each other. Using FHMM, we

selected a separate chain for each of the tumour clone including the normal clone, and

each hidden state of a chain represented the genotype of a mutation which was clone-

speci�c. Moreover, we used exponentiated gradient (EG) descent algorithm to estimate

the clonal frequencies. Our FHMM and EG algorithm based method simultaneously

inferred the clone-speci�c genotype of mutations and clonal frequencies, respectively.

We called our method HetFHMM.

Evaluation of HetFHMM was a signi�cant challenge for us. None of the existing

methods inferred the clone-speci�c genotype of mutations. Moreover, no method esti-

mated the clonal frequencies and genotypes together from the data. We proposed a new

evaluation framework for HetFHMM to evaluate its clone and their frequencies predic-

tion, which was another research contribution to tumour heterogeneity prediction. We

tested HetFHMM on synthetic and real cancer data and compare with existing strong

baselines: PyClone and PhyloSub. Our method HetFHMM predicted more precise tu-

mour clones, their genomic make-up and frequencies, and outperformed both PyClone
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and PhyloSub.

In HetFHMM, we made assumption that tumour clones were not concentrated

in a speci�c region and no existence of long-range mutational in�uences. Moreover,

Ellenbroek and v. Rheenen (2014) observed that each clone of a tumour formed and

condensed inside a particular region of a tumour. Therefore, the clonal frequencies from

di�erent samples are di�erent. Hence, in the Chapter 4, we presented the extension of

HetFHMM for multiple samples data and the long-range mutational in�uences.

The long-range mutational in�uences were not available in observations of

HetFHMM. Whereas, Ji et al. (2016) observed that since the existence of three di-

mensional structure of DNA, mutations with long-range in�uences are located close to

each other. Moreover, it is also observed that the genes of these mutations interacted

with each other and formed a pathway. Therefore, the genes of same pathway skeletoned

the list of mutations having long-range in�uences. Hence, we used known gene-gene in-

teraction networks to �nd genes and their pathways. From genes, their pathways, and

their gene locations, we identi�ed the mutations with long-range dependencies. We

used gene-gene interaction network explicitly to �nd long-range mutational in�uences.

Therefore, we proposed a new transition probabilities for the long-range mutational in-

�uences. We proposed three alternative ways to compute the transition probabilities

for the long-range mutational in�uences by using either (1) 1 dimensional (1D) distance

between these mutations, or (2) distance between the genes of these mutations, or (3)

user de�ned values. From the experimental results, it was found that using the distance

between the genes of these mutations having long-range in�uences, along with their

1D distance, emHetFHMM performed very well and predicted more accurate tumour

clones and their frequencies. Moreover, results of the synthetic and the cancer data ex-

periments showed that emHetFHMM performed very well for the multiple samples and

long-ranges mutational in�uences, and outperformed HetFHMM, PyClone and Phylo-

Sub. The research contributions of HetFHMM and emHetFHMM are four-fold, which

are as follows:

• They inferred the clone-speci�c genotypes of mutations,
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• They predicted clonal frequencies along with genotypes,

• They predicted tumour clones with same frequencies, and

• emHetFHMM extensively handled and used the long-range mutational in�uences.

In emHetFHMM, we used the Reactome database to �nd out the available gene-

gene interaction network (i.e. gene-pathways) and GeneLoc to �nd out the location of

genes. Cordell (2009) has discovered that the genetic factor function primarily involves

multiple other genes through a complex mechanism to play a signi�cant role in the de-

velopment of cancer cells. Therefore, all interactions between genes were not possible to

predict through laboratory experiments. Performing network analysis using large-scale

gene expression datasets is an e�ective way to uncover new and unknown gene-gene

interactions (Su et al., 2016). Statistical associations between two genes describes the

relationship between these two genes in the form of graphical models. However, large

scale gene expression data involves continuous (i.e. Gaussian distributed) valued ran-

dom variables, where it is critical to uncover the associations among the variables from

the large sample data. Typically, there are fewer samples compared to the number

of variables, which makes the association discovery challenging, particularly for high-

dimensional data. In the Chapter 5, we presented a method call ContChordalysis to

discover the association between the variables (i.e. genes) in form of Gaussian Graph-

ical Model (GGM), while the number of samples was far less than that of variables.

The method ContChordalysis was designed based on the forward selection of greedy

approach. Forward selection algorithm started with null graph and added best edges

increasing by maximizing the objective function. For developing an e�cient objective

function, we employed decomposable model in forward selection, which facilitated us

to estimate the Maximum Likelihood Estimation from marginal probabilities. First we

developed an objective function based on likelihood. We then developed a minimum

message length (MML) based objective function. It is well known that MML based ob-

jective function enjoys low false discovery rate, suitability for small number of samples,

and scalability to large-scale problems involving thousands of variables. Using a MML
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based objective function, ContChordalysis selected the best edges which minimized the

message length. We called our MML based ContChordalysis, ContChordalysis-MML.

We generated the synthetic data for the random network and the small world net-

work. In the synthetic data experiments, ContChordalysis-MML outperformed strong

baselines: TIGER, CLIME, GLasso, r-GLasso and FoBa-gdt. Similar results were also

observed in AML and BRCA cancer gene expression data. From the literature, it was

revealed that most of the existing methods were su�ered from the computation of ob-

jective function to discover the graphical models. MML based objective function found

the better network structure from the high-dimensional data e�ciently which was our

one of the major research contributions of this thesis.

In ContChordalysis-MML, we assumed that all observations were generated from

a single underlying multivariate distribution. However, the recent studies on Cancer

Genome Atlas Network have found that gene expression data can be better described by

mixtures where di�erent components harbour di�erent expression pathways (Mukherjee

& Roriguez, 2016). Typically there were far less number of samples compared to the

number of variables, generated from the mixtures with unknown number of components.

The real-life datasets exhibit heterogeneity, which can be better modeled through the use

of mixtures of GGMs to let each component exhibit di�erent conditional dependencies

among the variables, called as context-speci�c-dependencies (Meil  & Jordan, 2000).

Many researches had been made to discover the context-speci�c GGMs, but su�ered

from predicting the many false context-speci�c associations and discovering less common

associations. Whereas, Guo et al. (2011); Rodriguez et al. (2011) observed that all of the

context-speci�c GGMs share most of the edges between themselves. In the Chapter 6, we

addressed and resolved the drawbacks of existing methods by proposing a novel method

to learn the mixtures of GGMs based on an iterative algorithm, which iterated over the

following two steps: (1) clustered the data into distinct clusters and (2) employed the

forward selection algorithm for discovering the context-speci�c GGM structure of each

cluster along with the common structure. In the both steps of the iterative algorithm,

we used minimum message length (MML) as the objective function. We called our
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method PaGIAM-tGDM. In the synthetic and the cancer data experiments, we observed

that PaGIAM-tGDM found statistically better context-speci�c GGMs. The research

contribution of ContChordalysis-MML and PaGIAM-tGDM are as follow:

• Use of MML based objective function, which has theoretical guarantee to work

on the high-dimensional data e�ciently. Even the experimental results were also

showed the better performance,

• Reduction of false edge (i.e. association) discovery rate, and

• Working capability on the cancer gene expression data to reveal the hidden and

unknown gene-gene interactions.

Currently, emHetFHMM inferred the more accurate tumour clones and their clonal

composition than existing baselines. Then again ContChordalysis-MML and PaGIAM-

tGDM discovered the GGMs more e�ciently and accurately. Hence we can say that

our proposed methods should help the cancer researchers to discover the more accurate

tumour clones and to develop for e�ective patient speci�c cancer therapy.

7.2 Limitation and future works

In this thesis, we developed four computational methods to discover tumour heterogene-

ity and Gaussian graphical models. There are several clear avenues for further work and

improvement to predict tumour heterogeneity and to discover Gaussian graphical mod-

els, that reduce some of the assumption made on our methods.

• In HetFHMM and its multiple sample and long-range mutational in�uence exten-

sion, our method required the maximum number of clones that may exist in the

tumour sample to be user de�ned. In real cancer data, the number of the tumour

clones varies from data to data. Therefore, an extension would be to predict the

number of clones using non-parametric Bayesian models, such as in�nite Factorial

Hidden Markov Models (iFHMMs) (Gael, Teh, & Ghahramani, 2009) .
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• In HetFHMM and its extension, we used short read counts of total and reference

allele, and log ratio of normal-tumour content as observations. Moreover, next

generation sequencing o�ers us the variety of tumour heterogeneity data: gene

expression, DNA methylation etc. DNA methylation data helps us to understand

the activities of methyl group in DNA structures and how mutations appear in tu-

mour samples in cause of methyl group. Gene expression data helps us to recognize

which genes are responsible for mutation appearance. We did not use these type

of data, in HetFHMM and emHetFHMM. HetFHMM and emHetFHMM would

be extended further by integrating multiple genomic data types as a joint latent

variable model.

• We developed minimum message length and decomposable models based method

to learn the structure of graphical models to express the structural relationships

among random variables, assuming their joint distribution was normal. Although

multivariate Gaussian distributions are good approximations for many real world

phenomena, we believe that there are real life data which may be better captured

by other forms of distributions. Therefore, we are interested to extend our research

work to capture a broader class of distributions governing the data.

• As stated earlier, next-generation sequencing provides us multiple genomic data-

types: DNA sequencing, copy number, gene expression and DNA methylation

data. In ContChordalysis and PaGIAM-tGDM, we assumed that the dataset was

single type, i.e. gene-expression data. Therefore, it is possible to extend the

Gaussian graphical models discovery from the multiple data-types high dimen-

sional data as multivariate joint distribution.

• In emHetFHMM experiments, we did not carry out further experiments us-

ing gene-gene interactions predicted by ContChordalysis-MML and PaGIAM-

tGDM. Therefore, one possible future work is to carry out the experiments on

emHetFHMM using gene-gene interaction predicted by our graphical model dis-

covery methods.
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• Moreover, our graph discovery methods are designed to predict chordal graph. If

these methods are not limited to chordal graphs, we cannot compute the MLE

e�ciently in closed-form. Hence, we are unable to perform the experiments if the

gold standard graph is not chordal. This challenging problem can be regarded as

the future extension.
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