Online Supplement for Integration of Sparse Singular Vector Decomposition and Statistical Process Control for Traffic Monitoring and Quality of Service Improvement in Mission-Critical Communication Networks by Kun Wang, Jing Li

Appendix I: Brief Introduction to SVD

SVD is a matrix factorization method. Let **Z** be a $I \times J$ matrix. The SVD of **Z** is:

$$\mathbf{Z} = \mathbf{U}\mathbf{S}\mathbf{V}^T = \sum_{k=1}^r s_k \mathbf{u}_k \mathbf{v}_k^T, \tag{A-1}$$

where *r* is the rank of \mathbf{Z} , $\mathbf{U} = (\mathbf{u}_1, ..., \mathbf{u}_r)$ is a matrix consisting of orthonormal left singular vectors, $\mathbf{V} = (\mathbf{v}_1, ..., \mathbf{v}_r)$ is a matrix consisting of orthonormal right singular vectors, \mathbf{S} is a diagonal matrix with positive singular values $s_1 \ge \cdots \ge s_r$ on its diagonal. \mathbf{U} , \mathbf{V} , and \mathbf{S} can be obtained by eigendecomposition. (A-1) indicates that SVD decomposes \mathbf{Z} into a summation of *r* rank-one matrices, $\mathbf{Z}_k = s_k \mathbf{u}_k \mathbf{v}_k^T$, k = 1, ..., r. It has been shown that \mathbf{Z}_1 is the closest rank-one approximation to \mathbf{Z} in terms of minimizing the square Frobenius norm. This means that s_1 , \mathbf{u}_1 , \mathbf{v}_1 can be obtained by solving the following optimization problem:

$$(\hat{s}_1, \hat{\mathbf{u}}_1, \hat{\mathbf{v}}_1) = arg \min_{s_1, \mathbf{u}_1, \mathbf{v}_1} \|\mathbf{Z} - s_1 \mathbf{u}_1 \mathbf{v}_1^T\|_F^2,$$

 $s. t. \|\mathbf{u}_1\|_2 = 1, \|\mathbf{v}_1\|_2 = 1, s_1 \ge 0.$

Appendix II: Proof of Proposition I

It is easy to show that $E(\mathbf{X}) - np_0 \mathbf{1}_{q \times m}$ is a rank-one matrix. Therefore,

$$E(\mathbf{X}) - np_0 \mathbf{1}_{q \times m} = s_1 \mathbf{u}_1 \mathbf{v}_1^T.$$
(A-2)

In other words, $s_k = 0$ for k > 1. Furthermore, let $\{E(\mathbf{X}) - np_0 \mathbf{1}_{q \times m}\}_{ij,t}$ be the element of matrix $E(\mathbf{X}) - np_0 \mathbf{1}_{q \times m}$ at the row corresponding to the sender-receiver pair (i, j) and the *t*-th column. We know from the definition of $E(\mathbf{X}) - np_0 \mathbf{1}_{q \times m}$ that

$$\left\{ E(\boldsymbol{X}) - np_0 \boldsymbol{1}_{q \times m} \right\}_{ij,t} = \begin{cases} 0 & , \text{ for } (i,j) \notin \boldsymbol{F} \\ -n\delta(t) & , \text{ for } (i,j) \in \boldsymbol{F} \end{cases}$$
(A-3)

Using (A-2), we can further write (A-3) into

$$s_1 u_{1,ij} v_{1,t} = \begin{cases} 0 & , for (i,j) \notin \mathbf{F} \\ -n\delta(t) & , for (i,j) \in \mathbf{F} \end{cases},$$
(A-4)

where $u_{1,ij}$ is the element of \mathbf{u}_1 corresponding to the sender-receiver pair (i, j) and $v_{1,t}$ is the the *t*-th element of \mathbf{v}_1 .

Let (i', j') be a sender-receiver pair that is affected by the fault and $(\tilde{\iota}, \tilde{j})$ be one that is not, i.e., $(i', j') \in \mathbf{F}$ and $(\tilde{\iota}, \tilde{j}) \notin \mathbf{F}$. Then, according to (A-4),

$$s_1 u_{1,\tilde{l}\tilde{l}} v_{1,t} = 0 \text{ and } s_1 u_{1,l'\,l'} v_{1,t} \neq 0.$$
 (A-5)

 $s_1 \neq 0$ by the definition of SVD. Then, (A-5) becomes

$$u_{1,\tilde{\iota}\tilde{j}}v_{1,t} = 0 \text{ and } u_{1,i'j'}v_{1,t} \neq 0.$$

The sufficient and necessary condition for the above simultaneous equations to hold is $v_{1,t} \neq 0$, $u_{1,\tilde{\iota}\tilde{j}} = 0$, and $u_{1,i'j'} \neq 0$. Next, we derive the formula for $u_{1,i'j'}$, $v_{1,t}$, and s_1 .

Let (i'', j'') be another sender-receiver pair that is affected by the fault, i.e., $(i'', j'') \in \mathbf{F}$. According (A-4), $s_1 u_{1,i'j'} v_{1,t} = s_1 u_{1,i''j''} v_{1,t} = -n\delta(t)$, i.e., $u_{1,i'j'} = u_{1,i''j''}$. Furthermore, because \mathbf{u}_1 is orthonormal, we have $\sum_{(i,j)\in \mathbf{F}} u_{1,ij}^2 = |\mathbf{F}| \times u_{1,ij}^2 = 1$. Solving this equation gives $u_{1,ij} = \frac{1}{\sqrt{|\mathbf{F}|}}$ for $\forall (i,j) \in \mathbf{F}$.

To derive the formula for $v_{1,t}$ and s_1 , focus on a sender-receiver pair $(i, j) \in F$. Then, $s_1 u_{1,ij} v_{1,t} = s_1 \frac{1}{\sqrt{|F|}} v_{1,t} = -n\delta(t)$, i.e.,

$$v_{1,t} = \frac{-n\delta(t)\sqrt{|F|}}{s_1}.$$
 (A-6)

Using the property that \mathbf{v}_1 is orthonormal, we have $\sum_t v_{1,t}^2 = 1$. Combining this with (A-6), we get $s_1 = \sqrt{\sum_{t=1}^m [n\delta(t)]^2} \times \sqrt{|\mathbf{F}|}$. Inserting this into (A-6), we get $v_{1,t} = \frac{-\delta(t)}{\sqrt{\sum_{t=1}^m \delta(t)^2}}$.