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Appendix I: Brief Introduction to SVD 

SVD is a matrix factorization method. Let 𝐙𝐙 be a 𝐼𝐼 × 𝐽𝐽 matrix. The SVD of 𝐙𝐙 is: 

𝐙𝐙 = 𝐔𝐔𝐔𝐔𝐕𝐕𝑇𝑇 = ∑ 𝑠𝑠𝑘𝑘𝐮𝐮𝑘𝑘𝐯𝐯𝑘𝑘𝑇𝑇𝑟𝑟
𝑘𝑘=1 ,                                     (A-1) 

where 𝑟𝑟 is the rank of 𝐙𝐙, 𝐔𝐔 = (𝐮𝐮1, … ,𝐮𝐮𝑟𝑟) is a matrix consisting of orthonormal left singular vectors, 𝐕𝐕 =

(𝐯𝐯1, … , 𝐯𝐯𝑟𝑟) is a matrix consisting of orthonormal right singular vectors, 𝐔𝐔 is a diagonal matrix with positive 

singular values 𝑠𝑠1 ≥ ⋯ ≥ 𝑠𝑠𝑟𝑟 on its diagonal. 𝐔𝐔, 𝐕𝐕, and 𝐔𝐔 can be obtained by eigendecomposition. (A-1) 

indicates that SVD decomposes 𝐙𝐙 into a summation of 𝑟𝑟 rank-one matrices, 𝐙𝐙𝑘𝑘 = 𝑠𝑠𝑘𝑘𝐮𝐮𝑘𝑘𝐯𝐯𝑘𝑘𝑇𝑇, 𝑘𝑘 = 1, … , 𝑟𝑟. It 

has been shown that 𝐙𝐙1  is the closest rank-one approximation to 𝐙𝐙 in terms of minimizing the square 

Frobenius norm. This means that 𝑠𝑠1, 𝐮𝐮1, 𝐯𝐯1 can be obtained by solving the following optimization problem: 

��̂�𝑠1,𝐮𝐮�1,𝐯𝐯�1 � = 𝑎𝑎𝑟𝑟𝑎𝑎 min
𝑠𝑠1,𝐮𝐮1,𝐯𝐯1

�𝐙𝐙 − 𝑠𝑠1𝐮𝐮1𝐯𝐯1𝑇𝑇 �𝐹𝐹
2 , 

𝑠𝑠. 𝑡𝑡. ‖𝐮𝐮1‖2 = 1,‖𝐯𝐯1‖2 = 1, 𝑠𝑠1 ≥ 0. 

 
Appendix II: Proof of Proposition I 

It is easy to show that 𝐸𝐸(𝐗𝐗) − 𝑛𝑛𝑝𝑝0𝟏𝟏𝑞𝑞×𝑚𝑚 is a rank-one matrix. Therefore,  

𝐸𝐸(𝐗𝐗) − 𝑛𝑛𝑝𝑝0𝟏𝟏𝑞𝑞×𝑚𝑚 = 𝑠𝑠1𝐮𝐮1𝐯𝐯1𝑇𝑇.                                             (A-2) 

In other words, 𝑠𝑠𝑘𝑘 = 0 for 𝑘𝑘 > 1. Furthermore, let �𝐸𝐸(𝑿𝑿) − 𝑛𝑛𝑝𝑝0𝟏𝟏𝑞𝑞×𝑚𝑚�𝑖𝑖𝑖𝑖,𝑡𝑡
 be the element of matrix 𝐸𝐸(𝐗𝐗) −

𝑛𝑛𝑝𝑝0𝟏𝟏𝑞𝑞×𝑚𝑚 at the row corresponding to the sender-receiver pair (𝑖𝑖, 𝑗𝑗) and the 𝑡𝑡-th column. We know from 

the definition of 𝐸𝐸(𝐗𝐗) − 𝑛𝑛𝑝𝑝0𝟏𝟏𝑞𝑞×𝑚𝑚 that 

�𝐸𝐸(𝑿𝑿) − 𝑛𝑛𝑝𝑝0𝟏𝟏𝑞𝑞×𝑚𝑚�𝑖𝑖𝑖𝑖,𝑡𝑡
 = �

0 ,𝑓𝑓𝑓𝑓𝑟𝑟 (𝑖𝑖, 𝑗𝑗) ∉ 𝑭𝑭
−𝑛𝑛𝑛𝑛(𝑡𝑡) ,𝑓𝑓𝑓𝑓𝑟𝑟 (𝑖𝑖, 𝑗𝑗) ∈ 𝑭𝑭 .                           (A-3) 



Using (A-2), we can further write (A-3) into 

 

𝑠𝑠1𝑢𝑢1,𝑖𝑖𝑖𝑖𝑣𝑣1,𝑡𝑡 = �
0 ,𝑓𝑓𝑓𝑓𝑟𝑟 (𝑖𝑖, 𝑗𝑗) ∉ 𝑭𝑭

−𝑛𝑛𝑛𝑛(𝑡𝑡) ,𝑓𝑓𝑓𝑓𝑟𝑟 (𝑖𝑖, 𝑗𝑗) ∈ 𝑭𝑭 ,                                 (A-4) 

where 𝑢𝑢1,𝑖𝑖𝑖𝑖  is the element of 𝐮𝐮1  corresponding to the sender-receiver pair (𝑖𝑖, 𝑗𝑗) and 𝑣𝑣1,𝑡𝑡  is the the 𝑡𝑡-th 

element of 𝐯𝐯1.  

Let (𝑖𝑖′, 𝑗𝑗′) be a sender-receiver pair that is affected by the fault and (𝚤𝚤,̃ 𝚥𝚥̃) be one that is not, i.e., 

(𝑖𝑖′, 𝑗𝑗′)  ∈ 𝑭𝑭 and  (𝚤𝚤,̃ 𝚥𝚥̃)  ∉ 𝑭𝑭. Then, according to (A-4), 

 𝑠𝑠1𝑢𝑢1,�̃�𝚤�̃�𝚥𝑣𝑣1,𝑡𝑡 = 0 and 𝑠𝑠1𝑢𝑢1,𝑖𝑖′𝑖𝑖′𝑣𝑣1,𝑡𝑡 ≠ 0.                                              (A-5) 

𝑠𝑠1 ≠ 0 by the definition of SVD. Then, (A-5) becomes  

𝑢𝑢1,�̃�𝚤�̃�𝚥𝑣𝑣1,𝑡𝑡 = 0 and 𝑢𝑢1,𝑖𝑖′𝑖𝑖′𝑣𝑣1,𝑡𝑡 ≠ 0. 

The sufficient and necessary condition for the above simultaneous equations to hold is 𝑣𝑣1,𝑡𝑡 ≠ 0, 𝑢𝑢1,�̃�𝚤�̃�𝚥 = 0, 

and 𝑢𝑢1,𝑖𝑖′𝑖𝑖′ ≠ 0. Next, we derive the formula for 𝑢𝑢1,𝑖𝑖′𝑖𝑖′ , 𝑣𝑣1,𝑡𝑡, and 𝑠𝑠1.  

Let (𝑖𝑖′′, 𝑗𝑗′′) be another sender-receiver pair that is affected by the fault, i.e., (𝑖𝑖′′, 𝑗𝑗′′) ∈ 𝑭𝑭. According 

(A-4), 𝑠𝑠1𝑢𝑢1,𝑖𝑖′𝑖𝑖′𝑣𝑣1,𝑡𝑡 = 𝑠𝑠1𝑢𝑢1,𝑖𝑖′′𝑖𝑖′′𝑣𝑣1,𝑡𝑡 = −𝑛𝑛𝑛𝑛(𝑡𝑡) , i.e., 𝑢𝑢1,𝑖𝑖′𝑖𝑖′ = 𝑢𝑢1,𝑖𝑖′′𝑖𝑖′′ . Furthermore, because 𝐮𝐮1  is 

orthonormal, we have ∑ 𝑢𝑢1,𝑖𝑖𝑖𝑖
2

(𝑖𝑖,𝑖𝑖)∈𝑭𝑭 = |𝑭𝑭| × 𝑢𝑢1,𝑖𝑖𝑖𝑖
2 = 1. Solving this equation gives 𝑢𝑢1,𝑖𝑖𝑖𝑖 = 1

�|𝑭𝑭|
  for ∀(𝑖𝑖, 𝑗𝑗) ∈

𝑭𝑭.  

To derive the formula for 𝑣𝑣1,𝑡𝑡 and 𝑠𝑠1, focus on a sender-receiver pair (𝑖𝑖, 𝑗𝑗) ∈ 𝑭𝑭. Then, 𝑠𝑠1𝑢𝑢1,𝑖𝑖𝑖𝑖𝑣𝑣1,𝑡𝑡 =

𝑠𝑠1
1

�|𝑭𝑭|
  𝑣𝑣1,𝑡𝑡 = −𝑛𝑛𝑛𝑛(𝑡𝑡), i.e.,  

𝑣𝑣1,𝑡𝑡 = −𝑛𝑛𝑛𝑛(𝑡𝑡)�|𝑭𝑭|
𝑠𝑠1

.                                                                     (A-6) 

Using the property that 𝐯𝐯1 is orthonormal, we have ∑ 𝑣𝑣1,𝑡𝑡
2

𝑡𝑡 = 1. Combining this with (A-6), we get 𝑠𝑠1 =

�∑ [𝑛𝑛𝑛𝑛(𝑡𝑡)]2𝑚𝑚
𝑡𝑡=1 × �|𝐅𝐅|. Inserting this into (A-6), we get 𝑣𝑣1,𝑡𝑡 = −𝑛𝑛(𝑡𝑡)

�∑ 𝑛𝑛(𝑡𝑡)2𝑚𝑚
𝑡𝑡=1

.                          ∆ 
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