Online Supplement for Integration of Sparse Singular Vector Decomposition and Statistical Process

 Control for Traffic Monitoring and Quality of Service Improvement in Mission-Critical Communication Networks by Kun Wang, Jing Li
Appendix I: Brief Introduction to SVD

SVD is a matrix factorization method. Let \mathbf{Z} be a $I \times J$ matrix. The SVD of \mathbf{Z} is:

$$
\begin{equation*}
\mathbf{Z}=\mathbf{U S V} \mathbf{V}^{T}=\sum_{k=1}^{r} s_{k} \mathbf{u}_{k} \mathbf{v}_{k}^{T}, \tag{A-1}
\end{equation*}
$$

where r is the rank of $\mathbf{Z}, \mathbf{U}=\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right)$ is a matrix consisting of orthonormal left singular vectors, $\mathbf{V}=$ $\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right)$ is a matrix consisting of orthonormal right singular vectors, \mathbf{S} is a diagonal matrix with positive singular values $s_{1} \geq \cdots \geq s_{r}$ on its diagonal. \mathbf{U}, \mathbf{V}, and \mathbf{S} can be obtained by eigendecomposition. (A-1) indicates that SVD decomposes \mathbf{Z} into a summation of r rank-one matrices, $\mathbf{Z}_{k}=s_{k} \mathbf{u}_{k} \mathbf{v}_{k}^{T}, k=1, \ldots, r$. It has been shown that \mathbf{Z}_{1} is the closest rank-one approximation to \mathbf{Z} in terms of minimizing the square Frobenius norm. This means that $s_{1}, \mathbf{u}_{1}, \mathbf{v}_{1}$ can be obtained by solving the following optimization problem:

$$
\begin{gathered}
\left(\hat{s}_{1}, \widehat{\mathbf{u}}_{1}, \hat{\mathbf{v}}_{1}\right)=\arg \min _{s_{1}, \mathbf{u}_{1}, \mathbf{v}_{1}}\left\|\mathbf{Z}-s_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{T}\right\|_{F}^{2}, \\
\text { s.t. }\left\|\mathbf{u}_{1}\right\|_{2}=1,\left\|\mathbf{v}_{1}\right\|_{2}=1, s_{1} \geq 0 .
\end{gathered}
$$

Appendix II: Proof of Proposition I

It is easy to show that $E(\mathbf{X})-n p_{0} \mathbf{1}_{q \times m}$ is a rank-one matrix. Therefore,

$$
\begin{equation*}
E(\mathbf{X})-n p_{0} \mathbf{1}_{q \times m}=s_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{T} . \tag{A-2}
\end{equation*}
$$

In other words, $s_{k}=0$ for $k>1$. Furthermore, let $\left\{E(\boldsymbol{X})-n p_{0} \mathbf{1}_{q \times m}\right\}_{i j, t}$ be the element of matrix $E(\mathbf{X})-$ $n p_{0} \mathbf{1}_{q \times m}$ at the row corresponding to the sender-receiver pair (i, j) and the t-th column. We know from the definition of $E(\mathbf{X})-n p_{0} \mathbf{1}_{q \times m}$ that

$$
\left\{E(\boldsymbol{X})-n p_{0} \mathbf{1}_{q \times m}\right\}_{i j, t}=\left\{\begin{array}{cl}
0 & , \text { for }(i, j) \notin \boldsymbol{F} \tag{A-3}\\
-n \delta(t) & , \text { for }(i, j) \in \boldsymbol{F}
\end{array} .\right.
$$

Using (A-2), we can further write (A-3) into

$$
s_{1} u_{1, i j} v_{1, t}=\left\{\begin{array}{cl}
0 & , \text { for }(i, j) \notin \boldsymbol{F} \tag{A-4}\\
-n \delta(t) & , \text { for }(i, j) \in \boldsymbol{F}
\end{array},\right.
$$

where $u_{1, i j}$ is the element of \mathbf{u}_{1} corresponding to the sender-receiver pair (i, j) and $v_{1, t}$ is the the t-th element of \mathbf{v}_{1}.

Let $\left(i^{\prime}, j^{\prime}\right)$ be a sender-receiver pair that is affected by the fault and (\tilde{l}, \tilde{J}) be one that is not, i.e., $\left(i^{\prime}, j^{\prime}\right) \in \boldsymbol{F}$ and $(\tilde{i}, \tilde{j}) \notin \boldsymbol{F}$. Then, according to (A-4),

$$
\begin{equation*}
s_{1} u_{1, \tilde{\jmath} j} v_{1, t}=0 \text { and } s_{1} u_{1, i^{\prime} j^{\prime}} v_{1, t} \neq 0 . \tag{A-5}
\end{equation*}
$$

$s_{1} \neq 0$ by the definition of SVD. Then, (A-5) becomes

$$
u_{1, \tilde{j}} v_{1, t}=0 \text { and } u_{1, i^{\prime} j^{\prime}} v_{1, t} \neq 0 .
$$

The sufficient and necessary condition for the above simultaneous equations to hold is $v_{1, t} \neq 0, u_{1, \tilde{l} \jmath}=0$, and $u_{1, i^{\prime} j^{\prime}} \neq 0$. Next, we derive the formula for $u_{1, i^{\prime} j^{\prime}}, v_{1, t}$, and s_{1}.

Let $\left(i^{\prime \prime}, j^{\prime \prime}\right)$ be another sender-receiver pair that is affected by the fault, i.e., $\left(i^{\prime \prime}, j^{\prime \prime}\right) \in \boldsymbol{F}$. According (A-4), $s_{1} u_{1, i^{\prime} j^{\prime}} v_{1, t}=s_{1} u_{1, i^{\prime \prime} j^{\prime \prime}} v_{1, t}=-n \delta(t)$, i.e., $u_{1, i^{\prime} j^{\prime}}=u_{1, i^{\prime \prime} j^{\prime \prime}}$. Furthermore, because \mathbf{u}_{1} is orthonormal, we have $\sum_{(i, j) \in \boldsymbol{F}} u_{1, i j}^{2}=|\boldsymbol{F}| \times u_{1, i j}^{2}=1$. Solving this equation gives $u_{1, i j}=\frac{1}{\sqrt{|\boldsymbol{F}|}}$ for $\forall(i, j) \in$ \boldsymbol{F}.

To derive the formula for $v_{1, t}$ and s_{1}, focus on a sender-receiver pair $(i, j) \in \boldsymbol{F}$. Then, $s_{1} u_{1, i j} v_{1, t}=$ $s_{1} \frac{1}{\sqrt{|\boldsymbol{F}|}} v_{1, t}=-n \delta(t)$, i.e.,

$$
\begin{equation*}
v_{1, t}=\frac{-n \delta(t) \sqrt{|\boldsymbol{F}|}}{s_{1}} . \tag{A-6}
\end{equation*}
$$

Using the property that \mathbf{v}_{1} is orthonormal, we have $\sum_{t} v_{1, t}^{2}=1$. Combining this with (A-6), we get $s_{1}=$ $\sqrt{\sum_{t=1}^{m}[n \delta(t)]^{2}} \times \sqrt{|\mathbf{F}|}$. Inserting this into (A-6), we get $v_{1, t}=\frac{-\delta(t)}{\sqrt{\sum_{t=1}^{m} \delta(t)^{2}}}$.

