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The timely characterization 
of the human and ecological 
risk posed by thousands of 
existing and emerging 
commercial chemicals is a 
critical challenge facing EPA 
in its mission to protect 
public health and the 
environment

November 29, 2014

Introduction
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Scale of the Problem

Endocrine Disruptor Screening Program 
(EDSP) Chemical List

Number of
Compounds

Conventional Active Ingredients 838

Antimicrobial Active Ingredients 324

Biological Pesticide Active Ingredients 287

Non Food Use Inert Ingredients 2,211

Food Use Inert Ingredients 1,536

Fragrances used as Inert Ingredients 1,529

Safe Drinking Water Act Chemicals 3,616

TOTAL 10,341

EDSP 
Chemical 
Universe
10,000

chemicals
(FIFRA & 
SDWA)

EDSP List 2 
(2013)

107
Chemicals

EDSP List 1 
(2009)

67 
Chemicals

So far 67 chemicals have completed testing and an 
additional 107 are being tested

December, 2014 Panel: “Scientific Issues Associated with 
Integrated Endocrine Bioactivity and Exposure-Based Prioritization 
and Screening“ DOCKET NUMBER: EPA–HQ–OPP–2014–0614 

• Park et al. (2012): At least 3221 chemicals in humans, many appear to be exogenous
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In vitro Assay AC50

Concentration (µM)

Assay AC50
with Uncertainty

High-Throughput Bioactivity

 Tox21:  Examining >8,000 chemicals using 
~50 assays intended to identify 
interactions with biological pathways 
(Schmidt, 2009)

 ToxCast: For a subset (>2000) of Tox21 
chemicals ran >1100 additional assays 
(Judson et al., 2010)

 Most assays conducted in dose-response 
format (identify 50% activity concentration 
– AC50 – and efficacy if data described by a 
Hill function, Filer et al., 2016)

 All data is public: http://comptox.epa.gov/ 
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• High throughput risk prioritization 
needs:

1. high throughput hazard 
characterization (from HTT project)

2. high throughput exposure
forecasts

3. high throughput toxicokinetics
(i.e., dosimetry) Potential 

Exposure 
Rate

mg/kg BW/day

Potential 
Hazard from 
in vitro with 

Reverse 
Toxicokinetics

Lower
Risk

Medium 
Risk

Higher
Risk

High Throughput Risk 
Prioritization
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Application to U.S. EPA Endocrine Disruptor Screening 
Program (EDSP)

Toxicokinetics Exposure

Hazard

High-Throughput
Risk 

Prioritization
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Prioritization as in 
Wetmore et al. 
(2015)

High Throughput Chemical 
Risk Prioritization

July and December 2014 FIFRA Scientific Advisory Panels reviewed research as it 
applies to the Endocrine Disruptor Screening Program

HUMAN ECOLOGICAL

HAZARD

EXPOSURE

Human Hazard Eco Hazard

Human Exposure Eco Exposure

mg/kg BW/day
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HUMAN ECOLOGICAL

HAZARD

EXPOSURE

Human In Vitro Assays 
(HTT/ToxCast)

Predicted Ecological 
Species Effects

SeqAPASS (LaLone, 2016)

High 
Throughput 

Toxicokinetics
(Pearce, in press)

Exposure Predictions  
Calibrated to NHANES
(Including SHEDS-HT)

Exposure Predictions  
Calibrated to USGS 
Water Monitoring

mg/kg BW/day

High Throughput Chemical 
Risk Prioritization

Prioritization as in 
Wetmore et al. 
(2015)

July and December 2014 FIFRA Scientific Advisory Panels reviewed research as it 
applies to the Endocrine Disruptor Screening Program
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ToxCast-derived 
Receptor Bioactivity 
Converted to 
mg/kg/day with 
HTTK

ExpoCast
Exposure 
Predictions

ToxCast Chemicals

High Throughput Risk 
Prioritization in Practice

Near Field
Far Field

December, 2014 Panel:
“Scientific Issues Associated with 
Integrated Endocrine Bioactivity and 
Exposure-Based Prioritization and 
Screening“

Rapid exposure and dosimetry project helps 
establish exposure context for ToxCast high 
throughput screening

mg/kg bw/day
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New ToxCast Developments

Exposure

High-Throughput
Risk 

Prioritization

• HepaRG 93 Gene Assay
• In Vitro Disposition

Toxicokinetics

Hazard
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ToxCast HepaRG Assay

Phenobarbital

Chenodeoxycholic acid

12-Methyltestosterone

Omeprazole

Fenofribric acid

Pirinixic Acid

p,p’-DDT

P,p’-DDT

Rifampicicn

Methoxychlor

Inferred NR activation using 93 genes and reference chemicals for 1060 ToxCast 
chemicals in a metabolically competent (HepaRG) system

Franzosa et al. (in prep.)
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In Vitro Disposition Assay:
Determining Concentration in Cells

Plastic 
Binding

Chemical

Media/Air 
Exchange

Cell Binding

Media 
Lipid 
and 
Protein 
Binding

Zaldívar Comenges (2012)

Plating 
condition

FBS 
(high/low)

Measured 
compartment

1 Medium – cells High Medium
2 Medium – cells Low Medium
3 Medium + cells High Medium
4 Medium + cells Low Medium
5 Medium + cells High Cells/plastic
6 Medium + cells Low Cells/plastic
7 Medium + cells High Cells, 

medium, 
and plastic

Collaboration with U.S. National Toxicology Program 
Evaluating Armitage et al. (2014) and Fischer (2017 ) 
models
• 100 to 200 chemicals, using acoustic liquid handling to 

randomize and expose
• MCF-7 cells
• 1, 6, and 24 hours 
• 10 µM

• LC-MS/MS, using a Thermo Q Exactive Plus system with high 
resolution 

Katie Paul-Friedman, Mike Devito
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Toxicokinetics for IVIVE

Exposure

High-Throughput
Risk 

Prioritization

We want to perform 
in vitro-in vivo 
extrapolation (IVIVE) 
of ToxCast activities

Toxicokinetics

Hazard
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the need for TK data using in vitro methods

The Need for In Vitro 
Toxicokinetics

0

50

100

150

200

250

300

ToxCast Phase I (Wetmore et al. 2012) ToxCast Phase II (Wetmore et al. 2015)

ToxCast Chemicals
Examined
Chemicals with
Traditional in vivo TK
Chemicals with High
Throughput TK



Office of Research and Development15 of 54

High-Throughput Toxicokinetics

 “httk” R Package for in vitro-in vivo extrapolation 
and PBTK

 553 chemicals to date
 100’s of additional chemicals being studied
 Pearce et al. documentation manuscript accepted 

at Journal of Statistical Software
 Vignettes provide examples of how to use many 

functions

https://CRAN.R-project.org/package=httk
Can access this from the R GUI: 

“Packages” then “Install Packages”

https://cran.r-project.org/package=httk
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Using in vivo Data to Evaluate RTK

Wambaugh et al. (2015)

• When we compare the Css
predicted from in vitro HTTK with 
in vivo Css values determined 
from the literature we find 
limited correlation (R2 ~0.34)

• The dashed line indicates the 
identity (perfect predictor) line: 
• Over-predict for 65
• Under-predict for 22

• The white lines indicate the 
discrepancy between measured 
and predicted values (the 
residual)
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Toxicokinetic Triage

 Through comparison to in 
vivo data, a cross-
validated (random forest) 
predictor of success or 
failure of HTTK has been 
constructed

 Add categories for 
chemicals that do not 
reach steady-state or for 
which plasma binding 
assay fails

 All chemicals can be 
placed into one of seven 
confidence categories

Wambaugh et al. (2015)
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Analyzing New In Vivo Data (Rat)

 Oral and iv studies for 
26 ToxCast compounds

• Collaboration with 
NHEERL (Mike Hughes 
and Jane Ellen Simmons)

• Additional work by 
Research Triangle 
Institute (Tim Fennell)

 Can estimate
• Fraction absorbed
• Absorption Rate
• Elimination Rate
• Volume of Distribution

18
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Analyzing New In Vivo Data (Rat)

19

 Oral and iv studies for 
26 ToxCast compounds

• Collaboration with 
NHEERL (Mike Hughes 
and Jane Ellen Simmons)

• Additional work by 
Research Triangle 
Institute (Tim Fennell)

 Can estimate
• Fraction absorbed
• Absorption Rate
• Elimination Rate
• Volume of Distribution

Cyprotex (ToxCast) is now measuring bioavailability (CACO2) for many HTTK chemicals
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Propagating Measurement 
Uncertainty

20

Office of Research and Development

Now using Bayesian analysis of measurement error to assess confidence in HTTK predictions
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Using HTTK Predicted Cmax
for Risk Prioritization

Doses ranges for all 3925 Tox21 
compounds eliciting a ‘possible’-

to-‘likely’ human in vivo
interaction alongside estimated 

daily exposure

56 compounds with 
potential in vivo biological 

interaction at or above 
estimated environmental 

exposures

Sipes et al., under revision

Screening for toxicity has blind spots and exposure forecasts are highly uncertain, yet:
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IVIVE with HTTK PBPK Model

Analysis led by Greg Honda

ToxRefDB in vivo LEL
dose (mg/kg/day) 

HT-PBTK HT-PBTK transformed
concentration (µM)

t
c

ToxCast
AC50 (µM)vs.

HT-PBTK p-Values

HT-PBTK Y-Randomized

Plasma concentration determined by HT-PBTK 
shows greater correlation with ToxCast AC50 
than dose alone or y-randomization result

To
xC

as
t A

ss
ay

s
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ToxCast 
chemicals with 
ER Agonist Assay 
Activity (2636)

Chemicals with 
HTTK Data (543)

Chemicals with Exposure 
Estimates (7969)

5351

2094

251

273

269

19

Predicting Critical TK Parameters

• Two parameters currently are 
key to HTTK model:

• Plasma protein binding (PPB)
• Hepatic clearance 

(metabolism)

• Ingle et al. (2016) developed 
PPB model for environmental 
chemicals

• If a hepatic clearance model 
can be developed we can 
provide tentative TK 
predictions for thousands of 
more chemicals

Figure from 
Dustin 

Kapraun
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High Throughput Exposure

Exposure

High-Throughput
Risk 

Prioritization

High throughput screening + 
IVIVE can predict a dose 
(mg/kg bw/day) that might 
be adverse

Need methods to forecast 
exposure for thousands of 
chemicals (ExpoCast)

Toxicokinetics

Hazard
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The Need for High Throughput 
Exposure

0

50

100

150

200

250

300

ToxCast Phase I (Wetmore et al. 2012) ToxCast Phase II (Wetmore et al. 2015)

ToxCast Chemicals
Examined

Chemicals with
Traditional Exposure
Estimates



Office of Research and Development26 of 54

Near-Field
Direct

Near-Field 
Indirect Dietary Far-Field

EXPOSURE 
PATHWAY

(MEDIA + RECEPTOR)
Ecological

Figure modified from original by Kristin Isaacs

The Exposure Event is Often Unobservable

• The exposure pathway is the actual interaction of the receptor and media, e.g. consuming 
potato chips

• For humans in particular, these events are often unobserved and for many reasons 
(including ethics and privacy) may remain unobservable

• Did you eat the serving size or the whole bag of potato chips?

• Either predict exposure using data and models up-stream of the exposure event

• Or infer exposure pathways from down-stream data, especially biomarkers of exposure 
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Consensus Exposure Predictions 
with the SEEM Framework

• We incorporate multiple models into consensus predictions for 1000s of chemicals 
within the Systematic Empirical Evaluation of Models (SEEM) framework  
(Wambaugh et al., 2013, 2014)

• We evaluate/calibrate predictions with available monitoring data across as many 
chemical classes as possible to allow extrapolation

• Attempt to identify correlations and errors empirically
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Exposures Inferred  from 
NHANES

 Annual survey, data released 
on 2-year cycle.

 Different predictive models 
provide different chemical-
specific predictions

• Some models may do a 
better job form some 
chemical classes than 
others overall, so we 
want to evaluate 
performance against 
monitoring data

 Separate evaluations can be 
done for various 
demographics

CDC, Fourth National Exposure Report  (2011)

National Health and Nutrition Examination Survey
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SEEM Evolution
Model and Predictors

• Existing complex fate and 
transport models have low 
correlation to measured 
exposures
• Near field factor most 
important

• Simple, readily available data
• Better correlation to 
measured exposures
• Similar predictions across 
demographics

1st
Ge

n

Calibration/Evaluation Data SEEM Conclusion

2nd
Ge

n

USEtox

RAIDAR

Near Field / Far Field

NHANES
Urine
Data

Production Volume

Use Categories

Production Volume

Phys-Chem Properties

NHANES
Urine
Data

3rd
Ge

n

• Need volume of distribution 
predictions (httk package) to 
use NHANES blood and serum 
data
• Analysis is ongoing

SHEDS-HT

Literature 
Models

CPcat Database

NHANES
Urine, Blood 
and Serum

Data

Wambaugh et al. (2013)

Wambaugh et al. (2014)

Ring et al. (in prep.)

Rosenbaum, et al. (2008)

Arnot, et al. (2006)

Isaacs, et al. (2014)

Dionisio, et al. (2015)

R2 ≈ 0.14

R2 ≈ 0.5
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Wambaugh et al. (2014)

Five descriptors explain 
roughly 50% of the 
chemical to chemical 
variability in median 
NHANES exposure rates

Same five predictors work 
for all NHANES 
demographic groups 
analyzed – stratified by 
age, sex, and body-mass 
index:

• Industrial and 
Consumer use

• Pesticide Inert
• Pesticide Active
• Industrial but no 

Consumer use
• Production Volume

Heuristics of Exposure
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Log(Parent Exposure) = a + m * log(Model Prediction) + b* Near Field + ε

Multiple regression models:

ε ~ N(0, σ2)
Residual error, 
unexplained by 
the regression 

modelIn
fe

rr
ed

 E
xp

os
ur

e

Weighted HTE Model Predictions

SEEM is a Linear Regression
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Log(Parent Exposure) = a + m * log(Model Prediction) + b* Near Field + ε

Multiple regression models:
In

fe
rr

ed
 E

xp
os

ur
e

Weighted HTE Model Predictions

SEEM is a Linear Regression

Not all models have predictions 
for all chemicals

• We can run SHEDS-HT 
(Isaacs et al., 2014) for 
~2500 chemicals

What do we do for the rest?
• Assign the average value?
• Zero?
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Human Exposure Predictions 
for 134,521 Chemicals

Ring et al. (in prep.)
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Lowest NHANES limit of 
detection (LOD) 
roughly corresponds to 
~10-6 mg/kg BW/day

95% confident that median population 
would be <LOD for thousands of chemicals

Ring et al. (in prep.)

Human Exposure Predictions 
for 134,521 Chemicals
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Chemical Use Identifies Relevant 
Pathways

>2000 chemicals with Material Safety Data 
Sheets (MSDS) in CPCPdb (Goldsmith et al., 2014)

10
6 

N
HA

N
ES

 C
he

m
ic

al
s

Chemical Manufacture
Consumer

Products, Articles, 
Building Materials Environmental 

Release

Food Air, Soil, WaterAir, Dust, Surfaces

Near-Field
Direct

Near-Field 
Indirect

Human
Ecological

Flora and Fauna

Dietary Far-Field

Direct Use
(e.g. lotion)

Residential Use
(e.g. flooring)

MONITORING
DATA

RECEPTORS

MEDIA

EXPOSURE 
PATHWAY

(MEDIA + RECEPTOR)

Biomarkers 
of Exposure

Biomarkers 
of Exposure

Media Samples

Ecological

Waste

Near field sources have been known to be important at least since 1987 – see Wallace, et al.

Some pathways have much higher 
average exposures!
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• Chemical-Product 
database (CPdat) maps 
many different types of 
use information and 
ontologies onto each 
other

• Includes CPCPdb 
(Goldsmith, et al., 2014) 
with information on 
~2000 products from 
major retailors

• Largest single database 
has coarsest information: 
ACToR UseDB

Dionisio et al. (2015)
http://actor.epa.gov/cpcat/

CPdat: Chemical Use Information 
for  ~30,000 Chemicals
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Predicting Chemical 
Constituents

Isaacs et al. (2016)
Office of Research and Development

 CPCPdb does not cover 
every chemical-product 
combination (~2000 
chemicals, but already 
>8000 in Tox21)

 We are now using 
machine learning to fill in 
the rest

 We can predict functional 
use and weight fraction 
for thousands of 
chemicals
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Chemical Alternatives

Exposure

High-Throughput
Risk 

Prioritization

Can combine 
functional use 
predictions with high 
throughput 
bioactivity data to 
predict potential 
alternatives

Toxicokinetics

Hazard
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Screening for Alternatives By 
Function and Bioactivity

Comparing a metric of bioactivity (across a number of Tox21 assays) for predicted “functional substitutes” against a 
threshold value derived from existing chemicals with that function identified 648 “candidate alternatives”

Phillips et al., (2017)
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Non-Targeted Analysis

Exposure

High-Throughput
Risk 

Prioritization

New refinements to 
mass spectrometry 
are broadening our 
ability to understand 
the chemicals present 
in environmental and 
biological samples

Toxicokinetics

Hazard
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“I’m searching for my keys.”

 Models present one way forward, but new 
analytic techniques may also allow insight in to 
chemicals composition of products and the 
greater environment

 EPA is coordinating a comparison of non-
targeted screening workflows used by leading 
academic and government groups (led by Jon 
Sobus and Elin Ulrich)
• Examining house dust, human plasma, and 

silicone wristbands (O’Connell, et al., 2014)
• Similar to NORMAN Network (Schymanski 

et al., 2015) analysis of water
 Published analysis on house dust (Rager et al., 

2016)

Non-Targeted and Suspect-
Screening Analysis

 100 consumer products from a major U.S. retailer were 
analyzed, tentatively identifying 1,632 chemicals, 1,445 which 
were not in EPA’s database of consumer product chemicals 
(Phillips et al., submitted)
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Suspect Screening in House Dust
M

as
s

Retention Time

947 Peaks in an American Health Homes Dust 
Sample

We are expanding our reference libraries using ToxCast chemicals to enable greater numbers 
and better accuracy of confirmed chemicals

See Rager et al., (2016)

Each peak corresponds to a 
chemical with an accurate mass 
and predicted formula:

Multiple chemicals can have the 
same mass and formula:

Is chemical A present, 
chemical B, both, or some 
other chemical (neither)?

C17H19NO3
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“As chemists we are obliged to accept the assignment of barium to the 
observed activity, but as nuclear chemists working very closely to the 
field of physics we cannot yet bring ourselves to take such a drastic 
step, which goes against all previous experience in nuclear physics. It 
could be, however, that a series of strange coincidences has misled us.”

Hahn and Strassmann (1938)

Appropriate Skepticism for Non-Targeted 
Analysis and Suspect Screening
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“As chemists we are obliged to accept the assignment of barium to the 
observed activity, but as nuclear chemists working very closely to the 
field of physics we cannot yet bring ourselves to take such a drastic 
step, which goes against all previous experience in nuclear physics. It 
could be, however, that a series of strange coincidences has misled us.”

Hahn and Strassmann (1938)

1944 Nobel Prize in Chemistry for “discovery of the fission of heavy nuclei"

Appropriate Skepticism for Non-Targeted 
Analysis and Suspect Screening
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Chemical Forensics

Rager et al., (2016)
Phillips et al., (submitted)

High throughput 
exposure and 
toxicity predictions 
can discriminate 
between 
possibilities based 
upon risk

Tools developed for 
predicting chemical 
use can provide 
evidence 
for/against 
chemical identities
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Product Scan Summary

Phillips et al. (submitted)

Of 1,632 chemicals confirmed or tentatively identified, 1,445 were 
not present in CPCPdb
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Predicting Chemical Function

Using the methods of Phillips et al., (2017):

Phillips et al. (submitted)
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Caveats to Non-Targeted 
Screening

• Chemical presence in an object does not mean that exposure occurs
• Only some chemical identities are confirmed, most are tentative

• Can use formulation predictor models as additional evidence
• Chemical presence in an object does not necessarily mean that it is bioavailable

• Can build emission models
• Small range for quantitation leads to underestimation of concentration
• Product de-formulation caveats:

• Samples are being homogenized (e.g., grinding) and are extracted with a 
solvent (dichloro methane, DCM)

• Only using one solvent (DCM, polar) and one method GCxGC-TOF-MS
• Varying exposure intimacy, from carpet padding to shampoo to cereal

• Exposure alone is not risk, need hazard data
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Expanded Biomonitoring

• Moving beyond NHANES 
chemicals

• Non-targeted 
analysis of blood may 
be possible

• Not just a matter of 
sensitivity, must also 
“filter out” 
endogenous, food, 
and drug chemicals

Rappaport et al. (2014)
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Further Analyzing the CDC NHANES Data

Exposure

High-Throughput
Risk 

Prioritization

• Using data to identify 
potential mixtures for 
in vitro testing

• Using data to identify 
populations with 
greater/lesser risk

Data sets publicly 
available: 
http://www.cdc.gov/nchs/nhanes.htm

The U.S. Centers for Disease 
Control and Prevention (CDC) 
National Health and Nutrition 
Examination Survey (NHANES) 
provides continuously updated 
statistically representative data 
on biometrics and chemical 
exposure

Toxicokinetics

Hazard
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Identifying Prevalent Mixtures

Frequent itemset mining used to identify combinations of NHANES group B chemicals 
occurring in individuals at a concentration greater than the population median

• Chemical mixtures 
present in consumer 
products and 
biomonitoring samples 
are being analyzed

• We are using data-mining 
methods that identify 
combinations of items 
(chemicals) that occur 
frequently in a database 
of observations

• Identified a few dozen 
mixtures present in >30% 
of U.S. population

Kapraun et al., (in press)
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Population simulator for HTTK

Predict physiological 
quantities

Tissue masses
Tissue blood flows
GFR (kidney function)
Hepatocellularity

Sample NHANES 
quantities

Sex
Race/ethnicity
Age
Height
Weight
Serum creatinine

Regression equations from literature
(+ residual marginal variability) 

(Similar approach used in SimCYP [Jamei et al. 2009], GastroPlus, 
PopGen [McNally et al. 2014], P3M [Price et al. 2003], physB [Bosgra et al. 2012], etc.)

Ring et al. (in press)

Correlated Monte Carlo sampling of physiological model parameters
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Life-stage and Demographic Specific 
Predictions

• Wambaugh et al. (2014) predictions of 
exposure rate (mg/kg/day) for various 
demographic groups

• Can use HTTK to calculate margin 
between bioactivity and exposure for 
specific populations

Change in Risk

Change in Activity:Exposure Ratio

Ring et al. (in press)
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Conclusions

 We would like to know more about the risk posed by thousands of chemicals in the environment –
which ones should we start with?

• High throughput screening (HTS) provides a path forward for identifying potential hazard
• Exposure and dosimetry provide real world context to hazards indicated by HTS

 Using in vitro methods developed for pharmaceuticals, we can relatively efficiently predict TK for 
large numbers of chemicals, but we are limited by analytical chemistry

 Using high throughput exposure approaches we can make coarse predictions of exposure
• We are actively refining these predictions with new models and data
• In some cases, upper confidence limit on current predictions is already many times lower than 

predicted hazard
 Expanded monitoring data (exposure surveillance) allows evaluation of model predictions

• Are chemicals missing that we predicted would be there?
• Are there unexpected chemicals?

 All data being made public:
• R package “httk”: https://CRAN.R-project.org/package=httk 
• The Chemistry Dashboard (A “Google” for chemicals) http://comptox.epa.gov/
• Consumer Product Database: http://actor.epa.gov/cpcat/
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