

Lasso and capture-recapture

Olivier Gimenez and Ian Renner

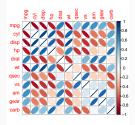
Introduction

What is this about?

Explain variation in abundance, survival, distribution With technology, come many variables Often do not know which ones (not) to include

What are the issues?

Many, possibly correlated, covariates



Correlation \implies numerical instability

Many covariates \implies \searrow precision and predictability

Think hard about which covariates to consider Select covariates using:

- AIC or stepwise procedure
- DIC, SSVS, RJMCMC

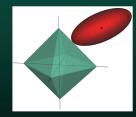
This talk: shrink and select model coefficients

Theory

The reference - free book!

Monographs on Statistics and Applied Probability 143

Statistical Learning with Sparsity The Lasso and Generalizations



Trevor Hastie Robert Tibshirani Martin Wainwright

It all starts with the ridge regression

Maximize likelihood, penalize magnitude of coeff. $\widehat{oldsymbol{eta}} = rgmax \ L(oldsymbol{eta})$ subject to $\sum_{j=1}^p eta_j^2 < c$

It all starts with the ridge regression

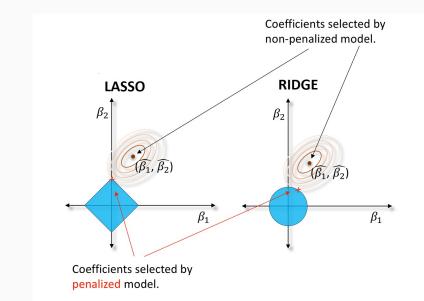
Maximize likelihood, penalize magnitude of coeff. $\widehat{\boldsymbol{\beta}} = \operatorname{argmax} L(\boldsymbol{\beta})$ subject to $\sum_{j=1}^{p} \beta_j^2 < c$

It all starts with the ridge regression

Maximize likelihood, penalize magnitude of coeff. $\widehat{\beta} = \operatorname{argmax} L(\beta)$ subject to $\sum_{j=1}^{p} \beta_j^2 < c$

Change the constraint:
$$\ell^2$$
 vs. ℓ^1 norm
 $\widehat{oldsymbol{eta}}= rgmax \ L(oldsymbol{eta})$ subject to $\sum_{j=1}^p |eta_j| < c$

Lasso vs. ridge regression, graphically



Lasso: maximizing penalized likelihood

$$\widehat{oldsymbol{eta}} = ext{argmax} \ L(oldsymbol{eta}) \ ext{subject to} \ \sum_{j=1}^p |eta_j| < c$$

Constrained optimization not easy

Rewrite the problem with Lagrange multipliers

$$\widehat{oldsymbol{eta}} = \operatorname{argmax} L(oldsymbol{eta}) + \lambda \sum_{j=1}^{p} |eta_j|$$

Lasso: maximizing penalized likelihood

$$\widehat{oldsymbol{eta}} = ext{argmax} \ L(oldsymbol{eta}) \ ext{subject to} \ \sum_{j=1}^p |eta_j| < c$$

Constrained optimization not easy

Rewrite the problem with Lagrange multipliers

$$\widehat{oldsymbol{eta}} = rgmax \ oldsymbol{L}(oldsymbol{eta}) + \lambda \sum_{j=1}^p |eta_j|; \ ext{capture-recapt.} \ \ ext{lik.}$$

Usually, cross-validation techniques Build a grid of values for λ Repeat optimization for each value of the grid Pick λ corresponding to model with lowest BIC

Application

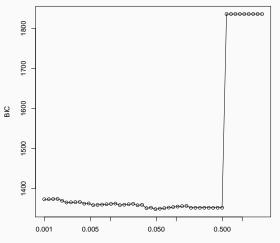
White storks wintering in Sahel

Capture-recapture data over 16 years

Rainfall was measured at 10 meteo stations in Sahel

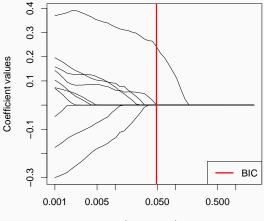
Is adult white stork survival affected by rainfall? $logit(\phi_t) = \beta_0 + \beta_1 x_1 + \ldots + \beta_{10} x_{10}$ Do we need to consider 2¹⁰ candidate models?

Choosing the Lasso penalty using BIC



Lasso Penalty

Exploring regularization path



Lasso penalty

Rainfall effect at all weather stations

Station	Estimate
Diourbel	7.47 x 10 ⁻⁵
Gao	-2.99×10^{-5}
Kayes	1.3×10^{-4}
Kita	0.24
Maradi	-1.3×10^{-4}
Mopti	3.5×10^{-4}
Ouahigouya	-5.9×10^{-5}
Segou	1.7×10^{-5}
Tahoua	1.2×10^{-4}
Tombouctou	-2.3×10^{-4}

Almost there

From selecting covariates to shrinking estimates Relatively easy to implement the penalized likelihood

Application to occupancy models

Bayesian flavor, with R. McCrea, E. Matechou and B.J.T. Morgan

Questions

Simulations

Setting: Cormack-Jolly-Seber model

Sample size: 15 occasions, 15 new ind. per occasion Detection is 0.9, mean survival is 0.8 Covariates: $X_1 \sim N(-0.6, \sigma = 1), X_2 \sim N(0, \sigma = 1)$ Apply Lasso; fit 4 models, compare with AIC Repeat 100 times

Simulation results

Correct model $(X_1 \text{ only})$ is selected 80% with Lasso Comparable to variable selection using AIC Further simulations show similar results