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Introduction
Statistical analysis of multi-subject functional Magnetic Resonance 
Imaging (fMRI) data can be represented as a mixed-effect general linear 
model (GLM) and is traditionally solved using either: 

1. Feasible Generalised Least Squares (FGLS) (sometimes referred to as 
mixed-effects GLM) where within-subject variance estimates are used and 
incorporated into per-subject weights or 

2. Ordinary least squares (OLS) (sometimes referred to as random-effects 
GLM) where within-subject variance estimates are not used. 

Both approaches are implemented and available in major neuroimaging 
software packages including: SPM (MFX analysis; 2nd-Level statistics), FSL 
(FLAME; OLS) and AFNI (3dMEMA; 3dttest++). 
While FGLS provides the most efficient statistical estimate, its properties are 
only guaranteed in large samples, and it has been shown that OLS is a valid 
alternative for one-sample group analyses in fMRI [1]. 
We recently showed that FGLS for image-based meta-analysis could lead to 
invalid results in small-samples. As FGLS meta-analyses uses the same 
model, here we investigate, whether this issue also affects group fMRI.
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GLM can be expressed with: Y = Xβ + ε, where Y is the 
N-vector of subject-level contrast estimates, X the design 
matrix, β the group parameter to estimate and ε the random 
error. In group fMRI, the error term has two contributions, from 
within- and between-subject variance.
FGLS. Using within-subject variance estimates requires a 
weighted least squares (WLS) approach, where the group 
parameter β is a weighted average of the subject-level 
contrasts. The weights are inversely proportional to the sum of 
the within- and between-subject variances. 
But in practice, those weights are unknown and have to be 
estimated from the data leading to a Feasible Generalised 
Least Squares (FGLS). FGLS is asymptotically efficient but its 
finite sample properties are unknown [2]. We used FSL’s 
‘FLAME 1’ FGLS that uses maximum likelihood to estimate 
between-subject variance, computing a T-statistic compared to 
a Student distribution with N-1 degrees of freedom (DF) [3].
OLS. Under the assumption that the within-subject variance is 
constant or negligible in comparison to the between-study 
variance, the weights above are equal and the GLM can be 
estimated with Ordinary Least Squares (OLS), β estimated as 
the average of the subject-level contrasts. We used SPM’s 
2nd level one-sample model, computing a T statistic also 
compared to a Student distribution with N−1 DF [4]. OLS 
p-values are exact for any sample size, in contrast to FGLS 
which are only asymptotically valid [2].
We used Monte Carlo simulations to investigate the validity 
of MFX and RFX GLMs under varying degrees of 
within-subject variance heteroscedasticity. 
Within-subject variances took on 2 values, a ‘good’ value 
and a ‘high’, where the 'high' value was one of 2, 4, 8 & 16x 
good values; we considered  4%, 20%, 40%, 80% or 96% of 
the subjects to have the high values. 
We fixed the mean within-subject standard error to be equal to 
the between-subject variance. We assumed 25 subjects per 
group and 1000 independent time points per subject.  
Accuracy was assessed by comparing FSL & SPM 
distributions of -log10 P-values to Monte Carlo -log 10 
P-values based on 10ˆ6 realisations.
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Results
Fig. 1 presents deviation from theoretical P-values with varying percentage and 
intensity of high intra-subject variance. For low intensity heteroscedasticity (<= 2x), 
FGLS GLM is valid but becomes increasingly invalid in the presence strong and 
prevalent high variance subjects. OLS GLM is valid with all settings but displays 
some conservativeness in the presence of strong heteroscedasticity.

Fig. 1. Deviation of observed from theoretical P-values (difference of observed and 
Monte Carlo (‘true’) -log10 p-value distributions) for one-sample tests in the presence of 
varying percentages of subjects with outlying within-subject variances, high-variance 
factor 2, 4, 8 or 16, (columns), MFX GLM and RFX GLM (rows).  Y-axis is the observed 
cumulative probability minus Monte Carlo cumulative probability for a given (X-axis) 
-log10 p-value; positive deflections correspond to inflated false positive risk.

Table 1. Statistics for group fMRI tests and their underlying 
assumptions. 

ᶦ2: pure between-study variance, σ2
i: ith study’s contrast 

variance, s2
i: ith study’s sampling contrast variance, σC

2: usual 
one-sample variance. IGE=Independent Gaussian Errors.

Group statistic Assumptions

OLS

FGLS


