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Abstract

Non-volatile memories (NVM) including flash memories and resistive memories
have attracted significant interest as data storage media. Flash memories are widely
employed in mobile devices and solid-state drives (SSD). Resistive memories are
promising as storage class memory and embedded memory applications.

Data reliability is the fundamental requirement of NVM as data storage media.
However, modern nano-scale NVM suffers from challenges of inter-cell interference
(ICI), charge leakage, and write endurance, which threaten the reliability of stored
data. In order to cope with these adverse effects, advanced coding techniques in-
cluding soft decision decoding have been investigated actively.

However, current coding techniques do not capture the physical properties of
NVM well, so the improvement of data reliability is limited. Although soft decision
decoding improves the data reliability by using soft decision values, it degrades read
speed performance due to multiple read operations needed to obtain soft decision
values.

In this dissertation, we explore coding schemes that use side information cor-
responding to the physical phenomena to improve the data reliability significantly.
The side information is obtained before writing data into memory and incorporated
during the encoding stage. Hence, the proposed coding schemes maintain the read
speed whereas the write speed performance would be degraded. It is a big advantage
from the perspective of speed performance since the read speed is more critical than
the write speed in many memory applications.

First, this dissertation investigates the coding techniques for memory with stuck-
at defects. The idea of coding techniques for memory with stuck-at defects is em-
ployed to handle critical problems of flash memories and resistive memories. For
2D planar flash memories, we propose a coding scheme that combats the ICI, which
is a primary challenge of 2D planar flash memories. Also, we propose a coding
scheme that reduces the effect of fast detrapping, a degradation factor in 3D vertical
flash memories. Finally, we investigate the coding techniques that improve write
endurance and power consumption of resistive memories.



vi



Acknowledgments

I am indebted to all those who have helped me finish this dissertation: my advi-
sor, commitee members, collagues, and family.

First of all, I would like to express my deepest gratitude to my advisor B. V.
K. Vijaya Kumar (Vijayakumar Bhagavatula). Words are not enough to thank him
for his invaluable advice, brilliant insight, and constant encouragement. I was very
fortunate to be advised by him. I would also like to thank my thesis committee mem-
bers Rohit Negi, Pulkit Grover, and Robert Mateescu to their advice and comments
for my research.

During my graduate studies, I was fortunate to collaborate with several won-
derful researchers: Abhishek A. Sharma, James A. Bain, Xin Li, Euiseok Hwang,
Robert Mateescu, Seung-Hwan Song, and Zvonimir Bandic. I learned a lot from
them and enjoyed fruitful collaborations.

It has been a great joy to be a member of our research group: Stephen Siena,
Zhiding Yu, Eric He, Rick Chang, Andrew Fox, Jon Smereka, Kathy Brigham,
Hyunggi Cho, Joseph Fernandez, Can Ye, and Vishnu N. Boddeti. I would like
to thank my colleagues at Carnegie Mellon University: Andrew Cheng, Haewon
Jeong, Yaoqing Yang, and Manzil Zaheer. I would also like to thank Marilyn Patete
and Kara Knickerbocker for their warm support and help.

I would like to thank the Storage Architecture Group at HGST Research. During
my internship, I had a great time with friendly members of the Storage Architecture
Group. Especially, I would like to thank Robert Mateescu for mentoring me and
becoming my committee member.

I would like to thank my parents and parents-in-law for their everlasting love. I
would like to thank my sons Hyunsuh and Yoonsuh for brightening my days. Finally,
I am sincerely grateful to my love and best friend Yuri for giving so much meaning
to my life.

My research was generously supported by the Data Storage Systems Center
(DSSC) at Carnegie Mellon University.



viii



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Coding for Memory with Stuck-at Defects 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Background for Coding for Defect Channel Model . . . . . . . . . . . . . . . . 17

2.2.1 Defect Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Capacity of Binary Memory with Stuck-at Defects . . . . . . . . . . . . 20
2.2.3 Additive Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.4 Partitioned Linear Block Codes (PLBC) . . . . . . . . . . . . . . . . . . 24

2.3 Redundancy Allocation of Finite-Length PLBC . . . . . . . . . . . . . . . . . . 28
2.3.1 Upper Bound on Encoding Failure Probability . . . . . . . . . . . . . . 29
2.3.2 Redundancy Allocation: BDEC . . . . . . . . . . . . . . . . . . . . . . 33
2.3.3 Redundancy Allocation: BDSC . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Relations between BEC, BDC, BEQ, and WOM . . . . . . . . . . . . . . . . . . 43
2.4.1 Duality between BEC and BDC . . . . . . . . . . . . . . . . . . . . . . 43
2.4.2 Relations between BEC, BDC, BEQ, and WOM . . . . . . . . . . . . . 49

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.6 Proof of Proposition 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.7 Proof of Proposition 2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.8 Proof of Lemma 2.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.9 Proof of Lemma 2.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.10 Proof of Theorem 2.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.11 Proof of Corollary 2.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.12 Proof of Theorem 2.18 and Corollary 2.19 . . . . . . . . . . . . . . . . . . . . . 59

3 Coding for Flash Memory 61
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2 2D Planar and 3D Vertical Flash Memories . . . . . . . . . . . . . . . . . . . . 64

3.2.1 Basic Operations and Asymmetry between Write and Erase Operations . 64
3.2.2 2D Planar Flash Memories: ICI . . . . . . . . . . . . . . . . . . . . . . 66
3.2.3 3D Vertical Flash Memories: ICI and Fast Detrapping . . . . . . . . . . 68

ix



3.3 Combating Inevitable Interference for 2D Planar Flash Memory . . . . . . . . . 70
3.3.1 Channel Model of 2D Planar Flash Memory . . . . . . . . . . . . . . . . 71
3.3.2 Proposed Scheme for 2D Planar Flash Memories: Combating ICI by

Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3.3 Dirty Paper vs. Dirty Flash Memory . . . . . . . . . . . . . . . . . . . . 78
3.3.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4 Harnessing Intentional Interference for 3D Vertical Flash Memory . . . . . . . . 84
3.4.1 Channel Model of 3D Vertical Flash Memory . . . . . . . . . . . . . . . 84
3.4.2 Proposed Scheme for 3D Vertical Flash Memory: Harnessing ICI by

Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4 Coding for Resistive Memory 93
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.2 Basics of Resistive Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2.1 Phase Change Memories (PCM) . . . . . . . . . . . . . . . . . . . . . . 96
4.2.2 Resistive Random-Access Memories (RRAM) . . . . . . . . . . . . . . 97

4.3 Writing Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.3.1 Power Consumption and Endurance in RRAM Devices . . . . . . . . . . 99
4.3.2 Writing Cost: Rewriting Cost and Initial Writing Cost . . . . . . . . . . 101

4.4 Rewriting Locality and Locally Rewritable Codes . . . . . . . . . . . . . . . . . 103
4.4.1 Motivation and a Toy Example . . . . . . . . . . . . . . . . . . . . . . . 103
4.4.2 Rewriting Locality and Locally Rewritable Codes . . . . . . . . . . . . . 105
4.4.3 Upper Bounds on Rewriting Cost and Initial Writing Cost . . . . . . . . 108

4.5 Constructions of Locally Rewritable Codes . . . . . . . . . . . . . . . . . . . . 110
4.5.1 Locally Repairable Codes . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.5.2 Construction of Locally Rewritable Codes . . . . . . . . . . . . . . . . . 111
4.5.3 Locally Rewritable Codes with Error Correcting Capability . . . . . . . 113

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.7 Proof of Theorem 4.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.8 Proof of Corollary 4.18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.9 Proof of Theorem 4.19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.10 Proof of Corollary 4.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5 Conclusion 123
5.1 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Bibliography 127

x



List of Figures

1.1 Channel model with side information. A message M is encoded to a codeword
Xn = (X1, . . . , Xn). The received word Y n = (Y1, . . . , Yn) is decoded to M̂
(i.e., the estimate of message). Sn = (S1, . . . , Sn) represents the side informa-
tion known to the encoder or the decoder. . . . . . . . . . . . . . . . . . . . . . 3

2.1 Binary defect channel (BDC). . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Capacity region of the BDEC derived in Proposition 2.14. Two points of Q1 and

Q2 in the capacity region represent the pairs of code rates
(
R1 = k

n
, R0 = l

n

)
.

Note that the capacity Cenc
BDEC is the supremum of R1 = R. . . . . . . . . . . . . . 28

2.3 Comparison of simulation results, upper bounds by (2.41), and calculated values
by (2.40) for P (E = 0 | U = u). [n = 31, k, l] PBCH codes are used. The code
rate is R = k/n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Comparison of simulation results and upper bounds in (2.44) for the probabil-
ity of encoding failure P (E = 0). We used PBCH codes for the BDC with
probability of defect β = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Comparison of simulation results (simul.) and upper bounds (UB) of the proba-
bility of recovery failure P (m̂ 6= m) of BDEC channels in Table 2.2. . . . . . . 38

2.6 Comparison of simulation results and estimates of the probability of recovery
failure P (m̂ 6= m). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.7 Probability of failure, i.e., P (D = 0) of the BEC with α = 0.1 and P (E = 0) of
the BDC with β = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.8 Relations between BEC, BDC, BEQ, and WOM. . . . . . . . . . . . . . . . . . 49

3.1 2D planar flash memory block where SSL, GSL, and CSL denote string select-
line, ground select-line, and common source-line, respectively. . . . . . . . . . . 65

3.2 Threshold voltage distribution of flash memory cells. . . . . . . . . . . . . . . . 65
3.3 Inter-cell interference (ICI) between adjacent cells of 2D planar flash memory. . . 67
3.4 3D vertical flash memory cell array in [1]. . . . . . . . . . . . . . . . . . . . . . 68
3.5 Change from the 2D planar flash memory channel with the ICI to the model of

memory with defective cells by one pre-read operation. . . . . . . . . . . . . . . 74
3.6 Vulnerable cells can also be regarded as stuck-at 0 defects by setting a pre-read

level such that ηpre < η. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.7 Extension to MLC flash memories. . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.8 The improvement of threshold voltage distribution by proposed scheme (SLC,

n = 1023, k = 923, R = 0.90, α = 1.2, σZread = 0.25, ηpre = −1.4). . . . . . . . . 80

xi



3.9 The improvement of raw BER and probability of decoding failure by the pro-
posed scheme (SLC, n = 1023, k = 923, R = 0.90, α = 1.2, σZread = 0.25). If
l = 0, then the side information is ignored, which is equivalent to the BCH code. 81

3.10 Comparison of P (m̂ 6= m) (SLC, n = 1023, k = 923, R = 0.90). . . . . . . . . 82
3.11 Comparison of P (m̂ 6= m) for BCH codes, proposed scheme, and LDPC codes

(SLC, R = 0.89, α = 1.4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.12 The improvement of threshold voltage distribution and P (m̂ 6= m) (MLC, n =

1023, k = 923, R = 0.90). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.13 Fast detrapping and identifying cells that suffer from fast detrapping. . . . . . . . 86
3.14 Intentional ICI for compensating fast detrapping. The cell C(i+1,j,k) will be re-

garded as stuck-at 0 (“S1”) defect for the intentional ICI. . . . . . . . . . . . . . 87
3.15 The improvement of threshold voltage distribution and P (m̂ 6= m) (SLC, n =

1023, k = 923, R = 0.90, σZfast = 0.4, σZrandom = 0.2). . . . . . . . . . . . . . . . 90
3.16 Comparison of P (m̂ 6= m) for different σZfast of fast detrapping and σZrandom

(SLC, n = 1023, k = 923, R = 0.90). . . . . . . . . . . . . . . . . . . . . . . . 91

4.1 Cell distribution of resistive memories. Note that x ∈ Q = {0, 1, . . . , q − 1}
where q = 2b represents the channel input of the given channel model. . . . . . . 95

4.2 Principle of PCM. Starting from the amorphous phase with large resistance, a
current pulse is applied. After sufficiently long pulse heats the material above the
minimum crystallization temperature Tx to crystallize the material, the resistance
is low (set operation). After the larger and short pulse is applied to heat the
material above the melting temperature Tm, the material is melt-quenched and
returns to the amorphous (reset operation). Different colors represent different
atoms (such as Ge, Sb, and Te in the commonly used GeSbTe compounds) in the
phase change materials [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3 Direct current–voltage characteristics of the RRAM device showing forming and
switching processes and a physical mechanism of filament formation and disso-
lution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Relation between resistance change and write power consumption. The RRAM
cells were 200 nm TiN-TaOx-TiN stack and show reliable resistive switching
behavior. These cells were fabricated at Carnegie Mellon University with the
same material as in [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.5 Write endurance characteristics of 85 nm RRAM cells. The raw data of these
experimental results came from IMEC. . . . . . . . . . . . . . . . . . . . . . . . 100

xii



List of Tables

2.1 All Possible Redundancy Allocation Candidates of [n = 1023, k = 923, l] PBCH
Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 BDEC with the Same CBDEC = 0.96 . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3 Optimal Redundancy Allocations (l∗, r∗) and Their Estimates (l̂, r̂) and (l̃, r̃) of

BDEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4 Several Channel Parameters of the BDSC . . . . . . . . . . . . . . . . . . . . . 42
2.5 Optimal Redundancy Allocations (l∗, r∗) and Their Estimates (l̂, r̂) of BDSC

by (2.63) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.6 Duality between BEC and BDC . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1 Simulation Parameters of 2D Planar Flash Memory . . . . . . . . . . . . . . . . 79

4.1 Duality of LRC and LWC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xiii



xiv



Chapter 1

Introduction

1.1 Motivation

Non-volatile memory (NVM) is a type of computer memory that has the capability to retain

stored data even when the power is turned off. NVM is typically used for secondary storage

or persistent storage. It includes flash memories and emerging memories such as phase change

memories (PCM), resistive random access memories (RRAM or ReRAM), ferroelectric RAM

(FRAM or FeRAM), magnetic RAM (MRAM), and spin transfer torque RAM (STTRAM).

Flash memory is the most widely employed NVM technology. Due to the rapid growth

of mobile devices and solid-state drives (SSD), flash memory market continues to expand at a

staggering pace. Obviously, there is a strong demand for higher density flash memories, which

has been achieved by scaling down (i.e., using higher resolution techniques such as 1x nm photo-

lithography) and multi-level cell (MLC) which represent more than one bit of information in each

memory cell. Also, 3D vertical flash memories were proposed to increase flash memory density

by stacking up cells vertically.

However, these approaches lead to physical phenomena that degrade the reliability of stored

data. Aggressive scaling down of cell size has driven the continuous growth of 2-dimensional

(2D) planar flash memory density. However, the scaling down leads to many challenges such as
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increased inter-cell interference (ICI) and photo-lithography limitation [4, 5]. As the distance

between adjacent cells decreases due to scaling down, flash memory cells suffer from higher ICI

which causes data retrieval errors, unless methods are put in place to handle ICI [4, 6]. Hence,

the ICI is a major challenge for data reliability of high density 2D planar flash memory.

3D vertical flash memories overcome scaling down challenges by stacking up cells in the ver-

tical direction instead of shrinking cells within a 2D plane [7, 8]. Recent 3D vertical flash mem-

ory research shows better device characteristics compared to 2D 1x nm planar flash memory [7].

However, 3D vertical flash memory has a problem of fast detrapping, which is a rapid charge

loss phenomenon resulting in larger threshold voltage variations in programmed cells [7, 9].

Moreover, MLC reduces the noise margin, which makes the stored data more vulnerable to these

adverse phenomena because more states should be crammed within the given constrained thresh-

old voltage window [10].

Among emerging NVM technologies, resistive memories including PCM and RRAM have

attracted significant research interest. The resistive memories are NVMs that store data by mod-

ulating the resistance of each memory cell. The advantages of resistive memories are scalability,

fast speed, and rewritability [2, 11, 12, 13, 14]. First, their potential scalability to the nanome-

ter regime is one of the most important advantages of resistive memories over dynamic RAM

(DRAM) and flash memories [15, 16]. Unlike DRAM, resistive memories are nonvolatile mem-

ories, so refresh operations as in DRAM are unnecessary. Resistive memories can realize the

MLC and be stacked in 3D with a compact cross-point architecture for higher density. More-

over, resistive memory technologies are expected to offer better speed performance than flash

memories [12, 14]. The resistive memories also allow rewriting the data without erase operation,

which is an advantage over flash memories where a number of cells have to be erased to rewrite

a single memory cell.

However, resistive memories have challenges of write endurance and write power consump-

tion. The write endurance refers to the fact that the repeated writes cause resistive memory

cells to become unreliable. The write endurance is a critical characteristic because higher en-

2



Encoder Channel Decoder

Side

information 

M M X
 n

S
 n

Y
 n

Figure 1.1: Channel model with side information. A message M is encoded to a codeword Xn =
(X1, . . . , Xn). The received word Y n = (Y1, . . . , Yn) is decoded to M̂ (i.e., the estimate of message).
Sn = (S1, . . . , Sn) represents the side information known to the encoder or the decoder.

durance will allow resistive memories to be used in applications where frequent write operations

are required [12]. Although the write endurance of resistive memories is better than that of

flash memories, their write endurance is worse than that of DRAM. In order to open up many

potential applications such as embedded memory, the write endurance needs to be improved

substantially [12, 14].

The write operation of resistive memories requires higher power consumption than the read

operation in order to change the physical states of memory cells. Especially, the increase of

resistance of PCM cell needs substantial power [12, 13]. This inherent write power consumption

problem is an important hurdle to increasing write bandwidth because the high write power

precludes the writing of many bits in parallel [13].

In order to cope with these adverse effects, traditional approaches have focused on device,

circuit, and architecture levels. For example, device level approaches explore new materials

and cell structures to improve device characteristics [5, 9]. At circuit and architecture levels,

novel operation schemes and architectures such as all bit-line (ABL) were proposed to reduce

the adverse effects [7, 17, 18, 19, 20].

Along with these traditional approaches, advanced error control coding (ECC) and signal

processing techniques have been investigated [21, 22, 23, 24, 25]. In addition, modulation cod-

ing schemes for NVM have been investigated to remove some data patterns which are more

vulnerable to adverse phenomena [26, 27, 28, 29, 30].

In this dissertation, we investigate coding schemes that use side information corresponding

3



to adverse phenomena in NVMs. Our work falls into the topic of channel coding with side

information at the transmitter (encoder) or receiver (decoder) as shown in Fig. 1.1 [31, 32, 33,

34]. It is well known that the capacity of the channel can be improved, which allows better

coding schemes by exploiting the side information at the encoder or decoder.

However, using the side information is not free. Because of the extra steps of obtaining

the side information from NVM cells and incorporating this side information into encoding or

decoding, the speed performance would be degraded. The write speed would be degraded if

the encoder uses the side information. On the other hand, the read speed would be lower if the

decoder uses the side information.

In many memory systems, the read speed performance is more critical than the write speed

performance [35]. The reason is that the write operation is typically not on the critical path

because of write buffers, thus the write latency can be hidden. Also, the read operations are

required more often than the write operations in many memory applications. Thus, we focus

on the coding schemes using side information at the encoder, which is called Gelfand-Pinsker

problem.

There are two famous examples in Gelfand-Pinsker problem: Writing on dirty paper (dirty

paper coding) in [36] and coding in a memory with defective cells in [37].

Costa’s writing on dirty paper considers the following channel [36]:

Y = X + SI + Z (1.1)

where X and Y are the channel input and output, respectively. Also, SI ∼ N
(
0, σ2

SI

)
represents

interference and Z ∼ N (0, σ2
Z) denotes additive noise. Also, SI and Z are independent. Assume

that the channel input satisfies an average power constraint 1
n

∑n
i=1 X

2
i ≤ P for the channel

input vector Xn = (X1, · · · , Xn). If neither the encoder nor the decoder knows SI, the capacity

is given by [36]

CI
min =

1

2
log2

(
1 +

P

σ2
SI

+ σ2
Z

)
. (1.2)
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If the encoder knows the entire interference vector SnI = (SI,1, · · · , SI,n) prior to transmission,

the capacity is given by

CI
max =

1

2
log2

(
1 +

P

σ2
Z

)
(1.3)

where the effect of the interference SI is completely canceled out [36].

The channel model of memory with defective cells (i.e., stuck-at defects) was introduced by

Kuznetsov and Tsybakov in 1974 [37]. This channel model has a channel state S ∈ {0, 1, λ},

which is called defect information. The state S = 0 corresponds to a stuck-at 0 defect that

always outputs a 0 independent of its input value, the state S = 1 corresponds to a stuck-at 1

defect that always outputs a 1, and the state S = λ corresponds to a normal cell that outputs the

same value as its input. The probabilities of 0, 1, λ states are β/2, β/2 (assuming a symmetric

defect probability), and 1−β, respectively [34, 37]. We call this channel model the binary defect

channel (BDC).

The capacity of the BDC is 1 − β when both the encoder and the decoder know the defect

information. If the decoder is aware of the defect locations in an array of memory cells, then

the defects can be treated as erasures so that the capacity is 1 − β [34, 38]. On the other hand,

Kuznetsov and Tsybakov investigated the model where the encoder knows the channel state

information (i.e., locations and stuck-at values of defects) and the decoder does not have any

information of defects [37]. It was shown that the capacity is also 1 − β even when only the

encoder knows the defect information [37, 38]. Thus, the capacity of the BDC is given by

CBDC = 1− β. (1.4)

The common aspect of writing on dirty paper and memory with stuck-at defects is that the

maximum capacities can be achieved if the encoder knows the side information corresponding

to the channel state. Note that the side information of writing on dirty paper corresponds to

interference and the side inforamtion of coding for memory with stuck-at defects is the defect
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information.

In this dissertation, we focus on the model of memory with stuck-at defects because this

model can be an appropriate channel model for flash memories and resistive memories. For flash

memories, we will show that the problems of combating and harnessing the ICI can be cast as

coding for memory with stuck-at defects. The memory with stuck-at defects is also a proper

model for resistive memories because a heavily cycled (i.e., rewritten) resistive memory cells

can be regarded as stuck-at defects. Based on this model, we investigate the coding techniques

that handle physical phenomena of flash memories and resistive memories.

1.2 Dissertation Overview

In Chapter 2, we study coding schemes for the channel model of memory with stuck-at defects

in [37]. Afterwards, we formulate the redundancy allocation problem for memory suffering from

permanent stuck-at defects and transient errors (erasures or random errors). The coding schemes

for memory with permanent defects as well as transient errors have two parts of redundancy: 1)

redundancy to deal with permanent defects and 2) redundancy for transient errors. Hence, we

investigate the optimum way to allocate redundancy. The objective is to find an optimal allocation

between these two parts of redundancy in order to minimize the probability of decoding failure.

For an efficient method of finding optimal redundancy allocation, we derive and estimate and an

upper bound of decoding failure.

Next, we study the relation between binary memory with stuck-at defects (i.e., binary defect

channel (BDC)), binary erasure channel (BEC), binary erasure quantization (BEQ), and write-

once memory (WOM). We point out the duality between BDC and BEC, which can be connected

to the relation between locally repairable codes (LRC) in distributed storage systems and our

proposed locally rewritable codes (LWC) for resistive memories in Chapter 4.

Chapter 2 contains a summary of the material in the following papers:

• Yongjune Kim and B. V. K. Vijaya Kumar, “Coding for memory with stuck-at defects,” in

6



Proc. IEEE International Conference on Communications (ICC), Jun. 2013.

• Yongjune Kim and B. V. K. Vijaya Kumar, “Redundancy allocation of partitioned linear

block codes,” in Proc. IEEE International Symposium on Information Theory (ISIT), Jul.

2013.

• Yongjune Kim and B. V. K. Vijaya Kumar, “Duality between erasures and defects,” in

Proc. Information Theory and Applications (ITA) Workshop, Feb. 2016.

• Yongjune Kim and B. V. K. Vijaya Kumar, “Redundancy allocation in finite-length parti-

tioned linear block codes for nonvolatile memories,” submitted.

The contributions of Chapter 2 to the study of coding techniques for memory with stuck-at

defects are as follows:

• Formulating the redundancy allocation problem for memory suffering from permanent

stuck-at defects and transient errors.

• Deriving the upper bound on the probability of decoding failure and proposing techniques

to determine the optimal redundancy allocation based on this upper bound.

• Investigating the relations between binary erasure channel (BEC), memory with stuck-at

defects, binary erasure quantization (BEQ), and write-once memory (WOM).

In Chapter 3, we explore coding problems with side information for 2D planar flash memory

and 3D vertical flash memory. For 2D planar flash memories, the encoder obtains the side in-

formation of ICI and tries to combat the ICI. We argue that the 2D planar flash memory channel

with ICI can be viewed as similar to Costa’s writing on dirty paper (dirty paper coding) in [36].

We first explain why flash memories are dirty due to ICI. We then show that dirty flash memory

can be mapped into memory with stuck-at defects of [37] due to the unique asymmetry property

of flash memory between write and erase operations. After this mapping, we can apply coding

for memory with stuck-at defects to combat ICI in 2D planar flash memories. It is interesting that

the unique property of flash memory bridges writing on dirty paper and memory with stuck-at

defects.
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Next, we propose a coding scheme for 3D vertical flash memory. Our coding scheme aims to

compensate the effect of fast detrapping by using intentional ICI. The basic idea comes from the

observation that ICI increases the threshold voltage of a cell whereas fast detrapping decreases

the threshold voltage of corresponding cell. In order to properly harness the intentional ICI, we

formulate the problem of controlling the intentional ICI into coding for memory with stuck-at

defects.

We cast both problems of combating and harnessing the ICI of flash memories as coding for

memory with stuck-at defects based on the unique properties of flash memories. Thus, we rely

on channel coding with side information about defects as a unified solution for both 2D planar

and 3D vertical flash memories. This side information of defects identifies and targets the highly

interfered cells of 2D planar flash memory and 3D vertical flash memory cells suffering from

significant charge loss due to fast detrapping. In addition, we extend the proposed schemes to

MLC flash memories by taking into account the multi-page architecture.

Chapter 3 contains a summary of the material in the following papers:

• Yongjune Kim and B. V. K. Vijaya Kumar, “Writing on dirty flash memory,” in Proc. 52nd

Annual Allerton Conference on Communication, Control, and Computing, Oct. 2014.

• Yongjune Kim, Robert Mateescu, Seung-Hwan Song, Zvonimir Bandic, and B. V. K. Vi-

jaya Kumar, “Coding scheme for 3D vertical flash memory,” in Proc. IEEE International

Conference on Communications (ICC), Jun. 2015.

• Yongjune Kim, Euiseok Hwang, Robert Mateescu, Seung-Hwan Song, Zvonimir Bandic,

and B. V. K. Vijaya Kumar, “Writing on dirty flash memory: combating and harnessing

inter-cell interference via coding with side information,” submitted.

The contributions of Chapter 3 to the study of coding schemes for flash memories are as

follows:

• Proposing a coding scheme that combats the ICI in 2D planar flash memories.

• Developing a coding scheme that harnesses the intentional ICI to reduce the effect of fast

8



detrapping in 3D vertical flash memories.

• Based on the unique property of asymmetry between write and erase operations of flash

memory, bridging the well-known Gelfand-Pinsker problems: writing on dirty paper and

memory with stuck-at defects.

In Chapter 4, we propose locally rewritable codes (LWC)1 to improve write endurance and

power consumption of resistive memories. Inspired by locally repairable codes (LRC) recently

introduced for distributed storage systems, we define a novel parameter of rewriting locality,

which can be connected to repair locality of LRC. As small values of repair locality of LRC

enable fast repair in distributed storage systems, small values of rewriting locality of LWC are

able to reduce the problems of write endurance and write power consumption.

We show how a small value of rewriting locality can improve write endurance and power

consumption by deriving the upper bounds on writing cost. Also, we point out the dual relation

of LRC and LWC, which indicates that existing construction methods of LRC can be applied to

construct LWC. Finally, we investigate the construction of LWC with error correcting capability

for random errors.

Chapter 4 contains a summary of the material in the following papers:

• Yongjune Kim, Abhishek A. Sharma, Robert Mateescu, Seung-Hwan Song, Zvonimir Z.

Bandic, James A. Bain, and B. V. K. Vijaya Kumar, “Locally rewritable codes for resis-

tive memories,” in Proc. IEEE International Conference on Communications (ICC), May

2016. (Best Paper Award)

• Yongjune Kim, Abhishek A. Sharma, Robert Mateescu, Seung-Hwan Song, Zvonimir Z.

Bandic, James A. Bain, and B. V. K. Vijaya Kumar, “Locally rewritable codes for resistive

memories,” submitted.

The contributions of Chapter 4 to the study of coding schemes for resistive memories are as

follows:

1LWC instead of LRC is used as the acronym of locally rewritable codes so as to distinguish them from locally
repairable codes (LRC).
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• Proposing locally rewritable codes (LWC) for resistive memories.

• Defining a novel parameter of rewriting locality and showing that a small value of rewrit-

ing locality of LWC is able to reduce the problems of write endurance and write power

consumption.

• Showing the relation between LWC and locally repairable codes (LRC), which indicates

that existing LRC construction methods can be applied to construct LWC.

1.3 Notation

An alphabetQ of size q is defined as the set of integers modulo q such thatQ = {0, 1, . . . , q − 1}.

We use parentheses to construct column vectors from comma separated lists. For an n-tuple

column vector x ∈ Qn, we have x = (x1, . . . , xn) = [x1 . . . xn]T where superscript T denotes

transpose. Note that xi represents the i-th element of x.

We use the following notation:

1. For integers i and j such that i < j, [i : j] = {i, i+ 1, . . . , j};

2. For an integer n, [n] = [1 : n] = {1, 2, . . . , n};

3. For a vector x and a set J = {i1, . . . , ij} ⊆ [n], xJ =
(
xi1 , . . . , xij

)
;

4. For a vector x and integers i and j such that i < j, x[i:j] = (xi, xi+1, . . . , xj) and x\i =

x[n]\i = (x1, . . . , xi−1, xi+1, . . . , xn);

5. For a binary vector x ∈ Fn2 , x denotes the bit-wise complement of x;

6. 0n and 1n denote the n-tuple all-zero vector and all-one vector, respectively (i.e., 1n = 0n);

7. 0m,n and 1m,n denote the m× n all-zero matrix and all-one matrix, respectively;

8. For a vector x, supp(x) denotes the support of x, i.e., supp(x) = {i : xi 6= 0};

9. ‖x‖ and ‖x‖0 denote the `0-norm of x (i.e., Hamming weight) and ‖x‖0 = |supp(x)|;

10. ‖x‖1 denotes the `1-norm of x and ‖x‖1 =
∑n

i=1 |xi|;
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11. Fq denotes the finite field with q elements;

12. Fnq denotes the set of all n-tuple vectors over Fq and Fm×nq the denotes the set of all m× n

matrices over Fq;

13. W is a bijective functionW : Fq → Q such thatW(c) = x for c ∈ Fq and x ∈ Q;

14. For c ∈ Fnq and x ∈ Qn,W(c) = x representsW(ci) = xi for all i ∈ [n].
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Chapter 2

Coding for Memory with Stuck-at Defects

2.1 Introduction

In this chapter, we focus on the model of memory with stuck-at defects, which is a notable

example of coding with side information at the encoder. This model can be an appropriate

channel model for flash memories and resistive memories. For flash memories, we will show

that the problems of combating and harnessing inter-cell interference (ICI) can be cast as coding

for memory with stuck-at defects. The memory with stuck-at defects is also a proper model

for resistive memories because a heavily cycled (i.e., rewritten) resistive memory cells can be

regarded as stuck-at defects.

The channel model of memory with defective cells (i.e., stuck-at defects) was introduced by

Kuznetsov and Tsybakov in 1974 [37]. As shown in Fig. 2.1, this channel model has a channel

state S ∈ {0, 1, λ}, which is called defect information. The state S = 0 corresponds to a stuck-at

0 defect that always outputs a 0 independent of its input value, the state S = 1 corresponds to a

stuck-at 1 defect that always outputs a 1, and the state S = λ corresponds to a normal cell that

outputs the same value as its input. The probabilities of 0, 1, λ states are β/2, β/2 (assuming a

symmetric defect probability), and 1 − β, respectively [34, 37]. We call this channel model the

binary defect channel (BDC).
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Figure 2.1: Binary defect channel (BDC).

The capacity of the BDC is 1 − β when both the encoder and the decoder know the defect

information. If the decoder is aware of the defect locations in an array of memory cells, then

the defects can be treated as erasures so that the capacity is 1 − β [34, 38]. On the other hand,

Kuznetsov and Tsybakov investigated the model where the encoder knows the channel state

information (i.e., locations and stuck-at values of defects) and the decoder does not have any

information of defects [37]. It was shown that the capacity is also 1 − β even when only the

encoder knows the defect information [37, 38]. Thus, the capacity of the BDC is given by

CBDC = 1− β. (2.1)

A practical coding scheme for the BDC is additive encoding which masks defects by adding

a carefully selected binary vector [37, 39]. The goal of masking defects is to make a codeword

whose values at the locations of defects match the stuck-at values of corresponding defects.

It was shown in [40] that the capacity can be achieved by an optimal encoding scheme with

computational complexityO (2n). In [41], Dumer showed that the capacity can be achieved with

encoding complexity O (n3). In addition, capacity-achieving codes with encoding complexity

O
(
n log2

2 n
)

were proposed [41].
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In regards to the explicit code constructions, it was shown in [40] that cyclic codes such as

Bose-Chaudhuri-Hocquenghem (BCH) codes can be used for the BDC. Recently, Mahdavifar

and Vardy [42] proposed the explicit code constructions based on polar codes and low-density

parity check (LDPC) codes.

Theoretically, channel coding for memory with stuck-at defects can be explained by Gelfand-

Pinsker problem. The Gelfand-Pinsker problem assumes that only the encoder knows non-

causally the channel state information [32, 34]. It is worth mentioning that another notable

example of Gelfand-Pinsker problem is writing on dirty paper (dirty paper coding) [34, 36].

Also, the BDC is closely connected to write once memories (WOM), write unidirectional mem-

ories (WUM), and some other constrained memories [43, 44].

Recently, the BDC has received renewed attention as a possible channel model for nonvolatile

memories such as resistive memories and flash memories [45, 46, 47, 48, 49]. A heavily cycled

resistive memory cell’s state can not be modulated any more due to unique physical phenomena

in resistive memories [12, 13, 14]. Hence, a cell suffering from write endurance problem can be

regarded as a stuck-at defect from the perspective of storing data. In flash memories, it has been

shown that highly interfered cells can be regarded as stuck-at defects because of the asymmetry

between write and erase operations [50].

In [51], the binary defect and symmetric channel (BDSC) model was considered where mem-

ory cells suffer from both stuck-at defects and random errors. This channel model is more re-

alistic since random errors happen in resistive memory cells because of write noise, resistance

drift and unwanted heating [12, 14]. Similarly, flash memory suffers from random errors due to

charge loss, write noise, and random telegraph noise [4].

The channel coding scheme for the BDSC was first explored by Tsybakov [51]. Subse-

quently, Heegard [40] proposed the partitioned linear block codes (PLBC) that efficiently incor-

porate the defect information in the encoding process and are capable of correcting both stuck-at

errors (due to defects) and random errors.

The PLBC require two generator matrices. One of them is for masking stuck-at defects and
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the other generator matrix is for correcting transient errors. Due to these two generator matrices,

we can separate the redundancy for masking defects from the redundancy for correcting random

errors [40]. We assume that the number of redundant bits for masking defects and correcting

random errors are l and r, respectively. Hence, the total redundancy is l+ r = n− k (where n is

the codeword size and k is the message size). Note that the code rate isR = k/n = (n−l−r)/n.

The fact that the redundancy can be divided into two parts leads to the problem of redundancy

allocation. The objective is to find, for a fixed total redundancy n − k, optimal l and r that

minimize the probability of recovery failure. This redundancy allocation problem can be stated

as follows:

(l∗, r∗) = argmin
(l,r)

P (m̂ 6= m)

subject to l + r = n− k, 0 ≤ l ≤ n− k, 0 ≤ r ≤ n− k
(2.2)

where m and m̂ denote a message and its estimate (recovered message), respectively. P (m̂ 6=

m) denotes the probability of recovery failure.

Not surprisingly, the optimal redundancy allocation (l∗, r∗) depends on the channel. If a

channel exhibits only stuck-at defects, we should allot all redundancy to masking stuck-at de-

fects, i.e., (l∗, r∗) = (n − k, 0). It is also expected that the optimal redundancy allocation for a

channel with only random errors is (l∗, r∗) = (0, n− k).

In this dissertation, the optimal redundancy allocation for channels that exhibit both stuck-at

defects and transient errors (erasures or random errors) will be investigated. First, we investigate

the redundancy allocation of the binary defect and erasure channel (BDEC) where transient errors

are modeled by erasures. We derive the upper bound on the probability of recovery failure. Based

on this upper bound, we can obtain the estimate (l̂, r̂) for the optimal (l∗, r∗).

For the BDSC, it was shown [40] that PLBC can achieve the channel capacity by the min-

imum distance encoding (MDE) for masking stuck-at defects and the maximum a posteriori

(MAP) decoding for correcting random errors. Since the computational complexities of MDE
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and MAP decoding are exponential, we propose a two-step encoding for masking stuck-at de-

fects and consider the standard bounded distance decoding for correcting random errors whose

computational complexities are polynomial.

Next, we derive the estimate of the probability of recovery failure for the PLBC with the

two-step encoding and the bounded distance decoding. Using this estimate of the probabil-

ity of recovery failure, we can obtain the estimate (l̂, r̂) for the optimal redundancy allocation

(l∗, r∗). Numerical results show that the estimates (l̂, r̂) of both the BDEC and the BDSC are

well matched with the optimal redundancy allocations.

Next, we study the duality of erasures and defects [52]. This duality can be observed in

channel properties, capacities, capacity-achieving schemes, and their failure probability. In [42],

it was shown that we can construct capacity-achieving codes for the BDC based on state of the

art codes which achieve CBEC = 1 − α. Recently, it was proved that Reed-Muller (RM) codes

achieve CBEC under MAP [53]. Based on the duality between the BEC and the BDC, we show

that RM codes can achieve CBDC with O(n3) complexity.

Also, we extend this duality to the other models such as binary erasure quantization (BEQ)

problems [54], and write once memories (WOM) [55]. We review the related literature and

describe the relations between these models. From these relations, we can claim that CBDC can

be achieved with O(n log n) encoding complexity which is better than the best known result

in [41], i.e., O(n log2 n) encoding complexity.

2.2 Background for Coding for Defect Channel Model

2.2.1 Defect Channel Model

We summarize the defect channel model (i.e., memory with stuck-at defect) in [37, 40]. Define

a variable λ that indicates whether the memory cell is defective or not and Q̃ = Q ∪ {λ}. The

channel model of memory with defective cells (i.e., stuck-at defects) in Fig. 2.1 can be described
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as follows.

Y = X ◦ S (2.3)

where “◦” denote the operator ◦ : Q× Q̃→ Q as in [40].

x ◦ s =


x, if s = λ;

s, if s 6= λ.

(2.4)

By using the operator ◦, an n-cell memory with defects is modeled by

y = x ◦ s (2.5)

where x,y ∈ Qn are the channel input and output vectors. Also, the channel state vector s ∈ Q̃n

represents the defect information in the n-cell memory. Note that ◦ is the vector component-wise

operator.

If si = λ, this i-th cell is normal. If the i-th cell is defective (i.e., si 6= λ), its output yi is

stuck-at si independent of the input xi. So, the i-th cell is called stuck-at defect whose stuck-at

value is si (i.e., stuck-at si defect). The probabilities of stuck-at defects and normal cells are

given by

P (S = s) =


1− β, if s = λ;

βs, if s 6= λ

(2.6)

where the probability of stuck-at defects is β =
∑q−1

s=0 βs.

Definition 2.1 (Location and Number of Defects) The locations of defects U ⊆ [n] are defined

as U = {i ∈ [n] | si 6= λ}. Also, the number of defects u is given by u = |U|.

Definition 2.2 (Number of Stuck-at Errors) The number of stuck-at errors (i.e., the number of

errors caused by stuck-at defects) is given as ε = ‖x ◦ s− x‖0.

The encoder transforms a message m ∈ Fkq into a codeword c ∈ Fnq . The channel input
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x ∈ Qn is obtained by using a write function W , i.e., x = W(c). From the channel output

y ∈ Qn of (2.5), the received word r ∈ Fnq is obtained by

r = R(y) = R(x ◦ s) (2.7)

whereR =W−1. From r, the decoder outputs the estimate of message m̂ ∈ Fkq .

Now we consider the channel models with both permanent stuck-at defects and transient

errors. If transient errors come from erasure, X ◦ S will be the channel input of the erasure

channel with the erasure probability α.

If the transient errors are random errors, the channel model can be given by

Y = X ◦ S + Z (2.8)

where X ◦ S comes from (2.3) and Z ∈ Q denotes random errors.

An n-cell memory with defects and random errors is modeled by

y = x ◦ s + z (2.9)

where x◦s comes from (2.5) and z ∈ Qn denotes the vector of random errors. Then, the received

word r̃ ∈ Fnq can be given by

r̃ = R(y) = R(x ◦ s + z) = r + e (2.10)

where r = R(x◦s) comes from (2.7) and e ∈ Fnq denotes the random error vector due to z ∈ Qn.

By (2.7) and (2.10), e is given by e = r̃− r = R(x ◦ s + z)−R(x ◦ s).

For binary memory, X ◦ S is the input to the binary symmetric channel (BSC) with the
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crossover probability p. Hence, Z represents the random error whose probability is given by

P (Z = z) =


1− p, z = 0;

p, z = 1.

(2.11)

If stuck-at defects do not suffer from transient errors, the capacity can be easily determined.

Theorem 2.3 [38] If defective cells (i.e., stuck-at defects) do not suffer from transient errors,

then the capacity is given by

C̃max = C̃enc = P (S = λ)C̃ (2.12)

where C̃ is the capacity of the discrete memoryless channel (DMC) with P (Y | X) = P (Y |

X,S = λ). The superscript ‘max’ in (2.12) represents the capacity when the defect information

is fully known to both the encoder and decoder. Also, the superscript ‘enc’ denotes the capacity

when only the encoder knows the defect information. Since C̃enc is the same as C̃max, we can

omit the superscript if the stuck-at defects do not suffer from transient errors.

2.2.2 Capacity of Binary Memory with Stuck-at Defects

Let C̃BDEC denote the capacity of the binary memory channel when only the normal cells can be

erased. Similarly, let C̃BDSC denote the capacity of the binary memory channel when only the

normal cells suffer from random errors. By Theorem 2.3, it is clear that

C̃BDEC = (1− β)(1− α), (2.13)

C̃BDSC = (1− β)(1− h(p)) (2.14)

where h (x) = −x log2 x− (1− x) log2 (1− x).

If neither the encoder nor the decoder knows the defect information, the capacity is given
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by [38]

C̃min
BDSC = 1− h

(
(1− β)p+

β

2

)
. (2.15)

For the case where both the stuck-at defects and the normal cells suffer from transient errors,

it is difficult to derive closed-form expressions for Cmax
BDSC and Cenc

BDSC. Instead, these capacities

can be evaluated numerically [38].

For the BDEC, we can derive Cmax
BDEC and Cenc

BDEC due to the simplicity of the channel model. If

both the encoder and decoder know the defect information, this channel is equivalent to the BEC

with the erasure probability of α + β − αβ. Hence,

Cmax
BDEC = 1− α− β + αβ = (1− β)(1− α) (2.16)

which is the same as in (2.13). The capacity Cenc
BDEC is derived as follows.

Proposition 2.4 If only the encoder knows the defect information, the capacity of the BDEC is

given by

Cenc
BDEC = 1− α− β (2.17)

which shows that Cenc
BDEC < Cmax

BDEC = C̃BDEC.

Proof: The proof is given in Appendix 2.6.

Although Cenc
BDEC < Cmax

BDEC = C̃BDEC, the difference between Cenc
BDEC and C̃BDEC is only αβ which

is much smaller than α or β for α, β � 1.

For the BDSC, the closed-form expressions forCmax
BDSC andCenc

BDSC are not known. In [40], only

a non-closed-form expression for Cenc
BDSC was derived. Although we cannot obtain a closed-form

expression for CBDSC, we can claim the following bound.

Proposition 2.5 If only the encoder knows the defect information, the capacity of the BDSC is

bounded by

C lower
BDEC ≤ Cenc

BDSC ≤ Cupper
BDSC (2.18)
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where

C lower
BDEC = 1− β − h(p), (2.19)

Cupper
BDEC = C̃BDSC = (1− β)(1− h(p)). (2.20)

Proof: The proof is given in Appendix 2.7

From (2.19) and (2.20), we can see that the difference between the upper bound and lower bound

is only βh(p). For β, p� 1, βh(p) is much smaller than β and h(p).

Proposition 2.6 If neither the encoder nor the decoder knows the defect information, the capac-

ity is given by

Cmin
BDSC = C̃min

BDSC = 1− h(p̃) (2.21)

where C̃min
BDSC is given by (2.15), i.e., the capacity of the BSC with the crossover probability of

p̃ = (1− β)p+
β

2
. (2.22)

Proof: Without the defect information, the BDSC is equivalent to the BSC with the

crossover probability p̃. This is true for both cases: random errors happen in 1) only normal

cells and 2) both stuck-at defects and normal cells.

2.2.3 Additive Encoding

In the defect channel model, it is assumed that the encoder knows the channel state vector s

before writing data to memory [37]. A traditional coding scheme for defect channel is additive

encoding which masks defects by adding a carefully selected vector [39]. Subsequently, several

coding techniques for memory with stuck-at defects were proposed to efficiently mask stuck-at

defects [41, 42, 47, 56, 57, 58]. The goal of masking stuck-at defects is to make a codeword

whose values at the locations of defects match the stuck-at values of corresponding defects such

22



that ε = ‖x ◦ s− x‖0 = 0. The additive encoding can be described as follows.

Encoding: A message m ∈ Fkq is encoded to the following codeword:

c = (m,0n−k) + c0 = (m,0n−k) +G0p (2.23)

where c, c0 ∈ Fnq and G0 ∈ Fn×(n−k)
q . Since c0 ∈ C0 where C0 is a linear subspace such that

C0 ⊆ Fnq , G0 is the generator matrix of C0 and p ∈ Fn−kq denotes the parity for additive encoding.

For the given defect information (channel state vector) s and message m, the encoder should

choose p to mask as many stuck-at defects as possible. If ε = ‖x ◦ s− x‖0 = 0, the encoder

declares encoding success and y = x ◦ s = x (i.e., r = c).

Decoding: The decoding can be given by

m̂ = HT
0 r = HT

0 c (2.24)

where we assume that the additive encoding succeeded. m̂ represents the recovered message of

m. Note that (2.24) is equivalent to the equation of coset codes.

For the systematic codes, G0 is given by G0 =
[
RT In−k

]T where R ∈ Fk×(n−k)
q and In−k

is the (n − k)-dimensional identity matrix [40]. The parity check matrix H0 of C0 is given by

H0 = [Ik −R]T ∈ Fn×kq such that HT
0 (m,0n−k) = m and HT

0 G0 = 0k,n−k, i.e., HT
0 c0 = 0k.

The minimum distance of additive encoding is given by

d? = min
c 6=0

GT
0 c=0

‖c‖0 (2.25)

which means that any d? − 1 rows of G0 are linearly independent. Thus, additive encoding

guarantees masking up to d? − 1 stuck-at defects [39, 40].
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2.2.4 Partitioned Linear Block Codes (PLBC)

Heegard [40] proposed the partitioned linear block codes (PLBC) that efficiently incorporate the

defect information in the encoding process and are capable of correcting both stuck-at errors

(errors due to stuck-at defects) and random errors. The (n, k) PLBC consists of a pair of linear

subspaces C1 ⊂ Fnq of dimension k and C0 ⊂ Fnq of dimension l such that C1 ∩ C0 = {0}. The

PLBC requires two generator matrices. The generator matrix of C0 is aimed at masking stuck-at

defects and the generator matrix of C1 is for correcting random errors.

Due to these two generator matrices, we can separate the parity for masking defects from the

parity for correcting random errors. Since the size of total parity part is n− k and the parity size

for masking defects is l, the parity size for correcting random errors is n− k − l.

The encoding and decoding of the PLBC are as follows [40]:

Encoding: A message m ∈ Fkq is encoded to a corresponding codeword c ∈ C as follows.

c = c1 + c0 = G1m +G0p = G̃

m
p

 (2.26)

where G1 ∈ Fn×kq , and G0 ∈ Fn×lq , and G̃ = [G1 G0] ∈ Fn×(k+l)
q . Also, c1 = G1m ∈ C1 and

c0 = G0p ∈ C0. Note that p ∈ Flq is the parity (redundancy) for masking defects. Thus, the

PLBC C can be viewed as an (n, k+ l) linear block code with the generator matrix G̃ = [G1 G0].

After constructing c1 = G1m, the encoder should choose p carefully to mask as many stuck-

at defects as possible by comparing s and c1. If ε = 0, then the encoder declares encoding

success. i.e., y = x ◦ s = x and r = c.

Decoding: Receive r̃ = r + e according to (2.10). If the encoding succeeded, then the

syndrome v = H̃T r̃ = H̃T (c + e) = H̃Te where H̃ ∈ Fn×rq denotes the parity check matrix

such that H̃T G̃ = 0r,k+l. From the syndrome v, the decoder guesses the estimate of ê ∈ Fnq and

ĉ = r̃ − ê. Then m̂ = G̃T
1 ĉ where G̃1 ∈ Fn×kq denotes the message inverse matrix such that

G̃T
1G1 = Ik and G̃T

1G0 = 0k,l.
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In [40], a pair of minimum distances (d?, d̃ ) of an (n, k) PLBC are defined where

d̃ = min
G̃T

1 c 6=0

H̃T c=0

‖c‖0 (2.27)

and d? was given by (2.25). Note that d̃ is greater than or equal to the minimum distance of the

(n, k + l) linear block code with the parity check matrix H̃ [40].

In [40], partitioned cyclic codes were proposed. An (n, k) partitioned cyclic code is an (n, k)

PLBC such that C and C0 are cyclic. A partitioned cyclic code can be described by two generator

polynomials: g(x) of degree n− k − l and g0(x) of degree n− l satisfying g(x) | g0(x), i.e.,

g0(x) = g(x)q(x). (2.28)

Encoding: A message polynomial m(x) is encoded to a corresponding codeword

c(x) = m(x)g(x) + p(x)g0(x) (2.29)

where p(x) should be chosen carefully in order to mask stuck-at defects.

Decoding: Let the received polynomial be r̃(x) = r(x) + e(x). If the encoding succeeded,

then r̃(x) = c(x) + e(x). The decoder computes the syndrome polynomial v(x) = r̃(x)

mod g(x) and chooses ê(x) such that ê(x) mod g(x) = v(x). Then,

m̂(x) =
(r̃(x)− ê(x)) mod g0(x)

g(x)
(2.30)

which follows from c(x) = m(x)g(x) + p(x)g0(x) = g(x) {m(x) + p(x)q(x)} due to (2.28).

It is critical to choose the proper p during the encoding stage of PLBC. For the binary memory
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case, the MDE chooses p as follows.

p∗ = argmin
p
‖x ◦ s− x‖ = argmin

p
‖c ◦ s− c‖ (2.31)

= argmin
p

∥∥sU +GU0 p +GU1 m
∥∥

= argmin
p

∥∥GU0 p + bU
∥∥ (2.32)

where ‖x◦s−x‖ represents the number of errors due to stuck-at defects. Also, U = {i1, . . . , iu}

indicates the set of locations of stuck-at defects. We use the notation of sU = (si1 , . . . , siu)T ,

GU0 =
[
gT0,i1 , . . . ,g

T
0,iu

]T , and GU1 =
[
gT1,i1 , . . . ,g

T
1,iu

]T where g0,i and g1,i are the i-th rows of

G0 and G1 respectively. Also, note that b = G1m + s and bU = GU1 m + sU .

By solving the optimization problem in (2.32), we can minimize the number of errors due to

stuck-at defects. It was shown [40] that the capacity of the BDSC can be achieved by the MDE

and the MAP decoding.

However, the computation complexity of the MDE is impractical, i.e., O(2n). Hence, we

consider the polynomial time encoding [39]. Instead of solving the exponential complexity opti-

mization problem, we just try to solve the following linear equation.

GU0 p = bU (2.33)

Gaussian elimination or some other linear equation solution methods can be used to solve (2.33)

with O (n3) complexity. If the encoder fails to find a solution of (2.33), then encoding failure is

declared. It is clear that (2.33) has at least one solution if and only if

rank
(
GU0
)

= rank
(
GU0 | bU

)
(2.34)

where
(
GU0 | bU

)
denotes the augmented matrix. If u < d?, rank

(
GU0
)

is always u by (2.25).

Hence, (2.34) holds and at least one solution p exists. If u ≥ d?, the encoder may fail to find a
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solution of (2.33).

For convenience, we define a random variable E as follows.

E =


1, ‖c ◦ s− c‖ = 0 (encoding success)

0, ‖c ◦ s− c‖ 6= 0 (encoding failure)
(2.35)

We can observe that the probability of encoding failure P (E = 0) by solving (2.32) is the

same as P (E = 0) by solving (2.33). It is because GU0 p 6= bU if and only if ‖c ◦ s − c‖ 6= 0.

Although solving (2.33) is suboptimal in regards to the number of stuck-at errors (i.e., ‖c◦s−c‖),

CBDC can be achieved by solving (2.33) instead of (2.32), which is easily shown by using the

results of [40].

Proposition 2.7 CBDC can be achieved by solving (2.33).

Proof: Suppose that each element ofG0 is selected at random with equal probability from

{0, 1}. Then,

P (E = 0) = P (E = 0, n(β − ε) ≤ |U| ≤ n(β + ε)) + ε′

≤
n(β+ε)∑

u=n(β−ε)

P (E = 0 | |U| = u) + ε′

≤
n(β+ε)∑

u=n(β−ε)

P
(
rank

(
GU0
)
< u | |U| = u

)
+ ε′

≤ (2nε+ 1) · 2n(β+ε)

2n−k
+ ε′

= (2nε+ 1)2n(
k
n
−(1−β)+ε) + ε′ (2.36)

where we assume that n(β ± ε) are integers without loss of generality. If R = k
n
< CBDC − ε,

P (E = 0) converges to zero as n→∞.
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Figure 2.2: Capacity region of the BDEC derived in Proposition 2.14. Two points of Q1 and Q2 in the
capacity region represent the pairs of code rates

(
R1 = k

n , R0 = l
n

)
. Note that the capacity Cenc

BDEC is the
supremum of R1 = R.

2.3 Redundancy Allocation of Finite-Length PLBC

In this section, we investigate the redundancy allocation for finite-length PLBC. In order to clar-

ify the redundancy allocation problem for finite-length PLBC, we define a pair of code rates

(R1, R0) where R0 = l
n

is the code rate of C0. Also, R1 = k
n

is the code rate of C1, which is

equivalent to the actual code rateR = k
n

. For the given codeword size n, we can readily calculate

(l, r) from (R1, R0).

For the BDEC, we will derive the capacity region CBDEC in Proposition 2.14. If (R1, R0) ∈

CBDEC, then P (m̂ 6= m) converges to zero as n→∞. In Fig. 2.2, Q1 and Q2 represent two pairs

of code rates in CBDEC with the same R1 = R. Then, Q1 and Q2 have the same total redundancy

n− k = l + r whereas they have the different redundancy allocations (l, r).

Asymptotically, both Q1 and Q2 make P (m̂ 6= m) converge to zero. On the other hand,

P (m̂ 6= m) of Q1 and Q2 can be significantly different for the finite-length codes, which leads

to the need for formulating and solving the redundancy allocation problem in (2.2).

In order to choose the optimal redundancy allocation (l∗, r∗) of (2.2), we should derive the

P (m̂ 6= m) which depends on the channel parameters (i.e., β, α, p) as well as the code param-

eters (n, k, l). In the following subsection, we will derive the upper bound on encoding failure
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probability for finite-length codes, which is important for deriving the estimate of P (m̂ 6= m).

2.3.1 Upper Bound on Encoding Failure Probability

Since we focus on the redundancy allocation problem in finite-length codes, we derive the upper

bound on P (E = 0) for finite n. During the encoding stage, p is chosen by solving the linear

equation (2.33) instead of the optimization problem (2.32).

Lemma 2.8 The upper bound on the probability of encoding failure given u defects is given by

P (E = 0 | U = u) ≤ min

{∑u
w=d? B0,w

(
n−w
u−w

)(
n
u

) , 1

}
(2.37)

where the random variable U represents the number of stuck-at defects. In addition, B0,w is the

weight distribution of C⊥0 (i.e., the dual code of C0).

Proof: The proof is given in Appendix 2.8.

Lemma 2.8 supports that P (E = 0 | U = u) = 0 for u < d?. The following Lemma states

that P (E = 0 | U = u) can be obtained exactly for d? ≤ u ≤ d? +
⌊
d?−1

2

⌋
where bxc is the

largest integer not greater than x.

Lemma 2.9 For u ≤ d? +
⌊
d?−1

2

⌋
, P (E = 0 | U = u) is given by

P (E = 0 | U = u) =
1

2
·
∑u

w=d? B0,w

(
n−w
u−w

)(
n
u

) . (2.38)

Proof: The proof is given in Appendix 2.9.

From the definition of d? in (2.25), Lemma 2.8, and Lemma 2.9, we can state the following

theorem.
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Theorem 2.10 P (E = 0 | U = u) is given by

P (E = 0 | U = u) =



0, for u < d? (2.39)

1

2
·
∑u

w=d? B0,w

(
n−w
u−w

)(
n
u

) , for d? ≤ u ≤ d? + t?(2.40)

≤ min

{∑u
w=d? B0,w

(
n−w
u−w

)(
n
u

) , 1

}
, for u > d? + t?. (2.41)

where t? =
⌊
d?−1

2

⌋
.

We compare our upper bounds and simulation results assuming the the number of defects u

is given. The [n = 31, k, l] PBCH codes are considered and the weight distributions B0,w are

calculated using the MacWilliams identity. Fig. 2.3 shows that the upper bounds of (2.41) are

close to the simulation results for P (E = 0 | U = u). In addition, the calculated values of (2.40)

are well matched with the simulation results. Fig. 2.3 shows that the upper bounds approach

P (E = 0 | U = u) and meet P (E = 0 | U = u) as the code rate decreases.

From the bound on P (E = 0 | U = u) in Theorem 2.10, we derive the following upper

bound.

Corollary 2.11 The upper bound on the probability of encoding failure P (E = 0) is given by

P (E = 0) ≤
n∑

u=d?

βu (1− β)n−u
u∑

w=d?

B0,w

(
n− w
u− w

)
. (2.42)

Proof: The proof is straightforward.

P (E = 0) =
n∑

u=d?

P (U = u)P (E = 0 | U = u)

≤
n∑

u=d?

(
n

u

)
βu(1− β)n−u min

{∑u
w=d? B0,w

(
n−w
u−w

)(
n
u

) , 1

}

≤
n∑

u=d?

βu (1− β)n−u
u∑

w=d?

B0,w

(
n− w
u− w

)

where P (U = u) =
(
n
n

)
βu(1− β)n−u.

30



0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Code rate

P
(e

n
c
o
d
in

g
 f
a
ilu

re
 |
 U

=
u
)

 

 

Simulation

Upper bound

Calculated value

(a) u = 10

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Code rate

P
(e

n
c
o
d
in

g
 f
a
ilu

re
 |
 U

=
u
)

 

 

Simulation

Upper bound

Calculated value

(b) u = 12

Figure 2.3: Comparison of simulation results, upper bounds by (2.41), and calculated values by (2.40) for
P (E = 0 | U = u). [n = 31, k, l] PBCH codes are used. The code rate is R = k/n.

Since it is intractable to compute B0,w for large n, we consider the following binomial ap-

proximation.

B0,w
∼= 2−l

(
n

w

)
(2.43)

For many codes including random linear codes (each element of generator matrix is chosen

uniformly at random from {0, 1}) and BCH codes, it is known that the weight distribution is well
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approximated by the binomial distribution [59].

Corollary 2.12 If the weight distribution B0,w follows the binomial approximation, the upper

bound on the probability of encoding failure P (E = 0) is given by

P (E = 0) ≤ 2−l (1 + β)n , (2.44)

log2 P (E = 0) ≤ n {R− (1− log2(1 + β))} . (2.45)

Proof: From (2.42) and (2.43), the upper bound on P (E = 0) can be derived as follows.

P (E = 0) ≤
n∑

u=d?

βu (1− β)n−u
u∑

w=d?

B0,w

(
n− w
u− w

)
(2.46)

= 2−l
n∑

u=d?

βu (1− β)n−u
u∑

w=d?

(
u

w

)(
n

u

)
(2.47)

≤ 2−l
n∑
u=0

(
n

u

)
(2β)u (1− β)n−u (2.48)

= 2−l (1 + β)n (2.49)

where (2.47) follows from
(
n
w

)(
n−w
u−w

)
=
(
u
w

)(
n
u

)
. Also, (2.48) follows from the binomial theorem∑u

w=0

(
u
w

)
= 2u. (2.45) can be obtained by taking the logarithm.

Fig. 2.4 shows that the upper bound is very close to the simulation results when the probabil-

ity of encoding failure is low. In regards to the simulation results, we used PBCH codes for the

BDC with β = 0.1. The plotted upper bounds are based on the binomial approximation. In spite

of this approximation, our upper bound is very close to the simulation results.

Remark 2.13 (2.44) shows that the probability of encoding failure decreases as l increases,

whereas the probability of encoding failure increases as β increases. For infinite-length codes,

this upper bound is not tight since 1− log2(1 +β) of (2.45) is less than CBDC = 1−β. However,

this upper bound is tight for finite-length codes as shown in Fig. 2.4. Moreover, the upper bound

in (2.45) is the linear function of R where n is the slope and 1− log2(1 + β) is the R-intercept,
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Figure 2.4: Comparison of simulation results and upper bounds in (2.44) for the probability of encoding
failure P (E = 0). We used PBCH codes for the BDC with probability of defect β = 0.1.

which explicitly shows that longer codes improve the probability of encoding failure.

2.3.2 Redundancy Allocation: BDEC

For the BDEC, the encoder should try to mask stuck-at defects and the decoder should correct

erasures. The encoding process of the BDEC is the same as the encoding of PLBC. Only the

decoding will be modified as follows.

Decoding (BDEC): The MAP decoding is performed by solving the following linear equa-

tion.

G̃V

m̂
p̂

 = yV (2.50)

where V = {j1, · · · , jv} indicates the locations of v unerased bits. We use the notation of

yV = (yj1 , · · · , yjv)T and G̃V =
[
g̃Tj1 , · · · , g̃

T
jv

]T where g̃j is the j-th row of G̃. By solving

(2.50), we can obtain estimates of the message m and redundancy p, i.e., m̂ and p̂.

We consider the MAP decoding in order to derive the upper bound on P (m̂ 6= m). The

MAP decoding can be accomplished by solving the linear equation in (2.50), whose complexity
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is O (n3).

Proposition 2.14 If a pair of code rates (R0, R1) satisfy the following conditions, then the prob-

ability of recovery failure P (m̂ 6= m) approaches zero as n→∞.

R0 > β, R1 +R0 < 1− α (2.51)

where α is the probability of erasure and β is the probability of defect for the BDEC.

Proof: We show that P (m̂ 6= m) approaches zero with n if (R0, R1) satisfies (2.51). We

can claim that P (m̂ 6= m) = P (E = 0) + P (E = 1, D = 0) where the random variable D

takes on two values as follows.

D =


1, decoding success

0, decoding failure
(2.52)

From (2.36), we can claim that P (E = 0) ≤ n(β + ε)2−n(
l
n
−β−ε) + ε′. Hence, P (E = 0)

converges to zero if R0 = l
n
> β. If the additive encoding succeeds (i.e., E = 1), then the

corresponding channel is equivalent to the BEC with the erasure probability α. It is because all

the stuck-at defects are masked. Note that the code rate of G̃ of (2.50) is k+l
n

= R0 + R1. Thus,

R0 +R1 < 1− α.

Fig. 2.2 represents the capacity region by Proposition 2.14. The supremum of R1 in this

capacity region is 1 − α − β which is equal to Cenc
BDEC of (2.17). From (2.51), we can obtain the

following conditions for (l, r) which achieve the capacity for infinite n.

l > nβ, r > nα (2.53)

As explained earlier, these asymptotic results cannot be directly used to choose the optimal re-

dundancy allocation (l∗, r∗) of (2.2) for finite-length codes. We emphasize that the optimal re-
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Table 2.1: All Possible Redundancy Allocation Candidates of [n = 1023, k = 923, l] PBCH Codes

Code l r d? d̃ Notes

0 0 100 0 21 Only correcting transient errors

1 10 90 3 19

2 20 80 5 17

3 30 70 7 15

4 40 60 9 13

5 50 50 11 11

6 60 40 13 9

7 70 30 15 7

8 80 20 17 5

9 90 10 19 3

10 100 0 21 0 Only masking stuck-at defects

dundancy allocation (l∗, r∗) is equivalent to finding the optimal (i.e., minimizing the probability

of recovery error) point in the capacity region.

In order to solve the optimization problem of (2.2), we need a closed-form expression for

P (m̂ 6= m). Unfortunately, it is difficult to obtain the exact expression of P (m̂ 6= m). Instead,

we will consider an estimate (l̂, r̂) which minimizes the upper bound on P (m̂ 6= m). The upper

bound on P (m̂ 6= m) for finite-length codes is stated as follows.

Theorem 2.15 The upper bound on P (m̂ 6= m) of the BDEC is given by

P (m̂ 6= m) ≤
n∑

u=d?

βu (1− β)n−u
u∑

w=d?

B0,w

(
n− w
u− w

)
+

n∑
e=d̃

αe (1− α)n−e
e∑

w=d̃

Aw

(
n− w
e− w

)
. (2.54)

where Aw is the weight distribution of C. If Aw and B0,w follow the binomial distribution,

P (m̂ 6= m) ≤ 2−l (1 + β)n + 2−r (1 + α)n (2.55)
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Proof: The proof is given in Appendix 2.10.

From these upper bounds on P (m̂ 6= m), we can modify (2.2) for the BDEC as follows.

(l̂, r̂) = argmin
(l,r)

Upper bound on P (m̂ 6= m)

subject to l + r = n− k, 0 ≤ l ≤ n− k, 0 ≤ r ≤ n− k
(2.56)

If the code parameters (n, k, l, d?, d̃) and the channel parameters (α, β) are given, the solution

(l̂, r̂) of (2.56) can be obtained. To illustrate this, we consider [n = 1023, k = 923, l] PBCH

codes. All possible redundancy allocation candidates of PBCH codes are listed in Table 2.1.

Since l and r are multiples of 10 (i.e., the degree of the Galois field of [n = 1023, k] BCH

codes), there are only 11 redundancy allocation candidates. Hence, we can readily obtain the

(l̂, r̂) that minimizes the objective function of (2.56).

In addition, the objective function is convex if we treat l and r as real values, even though we

know that they are non-negative integers less than or equal to n− k. We can derive the solution

(l̃, r̃) of (2.56) satisfying Karush-Kuhn-Tucker (KKT) conditions.

Corollary 2.16 Treating l and r as real values, the solution of (2.56) satisfying KKT conditions

is given by

(l̃, r̃) =


(0, n− k), for 1+α

1+β
> 21−R (2.57)(

ľ, ř
)
, for 2−(1−R) ≤ 1+α

1+β
≤ 21−R (2.58)

(n− k, 0), for 1+α
1+β

< 2−(1−R) (2.59)

where
(
ľ, ř
)

is given by

ľ =
1

2

{
n

(
1− log2

1 + α

1 + β

)
− k
}
, (2.60)

ř =
1

2

{
n

(
1 + log2

1 + α

1 + β

)
− k
}
. (2.61)

Proof: The proof is given in Appendix 2.11.
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Table 2.2: BDEC with the Same CBDEC = 0.96

Channel α β Notes

1 0.040 0 BEC

2 0.035 0.005

3 0.025 0.015

4 0.020 0.020

5 0.015 0.025

6 0.005 0.035

7 0 0.040 BDC

If α is much larger than β such that 1+α
1+β

> 21−R for all possible (l, r), then (2.57) shows that

we should allot all redundancy for correcting erasures to minimize the upper bound of (2.56). If

β is much larger than α such that 1+α
1+β

< 2−(1−R) for all possible (l, r), then (2.59) shows that

we should allot all redundancy for masking stuck-at defects to minimize the upper bound. For

other α and β, we should allot the redundancy (l, r) such that 2−l (1 + β)n = 2−r (1 + α)n to

minimize the upper bound, which are satisfied by (2.60) and (2.61).

Remark 2.17 If only the normal cells can be erased, the corresponding channel’s erasure prob-

ability is α̃ = (1 − β)α. Hence the capacity will be 1 − α̃ − β = (1 − β)(1 − α) which is the

same as (2.13). The equivalent results of Proposition 2.14, Theorem 2.15, and Corollary 2.16

can be obtained by replacing α by α̃.

In order to compare the optimal redundancy and the estimated redundancy allocation based

on the derived upper bound, we consider several channels shown in Table 2.2 whose capacities

are all equal, i.e., Cenc
BDEC = 0.96. For these channels, we compare the performance of PBCH

codes in Table 2.1.

Fig. 2.5 shows the simulation results for the channels in Table 2.2. The simulation results of

channel 1 (BEC) and channel 7 (BDC) are omitted because their optimal redundancy allocations

are obvious. The optimal redundancy allocation for channel 1 (BEC) is (l∗, r∗) = (0, 100). The

more stuck-at defects a channel has, the larger l is expected to be for the optimal redundancy
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Figure 2.5: Comparison of simulation results (simul.) and upper bounds (UB) of the probability of recov-
ery failure P (m̂ 6= m) of BDEC channels in Table 2.2.

allocation. Eventually, the optimal redundancy allocation for channel 7 (BDC) will be (l∗, r∗) =

(100, 0). The optimal (l∗, r∗) can be obtained from Monte-Carlo simulation results in Fig. 2.5,

which are presented in the second column of Table 2.5.

We can readily obtain the (l̂, r̂) that minimizes the upper bounds in Fig. 2.5. The estimates

of redundancy allocation (l̂, r̂) are shown in the third column of Table 2.3 which shows that

(l̂, r̂) obtained using the upper bounds match very well the (l∗, r∗) determined by Monte-Carlo

simulations.

Next, (l̃, r̃) can be calculated from (2.57)–(2.61) by treating l and r as real values. Resulting

(l̃, r̃) values are shown in the last column of Table 2.3. Note that (l̂, r̂) is the nearest one from

(l̃, r̃) considering the possible redundancy allocation candidates in Table 2.1.

2.3.3 Redundancy Allocation: BDSC

A similar approach to redundancy allocation of the BDEC will be used for the BDSC. Instead of

minimizing the upper bound on P (m̂ 6= m), we will derive an estimate of P (m̂ 6= m) for the

BDSC and the redundancy allocation (l, r) that minimizes this estimate of P (m̂ 6= m) will be

used.

For the BDC and the BDEC, the number of unmasked defects after encoding failure (i.e.,

38



Table 2.3: Optimal Redundancy Allocations (l∗, r∗) and Their Estimates (l̂, r̂) and (l̃, r̃) of BDEC

Channel (l∗, r∗) (l̂, r̂) (l̃, r̃)

1 (0, 100) (0, 100) (0, 100)

2 (30, 70) (30, 70) (28.3, 71.7)

3 (40, 60) (40, 60) (42.8, 57.2)

4 (50, 50) (50, 50) (50, 50)

5 (60, 40) (60, 40) (57.2, 42.8)

6 (70, 30) (70, 30) (71.7, 28.3)

7 (100, 0) (100, 0) (100, 0)

x ◦ s 6= c) does not affect P (m̂ 6= m). On the other hand, the number of unmasked defects is

important for P (m̂ 6= m) of the BDSC. The reason is that the stuck-at errors due to unmasked

defects can be treated as random errors and corrected during the decoding stage. Hence, we

propose a two-step encoding method (described in Algorithm 1), which reduces the performance

gap between (2.32) and (2.33).

Algorithm 1 Two-step Encoding

Step 1: Try to solve (2.33), i.e., GU0 p = bU .
if u < d? then go to End. . A solution p always exists.
else . A solution p exists so long as (2.34) holds.

if p exists then go to End.
else go to Step 2.
end if

end if
Step 2:
• Choose d? − 1 locations among U and define U ′ = {i1, . . . , id?−1}.
• Solve the following linear equation: GU ′0 p = bU

′
. A solution p always exists.

End

The two-step encoding tries to reduce the number of unmasked defects by using the second

step (i.e., Step 2) even though x ◦ s 6= c. When the encoder fails to solve (2.33), the encoder

randomly chooses d?−1 defect locations among U and define U ′ = {i1, . . . , id?−1}. Afterwards,

the encoder solves GU ′0 p = bU
′ where a solution p always exists by the definition of d? in (2.25).

If p is obtained in Step 2, then the number of unmasked defects is u− (d? − 1) instead of u.
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For the BDC and the BDEC, Step 2 cannot improve P (m̂ 6= m) because unmasked stuck-at

defects cannot be corrected during the decoding stage. However, Step 2 is helpful for the BDSC

because the stuck-at errors can be regarded as random errors and corrected at the decoder.

The two-step encoding’s complexity is O (n3) because both Step 1 and Step 2 are related

to solving the linear equations. Also, the bounded distance decoding for estimating ẑ can be

implemented by polynomial decoding algorithms. For PBCH codes, standard algorithms such as

Berlekamp-Massey algorithm can be used for decoding. The flow of PLBC’s decoding for the

BDSC was explained in Section 2.2.4.

We will derive the upper bound on P (m̂ 6= m) where the two-step encoding and the bounded

distance decoding are used.

Theorem 2.18 The upper bound on P (m̂ 6= m) is given by

P (m̂ 6= m) ≤

[
n∑

u=d?

{(
n

u

)
βu (1− β)n−u min

{∑u
w=d? B0,w

(
n−w
u−w

)(
n
u

) , 1

}

·
n∑

t=t̃+d?−u

(
n

t

)
pt (1− p)n−t


+

n∑
t=t̃+1

(
n

t

)
pt(1− p)n−t (2.62)

where t̃ =
⌊
d̃−1

2

⌋
is the error correcting capability of C.

Proof: The proof is given in Appendix 2.12.

During the derivation of the upper bound of (2.62), we regard all the unmasked stuck-at

defects as random errors. However, on average, only half of the unmasked defects result in error

if P (S = 0) = P (S = 1) = β
2
. Thus, we can derive the following estimate of P (m̂ 6= m).

Corollary 2.19 The estimate of P (m̂ 6= m) is given by

P (m̂ 6= m) '

[
n∑

u=d?

{(
n

u

)
βu (1− β)n−u min

{∑u
w=d? B0,w

(
n−w
u−w

)(
n
u

) , 1

}
·

n∑
t=t̃−du−d?+1

2 e+1

(
n

t

)
pt (1− p)n−t


+

n∑
t=t̃+1

(
n

t

)
pt(1− p)n−t (2.63)
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where dxe is the smallest integer not less than x.

Proof: The proof is given in Appendix 2.12.

In order to compare the optimal redundancy (l∗, r∗) and the estimated redundancy allocation,

we consider the several channels shown in Table 2.4. Channel 1 and Channel 7 are equivalent to

the BSC and the BDC, respectively. For the other channels from Channel 2 to Channel 6, their

lower bounds of the capacity C lower
BDSC of (2.19) and the upper bounds Cupper

BDSC are almost the same.

Thus, we can estimate Cenc
BDSC from bounds although the closed-form of Cenc

BDSC is not known.

It is worth mentioning that all the channel parameters are chosen to have almost the same

p̃ ' 4 × 10−3, which was given by (2.22). Hence, all the channels show similar P (m̂ 6= m)

for (l, r) = (0, 100) which represents the case when the defect information is not used. On the

other hand, each channel has different Cenc
BDSC. The larger β, the more defect information we can

obtain, which results in the larger Cenc
BDSC. We apply [n = 1023, k = 923, l] PBCH codes in Table

2.1.

Fig. 2.6 compares the simulation results and the estimates of P (m̂ 6= m) for the channels

in Table 2.4, which shows that the estimates of P (m̂ 6= m) given by (2.63) match well with

simulation results. Hence, we can choose the redundancy allocation minimizing the estimates

instead of the simulation results in spite of the binomial approximation of (2.43). The redundancy

allocation that minimizes the estimate of P (m̂ 6= m) is the estimate of the optimal redundancy

allocation, i.e., (l̂, r̂). The simulation results of P (m̂ 6= m) < 10−8 are incomplete because of

their impractical computational complexity.

Table 2.5 shows that the estimate of the optimal redundancy allocation (l̂, r̂) is the same as

the optimal redundancy allocation (l∗, r∗) for the channels in Table 2.4. Thus, we can accu-

rately estimate the optimal redundancy allocation without simulations. The estimate of optimal

redundancy allocation requires much less computations than Monte-Carlo simulations.

Fig. 2.6 also shows that the optimal redundancy allocation significantly improves P (m̂ 6= m).

For example, P (m̂ 6= m) of channel 6 is 1.00 × 10−7 with the optimal redundancy allocation
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Table 2.4: Several Channel Parameters of the BDSC

Channel p β C lower
BDSC Cupper

BDSC

1 4.0× 10−3 0 0.9624

2 3.0× 10−3 2.0× 10−3 0.9685 0.9686

3 2.5× 10−3 3.0× 10−3 0.9718 0.9719

4 2.0× 10−3 4.0× 10−3 0.9752 0.9753

5 1.0× 10−3 6.0× 10−3 0.9826 0.9827

6 5.0× 10−4 7.0× 10−3 0.9868 0.9868

7 0 8.0× 10−3 0.9920
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Figure 2.6: Comparison of simulation results and estimates of the probability of recovery failure
P (m̂ 6= m).

(l∗, r∗) = (30, 70) whereas P (m̂ 6= m) is 2.80× 10−3 with (l, r) = (0, 100). Thus, it is impor-

tant to find and use the optimal redundancy allocation for better P (m̂ 6= m).

In addition, it is worth mentioning that P (m̂ 6= m) for (l∗, r∗) improves as β increases in

Fig. 2.6. P (m̂ 6= m) of all the channels are the almost same for the redundancy allocation

of (l = 0, r = n− k) because all the channel parameters are chosen to have the same C̃min
BDSC.

As β increases, P (m̂ 6= m) for (l∗, r∗) improves because the PLBC can exploit more defect

information as indicated by the lower and upper bounds on Cenc
BDSC in Table 2.4.

42



Table 2.5: Optimal Redundancy Allocations (l∗, r∗) and Their Estimates (l̂, r̂) of BDSC by (2.63)

Channel (l∗, r∗) (l̂, r̂)

1 (0, 100) (0, 100)

2 (10, 90) (10, 90)

3 (10, 90) (10, 90)

4 (20, 80) (20, 80)

5 (30, 70) (30, 70)

6 (30, 70) (30, 70)

7 (100, 0) (100, 0)

2.4 Relations between BEC, BDC, BEQ, and WOM

2.4.1 Duality between BEC and BDC

We summarize the known facts of the BEC to show the dual relation between the BEC and

the BDC. The codeword most likely to have been transmitted is the one that agrees with all of

received bits that have not been erased. If there is more than one such codeword, the decoding

may lead to a failure. Thus, the following simple coding scheme was proposed in [60].

Encoding: A message (information) m ∈ Fk2 is encoded to a corresponding codeword c ∈ C

where C = {c ∈ Fn2 | c = Gm,m ∈ Fk2} where C is a set of codewords and the generator matrix

is G ∈ Fn×k2 such that rank(G) = k.

Decoding: Let g denote the decoding rule. If the channel output y is identical to one and

only one codeword on the unerased bits, the decoding succeeds. If y matches completely with

more than one codeword on the unerased bits, the decoder chooses one of them randomly [60].

We will define a random variable D as follows.

D =


0, c 6= ĉ (decoding failure);

1, c = ĉ (decoding success)
(2.64)

where ĉ is the estimated codeword produced by the decoding rule of g.
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Elias showed that random codes of rates arbitrarily close to CBEC can be decoded with an

exponentially small error probability using the MAP decoding [60, 61, 62]. The MAP decoding

rule of g can be achieved by solving the following linear equations [60]:

GVm̂ = yV (2.65)

where m̂ is the estimate of m and V = {j1, · · · , jv} indicates the locations of the v unerased

bits. We use the notation of yV = (yj1 , · · · , yjv) and GV =
[
gTj1 , · · · ,g

T
jv

]T where gj is the j-th

row of G. Note that GV ∈ F(n−e)×k
2 .

The decoding rule g can also be represented by the parity check matrix H instead of the

generator matrix G as follows.

HT ĉ =
(
HE
)T

ĉE +
(
HV
)T

ĉV = 0 (2.66)

where the parity check matrix H is an n × (n − k) matrix such that HTG = 0. Also, E =

{i1, · · · , ie} indicates the locations of the e erased bits such that E ∪ V = [n] and E ∩ V = ∅

(i.e., n = e + v). Note that ĉE = (ĉi1 , · · · , ĉie), ĉV = (ĉj1 , · · · , ĉjv), HE =
[
hTi1 , · · · ,h

T
ie

]T and

HV =
[
hTj1 , · · · ,h

T
jv

]T where hi is the i-th row of H .

The decoder estimates the erased bits ĉE from the unerased bits ĉV = cV . Thus, (2.66) can

be represented by the following linear equations:

(
HE
)T

ĉE = q (2.67)

where q =
(
HV
)T

cV and
(
HE
)T ∈ F(n−k)×e

2 .

Remark 2.20 In (2.65) and (2.67), the number of equations is more than or equal to the number

of unknowns. Usually, these systems of linear equations are overdetermined. The reason is that

k ≤ n− e for correcting e erasures. Note that GV ∈ F(n−e)×k
2 and

(
HE
)T ∈ F(n−k)×e

2 . Note that
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(2.65) and (2.67) are consistent linear systems (i.e., there is at least one solution).

The minimum distance d of C is given by

d = min
x 6=0

HTx=0

‖x‖ (2.68)

which shows that any d− 1 rows of H are linearly independent. So (2.67) has a unique solution

when e is less than d.

The following Lemma has been known in coding theory community.

Lemma 2.21 The upper bound on the probability of decoding failure of the MAP decoding rule

is given by

P (D = 0 | |E| = e) ≤
∑e

w=dAw
(
n−w
e−w

)(
n
e

) (2.69)

where Aw is the weight distribution of C.

Proof: The proof was well known, which can be found in [52].

P (D = 0 | |E| = e) can be obtained exactly for d ≤ e ≤ d +
⌊
d−1

2

⌋
(where bxc represents

the largest integer not greater than x) as stated in the following Lemma.

Lemma 2.22 [52] For e ≤ d+ t where t =
⌊
d−1

2

⌋
, we can show that

P (D = 0 | |E| = e) =
1

2
·
∑e

w=dAw
(
n−w
e−w

)(
n
e

) . (2.70)

From the definition of d in (2.68), Lemma 2.21 and Lemma 2.22, we can state the following.

Theorem 2.23 [52] P (D = 0 | |E| = e) is given by



0 for e < d, (2.71)

1

2
·
∑e

w=dAw
(
n−w
e−w

)(
n
e

) for d ≤ e ≤ d+ t, (2.72)

≤
∑e

w=dAw
(
n−w
e−w

)(
n
e

) for e > d+ t. (2.73)
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Table 2.6: Duality between BEC and BDC

BEC BDC

Channel property
Ternary output Y ∈ {0, 1, ∗} Ternary state S ∈ {0, 1, λ}

(erasure ∗ is neither “0” nor “1”) (defect is either “0” or “1”)

Capacity CBEC = 1− α CBDC = 1− β
Channel state information Locations Locations and stuck-at values

Correcting / Masking Decoder corrects erasures Encoder masks defects

MAP decoding / MDE
GVm̂ = yV (2.65) GU0 p = bU (2.33)

(Overdetermined) (Underdetermined)

Solutions m̂ (estimate of message) p (parity)

Minimum distance
d = min{‖x‖ : HTx = 0,x 6= 0} d? = min{‖x‖ : GT0 x = 0,x 6= 0}
If e < d, e erasures are corrected. If u < d?, u defects are masked.

Upper bounds on
Theorem 2.23 Theorem 2.10

probability of failure

Probability of failure If H = G0 and α = β, then P (D = 0) = P (E = 0) (Theorem 2.24)

We will discuss the duality between erasures and defects summarized in Table 2.6. In the

BEC, the channel input X ∈ {0, 1} is binary and the channel output Y = {0, 1, ∗} is ternary

where the erasure ∗ is neither 0 nor 1. In the BDC, the channel state S ∈ {0, 1, λ} is ternary

whereas the channel input and output are binary. The ternary channel state S informs whether

the given cells are stuck-at defects or normal cells. The stuck-at value is either 0 or 1.

The expressions for capacities of both channels are quite similar as shown in CBEC = 1 − α

and CBDC = 1 − β. In the BEC, the decoder corrects erasures by using the information of

locations of erasures, whereas the encoder masks the defects by using the information of defect

locations and stuck-at values in the BDC.

The capacity achieving scheme of the BEC can be represented by the linear equations based

on the generator matrix G of (2.65) or the linear equations based on the parity check matrix H

of (2.67). Both linear equations are usually overdetermined as discussed in Remark 2.20. The

solution of linear equations based on G is the estimate of message m̂ and there should be only

one m̂ for decoding success.

46



On the other hand, the capacity achieving scheme of the BDC can be described by the linear

equation which are usually underdetermined as explained in 2.33. The additive encoding can be

represented by the linear equations based on the generator matrix G0 of (2.33) whose solution is

the parity p.

We can see the duality between erasures and defects by comparing the solution m̂ of (2.65)

and the solution p of (2.33), i.e., message and parity. Note that coding schemes of (2.65) and

(2.33) are based on the generator matrix.

In the BEC, the minimum distance d is defined by the parity check matrix H , whereas the

minimum distance d? of the BDC is defined by the generator matrix G0. The upper bound on the

probability of decoding failure is dependent on the weight distribution of C (i.e., Aw), whereas

the upper bound on the probability of encoding failure is dependent on the weight distribution of

C⊥0 (i.e., Bw).

If Aw = Bw and e = u, it is clear that the upper bound on P (D = 0 | |E| = e) is same

as the upper bound on P (E = 0 | |U| = u) by Theorem 2.23 and Theorem 2.10. In particular,

the following Theorem shows the equivalence of the failure probabilities (i.e., the probability of

decoding failure of erasures and the probability of encoding failure of defects).

Theorem 2.24 [52] If H = G0 and α = β, then the probability of decoding failure of MAP

decoding for the BEC is the same as the probability of encoding failure of MDE for the BDC

(i.e., P (D = 0) = P (E = 0)). The computational complexities for both cases are O(n3).

Proof: If α = β, then it is clear that that P (E) = P (U) for E = U . If E = U andH = G0,

then HE = GU0 . If HE and GU0 are full rank, then it is clear that P (D = 0) = P (E = 0) = 0.

Suppose that rank(HE) = rank(GU0 ) = e − j where E = U (i.e., e = u). For the BEC,

there are 2j codewords that satisfy (2.67) and the decoder chooses one codeword among them

randomly. Hence, P (D = 0 | E) = 1− 1
2j

.

For the BDC, each element of bU in (2.35) is uniform since P (S = 0 | S 6= λ) = P (S =

1 | S 6= λ) = 1
2
. (2.35) has at least one solution if and only if rank(GU0 ) = rank(GU0 | bU).
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n = 255, P(E=0) of BEC

n = 255, P(D=0) of BDC

n = 511, P(E=0) of BEC

n = 511, P(D=0) of BDC
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n = 1023, P(D=0) of BDC

Figure 2.7: Probability of failure, i.e., P (D = 0) of the BEC with α = 0.1 and P (E = 0) of the BDC
with β = 0.1.

In order to satisfy this condition, the last j elements of bU should be zeros, which means that

P (E = 0 | U) = 1− 1
2j

. Thus, P (D = 0 | E) = P (E = 0 | U) if E = U and H = G0.

Since P (E) = P (U) and P (D = 0 | E) = P (E = 0 | U) for E = U , it is true that

P (D = 0) = P (E = 0).

Fig. 2.7 compares P (D = 0) of the BEC and P (E = 0) of the BDC when H = G0 and

α = β. The parity check matrices of Bose-Chaudhuri-Hocquenghem (BCH) codes are used for

H and G0. Hence, BCH codes are used for the BEC and the duals of BCH codes are used for

the BDC. The numerical results in Fig. 2.7 show that P (D = 0) = P (E = 0) if H = G0 and

α = β, which supports Theorem 2.24.

Recently, it was proved that a sequence of linear codes achieves CBEC under MAP decoding

if its blocklengths are strictly increasing, its code rates converge to some δ ∈ (0, 1), and the

permutation group of each code is doubly transitive [53]. Hence, RM codes and BCH codes can

achieve CBEC under MAP decoding. Based on the duality between the BEC and the BDC, we

can claim the following Corollary.

Corollary 2.25 RM codes achieve CBDC with computational complexity O(n3).
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Figure 2.8: Relations between BEC, BDC, BEQ, and WOM.

Proof: In [53], it was shown that RM codes achieve CBEC under MAP decoding whose

computational complexity isO(n3). By Theorem 2.24, the duals of RM codes achieveCBDC with

O(n3). Since the duals of RM codes are also RM codes [59, pp. 375–376], RM codes achieve

CBDC.

We note that the duals of BCH codes also achieve CBDC by the same reason.

In this section, we have demonstrated the duality between the BEC and the BDC from channel

properties, capacities, capacity-achieving schemes, and their failure probabilities. This duality

implies that the existing code constructions and algorithms of the BEC can be applied to the

BDC and vice versa.

2.4.2 Relations between BEC, BDC, BEQ, and WOM

We extend the duality between the BEC and the BDC to other interesting models such as binary

erasure quantization (BEQ) and write-once memory (WOM) codes. We review the literature on

these models and describe the relations between BEC, BDC, BEQ, and WOM.

Martinian and Yedidia [54] considered BEQ problems where the source vector consists of

{0, 1, ∗} (∗ denotes an erasure). Neither ones nor zeros may be changed, but erasures may
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be quantized to either zero or one. The erasures do not affect the distortion regardless of the

value they are assigned since erasures represents source samples which are missing, irrelevant,

or corrupted by noise. The BEQ problem with erasure probability α can be formulated as follows.

P (S = s) =


α, if s = ∗;

1−α
2
, if s = 0 or 1

(2.74)

and the Hamming distortion dH(·, ·) is given by

dH(0, ∗) = dH(1, ∗) = 0, dH(0, 1) = 1. (2.75)

The rate-distortion bound with zero distortion is given by

RBEQ = 1− α. (2.76)

In [54] the duality between the BEC and the BEQ was observed, and the authors showed that

low-density generator matrix (LDGM) codes (i.e., the duals of LDPC codes) can achieve the

RBEQ by modified message-passing algorithm. The computational complexity is O(ndG) where

dG denotes the maximum degree of the bipartite graph G of the low-density generator matrix.

In [63], it was shown that polar codes with an successive cancellation encoder can achieve RBEQ

with O(n log n).

From (2.74)–(2.76), we can claim that the BEQ with erasure probability α is equivalent to the

BDC with defect probability β if β = 1−α. We can observe that s = ∗ of the BEQ corresponds

to s = λ of the BDC, which represents normal cells by comparing (2.6) and (2.74). Also, s = 0

and s = 1 of the BEQ can be regarded as stuck-at 0 defects and stuck-at 1 defects, respectively.

In addition, RBEQ = CBEC = 1− CBDC.

Since the BEQ is equivalent to the BDC, we can claim that RM codes achieve RBEQ due to

Corollary 2.25. Hence, LDGM codes (duals of LDPC codes), polar codes, and RM codes achieve
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RBEQ.

Inversely, the coding scheme for the BEQ can be applied to the BDC. Thus, CBDC can be

achieved by LDGM codes and polar codes whose complexities are O(ndG) and O(n log n) re-

spectively. It is important because the best known encoding complexity of capacity achieving

scheme for the BDC was O(n log2 n) in [41]. Also, note that the encoding complexity of coding

schemes in [42] is O(n3).

The model of WOM was proposed for data storage devices where once a one is written

on a memory cell, this cell becomes permanently associated with a one. Hence, the ability to

rewrite information in these memory cells is constrained by the existence of previously written

ones [43, 55]. Recently, the WOM model has received renewed attention as a possible channel

model for flash memories [64, 65].

In [43], it was noted that WOM are related to the BDC since the cells storing ones can be

considered as stuck-at 1 defects. Moreover, Kuznetsov and Han Vinck [44] showed that additive

encoding for the BDC can be used to achieve the capacity of WOM. Burshtein and Strugatski [66]

proposed a capacity-achieving coding scheme for WOM with O(n log n) complexity, which is

based on polar codes and successive cancellation encoding [63]. Recently, En Gad et al. [67]

related the WOM to the BEQ. Hence, LDGM codes and message-passing algorithm in [54] can

be used for WOM. Note that the encoding complexity is O(ndG).

Fig. 2.8 illustrates the relations between BEC, BDC, BEQ, and WOM. We emphasize that

a coding scheme for one model can be applied to other models based on these relations. It

is worth mentioning that RM codes, LDPC (or LDGM) codes, and polar codes can achieve

the capacities of all these models. Their computational complexities are O(n3), O(ndG), and

O(n log n), respectively.
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2.5 Conclusion

The channel coding for memory with stuck-at defects and redundancy allocation problem for

memory with permanent stuck-at defects and transient errors were investigated. We derived

the upper bound on the probability of recovery failure for the BDEC and the estimate of the

probability of recovery failure for the BDSC. Based on these analytical results, we can efficiently

estimate the optimal redundancy allocation. The estimated redundancy allocation matches the

optimal redundancy allocation well while requiring much less computation than Monte-Carlo

simulations.

In addition, the duality between the BEC and the BDC was investigated. Based on this

duality, we showed that RM codes and duals of BCH codes achieve the capacity of the BDC. This

duality can be extended to the relations between BEC, BDC, BEQ, and WOM. Based on these

relations, we showed that RM codes achieve the capacity of the BDC with O(n3) and LDGM

codes (duals of LDPC codes) achieve the capacity with O(ndG). Also, polar codes can achieve

the capacity with O(n log n) complexity, which beats the best known result of O(n log2 n).

2.6 Proof of Proposition 2.4

By Gelfand-Pinsker theorem [32, 34],

Cenc
BDEC = max

P (U |S),X(U,S)
(I(U ;Y )− I(U ;S))

where |U| ≤ min {|X | · |S| , |Y|+ |S| − 1}. It is clear that

I(U ;Y )− I(U ;S) = H(U | S)−H(U | Y ). (2.77)
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For S = λ, set U ∼ Bern(1/2) andX = U , i.e., U is a Bernoulli random variable with parameter

1
2
. If S 6= λ, we set U = X = S. Then,

H(U | S) = P (S = λ)H(X | S = λ) + P (S 6= λ)H(X = S | S 6= λ) = 1− β. (2.78)

In addition,

H(U | Y ) = H(X | Y ) = H(X)− I(X;Y ) = 1− (1− α) = α (2.79)

where H(X) = 1 follows from P (X = 0) = P (X = 1) for both stuck-at defects and normal

cells. We should minimize H(U | Y ) in order to maximize (2.77), which can be achieved

by setting I(X;Y ) = 1 − α (i.e., the capacity of the BEC). By combining (2.78) and (2.79),

Cenc
BDEC = 1− α− β.

2.7 Proof of Proposition 2.5

The upper bound of (2.18) is easy to see because of (2.14) where we assume that the stuck-at

defects do not suffer from random errors.

Unlike the BDEC, the unmasked defects in the BDSC can be corrected by the decoder.

Hence, we can allow the encoder to mask a fraction of stuck-at defects. Suppose that η de-

notes the fraction of unmasked stuck-at defects during encoding. We need to find the optimal η∗,

which makes it complicated to derive the capacity in [40].

By setting η = 0 instead of using the optimal η∗, the lower bound of (2.19) can be derived,

which is similar to the proof of Proposition 2.4. For S = λ, set U ∼ Bern(1/2) and X = U . For

S 6= λ, we set U = X = S which means that η = 0. Then,

H(U | S) = 1− β (2.80)
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which is the same as (2.78). In addition,

H(U | Y ) = H(X | Y ) = H(X)− I(X;Y ) = 1− (1− h(p)) = h(p) (2.81)

which follows from the similar reason of (2.79). By combining (2.80) and (2.81), C lower
BDSC =

1− β − h(p).

2.8 Proof of Lemma 2.8

First, we will show that

P (E = 0 | U = u) =
u∑
j=1

(
1− 1

2j

)
P
(
rank

(
GU0
)

= u− j | U = u
)
. (2.82)

If rank
(
GU0
)

= u, (2.33) has at least one solution since (2.34) holds, i.e., P (E = 0 | U = u) =

0. If rank
(
GU0
)

= u − j for 1 ≤ j ≤ u, the last j rows of the row reduced echelon form

of GU0 are zero vectors. In order to satisfy (2.34), the last j elements of the column vector

bU should also be zeros. The probability that the last j elements of bU are zeros is 1
2j

since

P (S = 0 | S 6= λ) = P (S = 1 | S 6= λ) = 1
2
. Thus, P (E = 0 | U = u) is given by (2.82).

By (2.82), we can claim that

P
(
rank

(
GU0
)
< u | U = u

)
2

≤ P (E = 0 | U = u) ≤ P
(
rank

(
GU0
)
< u | U = u

)
. (2.83)

Suppose that there exists a nonzero codeword c⊥ ∈ C⊥0 of Hamming weight w. Note that G0

is the parity check matrix of C⊥0 . Let Ψw(c⊥) =
{
i | c⊥i 6= 0

}
denote the locations of nonzero

elements of c⊥ and U = {i1, . . . , iu} denote the locations of u defects.

If Ψw(c⊥) ⊆ U , rank
(
GU0
)
< u. Note that GΨw(c⊥)

0 is a submatrix of GU0 and the rows of

G
Ψw(c⊥)
0 are linearly dependent since GT

0 c
⊥ = 0.

For any c⊥ such that Ψw(c⊥) ⊆ U , the number of possible U is
(
n−w
u−w

)
. Due to dou-
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ble counting, the number of U which results in rank
(
GU0
)
< u will be less than or equal to∑u

w=d? B0,w

(
n−w
u−w

)
. Since the number of all possible U such that U = u is

(
n
u

)
,

P
(
rank

(
GU0
)
< u | U = u

)
≤
∑u

w=d? B0,w

(
n−w
u−w

)(
n
u

) . (2.84)

From (2.83) and (2.84), the upper bound on P (E = 0 | U = u) is given by (2.37). Note that

we set P (E = 0 | U = u) = 1 if
∑u

w=d? B0,w(n−w
u−w)

(n
u)

≥ 1.

2.9 Proof of Lemma 2.9

The proof has two parts. First, we will show that

P
(
rank

(
GU0
)
< u | U = u

)
=

∑u
w=d? B0,w

(
n−w
u−w

)(
n
u

) (2.85)

for u ≤ d? + t? where t? =
⌊
d?−1

2

⌋
, which means that there is no double counting in (2.84).

Second, we will prove that

P
(
rank

(
GU0
)
< u | U = u

)
= P

(
rank

(
GU0
)

= u− 1 | U = u
)

(2.86)

for u ≤ d? + t?, which means that P
(
rank

(
GU0
)
≤ u− 2 | U = u

)
= 0.

Then, P (E = 0 | U = u) is given by

P (E = 0 | U = u) =
1

2
· P
(
rank

(
GU0
)

= u− 1 | U = u
)

(2.87)

=
1

2
·
∑u

w=d? B0,w

(
n−w
u−w

)(
n
u

) (2.88)

where (2.87) follows from (2.82) and (2.86). Also, (2.88) follows from (2.85).

1) Proof of (2.85)

Suppose that there are two nonzero codewords c⊥1 , c
⊥
2 ∈ C⊥0 such that ‖c⊥1 ‖ = w1 and
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‖c⊥2 ‖ = w2. Without loss of generality, assume that d? ≤ w1 ≤ w2. The locations of nonzero

elements in c⊥1 and c⊥2 are given by

Ψw1

(
c⊥1
)

= {i1,1, . . . , i1,w1} , Ψw2

(
c⊥2
)

= {i2,1, . . . , i2,w2} .

Let Ψα = {i1, . . . , iα} denote Ψα = Ψw1

(
c⊥1
)
∩Ψw2

(
c⊥2
)

where

Ψw1

(
c⊥1
)

= Ψα ∪
{
i′1,1, . . . , i

′
1,β1

}
, Ψw2

(
c⊥2
)

= Ψα ∪
{
i′2,1, . . . , i

′
2,β2

}
where i′1,j1 for j1 ∈ {1, . . . , β1} and i′2,j2 for j2 ∈ {1, . . . , β2} are the reindexed locations of

nonzero elements of c⊥1 and c⊥2 that are mutually disjoint with Ψα. Note that
{
i′1,1, . . . , i

′
1,β1

}
∩{

i′2,1, . . . , i
′
2,β2

}
= ∅, β1 = w1 − α and β2 = w2 − α.

Due to the property of linear codes, c⊥3 = c⊥1 + c⊥2 is also a codeword of C⊥0 , i.e., c⊥3 ∈ C⊥0

and ‖c⊥3 ‖ = β1 + β2. Also, the following conditions should hold because of the definition of d?.

α + β1 ≥ d?, α + β2 ≥ d?, β1 + β2 ≥ d?

Thus, we can claim that 2 (α + β1 + β2) ≥ 3d?, which results in α + β1 + β2 ≥ d? +
⌊
d?+1

2

⌋
=

d? + t? + 1 since α + β1 + β2 has to be an integer.

For double counting to occur in (2.84), there should exist at least two codewords c⊥1 and

c⊥2 such that Ψw1

(
c⊥1
)
∪ Ψw2

(
c⊥2
)
⊆ U . It means that double counting occurs only if u ≥

α + β1 + β2 ≥ d? + t? + 1. Thus, there is no double counting for u ≤ d? + t?. For u ≤ d? + t?,

there exists at most one codeword c⊥ such that Ψw

(
c⊥
)
⊆ U .

2) Proof of (2.86)

It is clear that rank
(
GU0
)

= u − 1 if and only if there exists only one nonzero codeword c⊥

such that Ψw

(
c⊥
)
⊆ U . Note that rank

(
GU0
)
< u− 1 if and only if U includes the locations of

nonzero elements of at least two nonzero codewords. We have already shown that there exists at

most one nonzero codeword c⊥ such that Ψw

(
c⊥
)
⊆ U for u ≤ d? + t?.
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2.10 Proof of Theorem 2.15

From P (m̂ 6= m) = P (E = 0)+P (E = 1, D = 0), we derive the upper bounds on P (E = 0)

and P (E = 1, D = 0) respectively. The upper bounds on P (E = 0) was shown in Corol-

lary 2.11 and 2.12.

If the additive encoding succeeds (i.e., E = 1), then the corresponding channel is equivalent

to the BEC with the erasure probability α. The upper bound on P (E = 1, D = 0) is given by

P (E = 1, D = 0) ≤
n∑
e=d̃

αe (1− α)n−e
e∑

w=d̃

Aw

(
n− w
e− w

)
(2.89)

= 2−r
n∑
e=d̃

αe (1− α)n−e
e∑

w=d̃

(
n

w

)(
n− w
e− w

)
(2.90)

= 2−r (1 + α)n (2.91)

where (2.89) follows from P (D = 0 | |E| = e) ≤
∑e

w=d1
Aw(n−w

e−w)
(n
e)

for the BEC, which can be

derived in a similar way as for Lemma 2.8. If Aw = 2−r
(
n
w

)
, (2.91) can be derived by a similar

way as for Corollary 2.12.

2.11 Proof of Corollary 2.16

Suppose that l and r are real values. Since the objective function is convex and other constraints

are linear, the optimization problem of (2.56) is convex. The Lagrangian L is given by

L (l, r, λ1, λ2, λ3, λ4, ν) = 2−l (1 + β)n + 2−r (1 + α)n + λ1(−l) + λ2(−r)

+ λ3 {l − (n− k)}+ λ4 {r − (n− k)}+ ν {l + r − (n− k)} (2.92)

where λi for i = 1, 2, 3, 4 are the Lagrange multipliers associated with the inequality constraints

and ν is the Lagrange multiplier with the equality constraint.
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The KKT conditions can be derived as follows.

∇L =

− ln 2 · 2−l (1 + β)n

− ln 2 · 2−r (1 + α)n

+

−λ1 + λ3 + ν

−λ2 + λ4 + ν

 = 0 (2.93)

−l ≤ 0, −r ≤ 0, l − (n− k) ≤ 0, r − (n− k) ≤ 0

l + r − (n− k) = 0 (2.94)

λi ≥ 0, i = 1, . . . , 4 (2.95)

λ1l = 0, λ2r = 0 (2.96)

λ3 {l − (n− k)} = 0, λ4 {r − (n− k)} = 0 (2.97)

If α is much greater than β such that 1+α
1+β

> 21−R, then we can claim that 2−l (1 + β)n <

2−r (1 + α)n for any (l, r) where l + r = n− k. By (2.93), it is true that

2−r (1 + α)n − 2−l (1 + β)n = λ′1 − λ′2 − λ′3 + λ′4 > 0 (2.98)

where λ′i = λi
ln 2

. Thus,

λ1 + λ4 > λ2 + λ3 ≥ 0. (2.99)

It is clear that (l, r) = (0, n − k) satisfies the KKT conditions since λ2 = λ3 = 0 due to

complement slackness. If β is much greater than α such that 1+α
1+β

< 2−(1−R), then it can be

shown that (l, r) = (n− k, 0) satisfies the KKT conditions similarly.

Otherwise, suppose that 0 < l < n−k and 0 < r < n−k. Due to complementary slackness,

λ1 = λ2 = λ3 = λ4 = 0. Thus, (2.93) will be as follows.

− ln 2 · 2−l (1 + β)n + ν = 0 (2.100)

− ln 2 · 2−r (1 + α)n + ν = 0 (2.101)
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By (2.100) and (2.101),

2−l (1 + β)n = 2−r (1 + α)n . (2.102)

Then, we can derive (2.60) and (2.61) by (2.94) and (2.102). It is clear that (2.60) and (2.61)

satisfy the KKT conditions.

2.12 Proof of Theorem 2.18 and Corollary 2.19

The probability of recovery failure P (m̂ 6= m) is given by

P (m̂ 6= m) = P (E = 0, m̂ 6= m) + P (E = 1, m̂ 6= m).

Note that the stuck-at errors due to unmasked defects can be corrected at the decoder even if the

encoding fails. First, we will derive the upper bound on P (E = 0, m̂ 6= m). By the chain rule,

P (E = 0, m̂ 6= m) is given by

P (E = 0, m̂ 6= m) =
n∑
u=1

P (U = u)P (E = 0 | U = u)P (m̂ 6= m | E = 0, U = u)

where P (U = u) =
(
n
u

)
βu (1− β)n−u. In addition, the upper bound on P (E = 0|U = u) is

given by Lemma 2.8. Also, P (m̂ 6= m|E = 0, U = u) is given by

P (m̂ 6= m|E = 0, U = u) ≤ P
(
{u− (d? − 1)}+ t > t̃

)
= P

(
t ≥ t̃− u+ d?

)
. (2.103)

where t is the number of random errors. Note that u − (d? − 1) represents the number of un-

masked defects when two-step encoding fails. Since the number of random errors can be modeled

by the binomial random variable, P (m̂ 6= m|E = 0, U = u) is given by

P (m̂ 6= m|E = 0, U = u) ≤
n∑

t=t̃+d?−u

(
n

t

)
pt (1− p)n−t.
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Hence,

P (E = 0, m̂ 6= m) ≤
n∑

u=d?

{(
n

u

)
βu (1− β)n−umin

{∑u
w=d? B0,w

(
n−w
u−w

)(
n
u

) , 1

}

·
n∑

t=t̃+d?−u

(
n

t

)
pt (1− p)n−t

 .

Now, we will derive the upper bound on P (E = 1, m̂ 6= m). If the encoding succeeds, the

channel is equivalent to the BSC. Thus,

P (E = 1, m̂ 6= m) = P (t > t̃) ≤
n∑

t=t̃+1

(
n

t

)
pt(1− p)n−t.

For the proof of Corollary 2.19, we will change (2.103) by considering P (S = 0) = P (S =

1) = β
2
. Because only the half of unmasked defects result in stuck-at errors on average,

P (m̂ 6= m|E = 0, U = u) ' P

(
t ≥ t̃−

⌈
u− d? + 1

2

⌉
+ 1

)

Thus, (2.62) will be changed into (2.63).
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Chapter 3

Coding for Flash Memory

3.1 Introduction

Flash memory is now the most important nonvolatile memory due to the rapid growth of mobile

devices and solid-state drives (SSD). Obviously, there is a strong demand for higher density flash

memories. In order to meet this demand, scaling down and multi-level cell (MLC) have driven

the continuous growth of flash memory density. Also, vertical stacking has drawn considerable

attention in recent years.

Aggressive scaling down of cell size has driven the continuous growth of 2-dimensional (2D)

planar flash memory density. However, the scaling down has to deal with many challenges such

as increased inter-cell interference (ICI) and photo-lithography limitation [4, 5]. As the distance

between adjacent cells decreases due to scaling down, flash memory cells suffer from higher ICI

[4, 6]. Hence, the ICI is a major challenge for data reliability of high-density 2D planar flash

memory.

In order to cope with the ICI, various approaches have been proposed. Device level ap-

proaches such as new materials and novel cell structures try to reduce the parasitic capacitances

between adjacent cells [5]. At circuit and architecture levels, several write schemes and all bit-

line (ABL) architecture were proposed to deal with the ICI [17, 18, 19, 20]. Also, strong error
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control codes (ECC) such as low-density parity check (LDPC) codes and signal processing have

been also investigated [21, 22, 23, 24, 25]. The disadvantage of soft decision decoding and sig-

nal processing is the degradation of read speed due to multiple reads needed to obtain the soft

decision values. In addition, modulation coding has been investigated to remove some data pat-

terns which are more vulnerable to ICI [26, 28, 30]. However, the significant redundancy of

modulation coding is a major disadvantage.

Recently, 3D vertical flash memories were proposed to overcome scaling down challenges

by stacking up cells in the vertical direction instead of shrinking cells within a 2D plane [7, 8].

The recent 3D vertical flash memory shows better device characteristics compared to 2D 1x nm

planar flash memory [7].

However, 3D vertical flash memory has a problem of fast detrapping, which is a rapid charge

loss phenomenon resulting in larger threshold voltage variations in programmed cells [7, 9]. The

fast detrapping usually occurs in charge trap cells rather than floating gate cells [9]. Since 3D

vertical flash memory adopts charge trap cells for easier 3D integration [7], fast detrapping is an

important problem in 3D vertical flash memory. In contrast, the fast detrapping does not happen

in 2D planar flash memory consisting of floating gate cells.

In order to reduce the effect of fast detrapping, several approaches have been proposed. These

approaches include cell structure engineering at device level [9] and reprogramming at circuit

level [7]. However, the coding and signal processing solutions have not been explored yet.

In this chapter, we propose channel coding schemes for both problems: ICI of 2D planar flash

memories and fast detrapping of 3D vertical flash memories. For 2D planar flash memories, the

encoder obtains the side information of ICI and tries to combat the ICI. We argue that the 2D pla-

nar flash memory channel with ICI is similar to the channel model of Costa’s dirty paper coding

in [36]. We first explain why flash memories are dirty due to ICI. We then show that dirty flash

memory can be changed into memory with stuck-at defects of [37] due to the unique asymmetry

property of flash memory between write and erase operations in 3.2. After this transformation,

we can apply channel coding for memory with defective cells to combat ICI in 2D planar flash
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memories. It is interesting that the unique property of flash memory bridges two notable exam-

ples of Gelfand-Pinsker problems: writing on dirty paper and coding for memory with stuck-at

defects.

Next, we propose a channel coding scheme for 3D vertical flash memory. Our scheme aims to

compensate the effect of fast detrapping by using intentional ICI. The basic idea comes from the

observation that ICI increases the threshold voltage of a cell whereas fast detrapping decreases

the threshold voltage of corresponding cell. In order to properly harness the intentional ICI, we

formulate the problem of controlling the intentional ICI into coding for memory with defective

cells. To the best of our knowledge, our conference paper [68] is the first paper to propose a

coding scheme to deal with fast detrapping in 3D vertical flash memory.

Although the proposed coding schemes can improve the data reliability (i.e., decoding failure

probability) by using the side information of ICI or fast detrapping, the write speed would be

degraded during the obtaining of the side information and incorporating it into encoding.

Note that signal processing and soft decision decoding for flash memory can improve the de-

coding failure probability at the expense of decreased read speed due to multiple read operations

needed to obtain soft decision values. In memory systems, it is well-known that the read speed

is more critical than the write speed since the write operation is typically not on the critical path.

Due to write buffers in the memory hierarchy, the write latency can be hidden [35, 46]. Also, the

read operations are required more often than the write operations in many memory applications.

Thus, the coding schemes using side information at the encoder may be preferable over soft

decision decoding from the perspective of speed performance. It is worth mentioning that the

proposed scheme can be combined with LDPC codes using the technique of additive encoding

LDPC codes [69, 70] if we are willing to accept the degradation of read speed.

We cast both problems of combating and harnessing the ICI of flash memories as coding for

memory with defective cells based on the unique properties of flash memories. Thus, we rely

on channel coding with side information about defects as a unified solution for both 2D planar

and 3D vertical flash memories. This side information about defects identifies and targets the
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highly interfered cells of 2D planar flash memory and 3D vertical flash memory cells suffering

from significant charge loss due to fast detrapping. Moreover, we extend the proposed schemes

to MLC flash memories by taking into account the multi-page architecture.

3.2 2D Planar and 3D Vertical Flash Memories

In this section, we explain the basics of 2D planar flash memories and 3D vertical flash memories.

Also, we describe the ICI of 2D planar flash memories and fast detrapping in 3D vertical flash

memories.

3.2.1 Basic Operations and Asymmetry between Write and Erase Opera-

tions

Each cell of 2D planar flash memory is a floating gate transistor whose threshold voltage can be

configured by controlling the amount of electron charge in the floating gate. More electrons in

the floating gate make the corresponding cell’s threshold voltage higher. As shown in Fig. 3.1,

each flash memory block of planar flash memory is a 2D cell array where each cell is connected

to a word-line (WL) and a bit-line (BL).

In order to store b bits per cell, each cell’s threshold voltage is divided into 2b states, similar to

pulse amplitude modulation (PAM). Fig. 3.2 (a) shows the threshold voltage distribution of 1-bit

per cell flash memory, which is traditionally called single-level cell (SLC). Initially, all memory

cells are erased, so their threshold voltages are in the lowest erase state S0. In order to store data,

some of cells in S0 should be written (i.e., programmed) into S1.

For multi-level cell (MLC) flash memories (i.e., b ≥ 2), some of cells in S0 (erase state) will

be written into S1, . . . , S2b−1 (program states) as shown in Fig. 3.2 (b). For b bits per cell flash

memory, each WL stores b pages data.

In write operation, the page buffer in Fig. 3.1 is loaded with a unit of page data. Depending on
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Figure 3.1: 2D planar flash memory block where SSL, GSL, and CSL denote string select-line, ground
select-line, and common source-line, respectively.
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Figure 3.2: Threshold voltage distribution of flash memory cells.

the loaded data in the page buffer, some of cells remain in erase state and others are programmed

into program states.

The most widely used write operation scheme is the incremental step pulse programming

(ISPP) scheme, which was proposed to maintain a tight threshold voltage distribution for high
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reliability [71]. The ISPP is based on repeated program and verify cycles with the staircase

program voltage Vpp. Each program state associates with a verify level that is used in the verify

operation. During each program and verify cycle, the floating gate threshold voltage is increased

by the incremental step voltage ∆Vpp and then compared with the corresponding verify level.

If the threshold voltage of the memory cell is still lower than the verify level, the program and

verify iteration continues. Otherwise, further programming of this cell is disabled [23, 71].

The positions of program states are determined by verify levels and the tightness of each

program state depends on the incremental step voltage ∆Vpp [10, 71]. By reducing ∆Vpp, the

threshold voltage distribution can be made tighter, however the write time increases [71].

In read operation, the threshold voltages of cells in the same WL are compared to a given

read level. After a read operation, a page of binary data is transferred to the page buffer in

Fig. 3.1. The binary data shows whether the threshold voltage of each cell is lower or higher

than the given read level. Namely, the read operation of flash memory is a binary decision. Thus,

multiple read operations are required to obtain a soft decision value, which lowers the read speed.

The degradation of read speed is an important drawback of soft decision decoding [21].

The threshold voltage of flash memory cell can be reduced by erase operation. In flash

memory, all the memory cells in the same flash memory block should be erased at the same

time [71]. Note that a page of data (within a WL) can be written or read (generally, a 2D planar

flash memory block consists of 64 WLs). In addition, the threshold voltage of cell should be

moved into the lowest state S0 by erase operation whereas a slight increase of threshold voltage

is possible by ISPP during write operation [71]. These unique properties of flash memory cause

asymmetry between write and erase operations.

3.2.2 2D Planar Flash Memories: ICI

In flash memory, the threshold voltage shift of one cell affects the threshold voltage of its adjacent

cell because of the ICI. The ICI is mainly attributed to parasitic capacitance between adjacent
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Figure 3.3: Inter-cell interference (ICI) between adjacent cells of 2D planar flash memory.

cells [4, 6].

Fig. 3.3 illustrates the ICI between adjacent cells of 2D planar flash memory. V(i,j) is the

threshold voltage of (i, j) cell which is situated at i-th WL and j-th BL. γWL-to-WL is coupling ratio

between WL and adjacent WL. Also, γBL-to-BL is coupling ratio between BL and adjacent BL.

Finally, γDiag is diagonal coupling ratio. These coupling ratios depend on parasitic capacitances

between adjacent cells. As the cell size continues to shrink, the distances between cells become

smaller, which results in the increase of the parasitic capacitances. The increase of parasitic

capacitances causes the increase of coupling ratios [4, 6].

According to [6], the threshold voltage shift ∆ICIV(i,j) of (i, j) cell due to the ICI is given by

∆ICIV(i,j) = γWL-to-WL
(
∆V(i−1,j) + ∆V(i+1,j)

)
+ γBL-to-BL

(
∆V(i,j−1) + ∆V(i,j+1)

)
+ γDiag

(
∆V(i−1,j−1) + ∆V(i−1,j+1) + ∆V(i+1,j−1) + ∆V(i+1,j+1)

)
(3.1)

where ∆V(i±1,j±1) in the right hand of (3.1) side represent the threshold voltage shifts of adjacent

cells after the (i, j) cell has been written. The ICI that happens before writing (i, j) cell can be

compensated by several write schemes so long as (i, j) cell is in program states [18, 19]. Note

that the ICI to (i, j) cell in S0 cannot be compensated by these write schemes since a cell in S0
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Figure 3.4: 3D vertical flash memory cell array in [1].

is never written (i.e., stays in S0) [19, 28].

3.2.3 3D Vertical Flash Memories: ICI and Fast Detrapping

Among various 3D flash memory array architectures, the vertical channel type architecture hav-

ing multiple WL planes, i.e., 3D vertical flash memory has been adopted in [7] for easier 3D

integration and better device characteristics. Fig. 3.4 illustrates the simplified bird’s eye view of

3D vertical flash memory cell array in [7] and its cross section diagram along single WL plane.

Note that a string-select-line (SSL) group in Fig. 3.4 (a) is equivalent to the 2D planar flash

memory cell array in Fig. 3.1.

In contrast to the 2D planar flash memory where the floating gate is formed as an electron
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storage layer upon single crystal planar silicon channel, the 3D vertical flash memory cell is

based on charge trap flash (CTF) technology where a nitride layer inside oxide-nitride-oxide

(ONO) stack which is grown as a charge trap layer along the circumference of the thin poly-

silicon vertical channel. Note that each charge trap layer in this 3D vertical flash memory is

surrounded by the metal gates along WL plane due to its cylindrical geometric structure.

By taking into account the structure of 3D vertical flash memories, we will address the ICI

of 3D vertical flash memories. Suppose that V(i,j,k) is the threshold voltage of (i, j, k) cell which

is situated at i-th WL, j-th BL, and k-th SSL as shown in Fig. 3.4. The threshold voltage shift

∆ICIV(i,j,k) of the (i, j, k) cell due to the ICI can be given by

∆ICIV(i,j,k) = γWL-to-WL
(
∆V(i−1,j,k) + ∆V(i+1,j,k)

)
+ γBL-to-BL

(
∆V(i,j−1,k) + ∆V(i,j+1,k)

)
+ γSSL-to-SSL

(
∆V(i,j,k−1) + ∆V(i,j,k+1)

)
(3.2)

which is an extension of the ICI model of 2D planar flash memories in (3.1). ∆V(i±1,j±1,k±1) in

the right hand side represent the threshold voltage shifts of adjacent cells after the (i, j, k) cell

has been written. Note that γWL-to-WL is coupling ratio between WL plane and adjacent WL plane.

Also, γBL-to-BL is coupling ratio between BL and adjacent BL. Finally, γSSL-to-SSL is coupling ratio

between SSL group and its adjacent SSL group. The diagonal ICI terms are neglected since they

are very small due to the longer distance between corresponding cells.

Since each charge trap layer in this 3D vertical flash memory is surrounded by the metal gates

along WL plane, the ICI between adjacent BLs typically found in high density 2D planar flash

memory is completely absent in the same WL plane. Similarly, the ICI between adjacent SSL

groups will be negligible due to the metal gates.

The ICI between adjacent WL planes is also reduced compared to the 2D planar flash memory

since the charge trap layer in the 3D vertical flash memory is much thinner than the floating gate

layer in the 2D flash memory. However, the ICI between adjacent WL planes increases as the

distance between WL planes is reduced for the higher cell density. Thus, it is enough to take into
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account only the ICI between adjacent WL planes in the same SSL group and BL. By setting

γBL-to-BL = γSSL-to-SSL = 0, the ICI model of (3.2) can be simplified into

∆ICIV(i,j,k) = γWL-to-WL
(
∆V(i−1,j,k) + ∆V(i+1,j,k)

)
. (3.3)

We explained that the ICI of 3D vertical flash memory is significantly reduced due to the

adoption of CTF technology and the structure of 3D vertical flash memories. However, this

charge trap layer results in fast detrapping, which is an important challenge in the 3D vertical

flash memory [7].

Fast detrapping is the phenomenon where shallowly trapped electrons in charge trap layers

immediately detrap and tunnel out after the programming pulse is terminated [9]. Thus, the

charge loss due to fast detrapping quickly decreases the threshold voltage of corresponding cells

and degrades the threshold voltage distribution. The fast detrapping occurs immediately during

write operation [7, 9].

Device level approaches such as cell structure and material do not completely solve this

problem [9]. In [7], a counter-pulse program using self-boosting was proposed at circuit level,

which accelerates fast detrapping before a verify operation of ISPP such that fast detrapped cells

can be reprogrammed by the subsequent programming pulses. Nevertheless, fast detrapping can

happen again in later programming pulses, which requires a different approach at higher levels

such as coding level. Since the approaches at different levels can coexist, the proposed scheme

at coding level can work with other approaches at lower levels in combating fast detrapping.

3.3 Combating Inevitable Interference for 2D Planar Flash

Memory

In this section, we propose a coding scheme for combating ICI of 2D planar flash memories.

After introducing the channel model of 2D planar flash memory, we explain our coding scheme
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by using coding with side information.

3.3.1 Channel Model of 2D Planar Flash Memory

The channel model of 2D planar flash memory can be given by

Y = X + S2D + Z (3.4)

= X + Zwrite + S2D + Zread (3.5)

= V + S2D + Zread (3.6)

where X and Y are the channel input and output. Also, S2D represents the ICI from adjacent

cells. The additive random noise Z is a sum of Zwrite and Zread where Zwrite is the write noise due

to the initial threshold voltage distribution after erase operation and the incremental step voltage

∆Vpp of ISPP. Zread is the read noise due to other noise sources.

Since the write noise Zwrite precedes the ICI S2D, we consider a random variable V = X +

Zwrite. As shown in (3.1), the shifts of V in adjacent cells determine the ICI S2D. Thus, we claim

that the ICI S2D of (i, j) cell is given by

S2D = ∆ICIV(i,j) (3.7)

where ∆ICIV(i,j) is defined by (3.1). The read noise Zread happens after ICI. The channel model

of (3.4) is supported by experimental results from the 2x nm NAND flash memory [72].

It can be seen that (3.4) is equivalent to the interference channel in [36], which is given by

Y = X + SI + Z (3.8)

where X and Y are the channel input and output, respectively. Also, SI ∼ N
(
0, σ2

SI

)
represents

interference and Z ∼ N (0, σ2
Z) denotes additive noise. Note that SI and Z are independent. We
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assume that the channel input satisfies an average power constraint 1
n

∑n
i=1X

2
i ≤ P for the chan-

nel input vector Xn = (X1, · · · , Xn). In [36], Costa showed that the interference SI can com-

pletely canceled out by dirty paper coding if the entire interference vector SnI = (SI,1, · · · , SI,n)

is known to the encoder.

However, there are important differences between the flash memory channel of (3.4) and

the dirty paper channel of (3.8). First, S2D of (3.4) depends on the adjacent cells’ X and Zwrite

whereas SI of (3.8) is independent of X and Z. In addition, the mean of S2D in (3.4) is not zero

since the coupling ratios are positive and the threshold voltage shifts of adjacent cells ∆V(i±1,j±1)

in (3.1) are nonnegative.

Now, we discuss why it is difficult for the encoder to know S2D. First, the encoder has to know

the channel input X of adjacent cells in different WLs to know S2D. Since the write operation

is performed page by page, it is possible for the encoder to know the channel input of cells in

several WLs only in the case where a large number of continuous pages are written at a time.

Even in the case where the encoder knows enough channel input X of several WLs in ad-

vance, it is still difficult to know the random variable V = X+Zwrite that determines S2D because

of the random write noise Zwrite. In addition, it is much more complicated to know the voltage

shift of adjacent cells (i.e., ∆V(i±1,j±1) in (3.1)) since flash memory’s read operation is inher-

ently binary decision. Hence, multiple read operations are required to know ∆V(i±1,j±1), which

significantly reduce the read speed performance.

Since it is difficult for the encoder to know the ICI S2D due to these reasons, we change

flash memory channel with the ICI into flash memory with defective cells. After this change, the

encoder uses the side information of defects rather than the ICI.
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3.3.2 Proposed Scheme for 2D Planar Flash Memories: Combating ICI by

Coding

Now we propose our scheme to combat the ICI by coding with side information. First, we

describe how to change the 2D planar flash memory channel with ICI into the model of memory

with defective cells. After this change, we can apply channel coding schemes for memory with

defective cells to combat the ICI of flash memories.

SLC

Fig. 3.5 shows the threshold voltage distribution of cells in the i-th WL before writing. Initially,

all cells are in the erase state S0 as shown in Fig. 3.5 (a). However, after writing the adjacent

(i− 1)-th WL, the threshold voltages of cells in the i-th WL will be distorted due to the ICI from

the (i− 1)-th WL as shown in Fig. 3.5 (b). Thus, some of cells’ threshold voltages can be higher

than the given read level η although the i-th WL is yet to be written.

As explained in Section 3.2.2, the threshold voltage of flash memory cells cannot be reduced

during write operation. In order to decrease the threshold voltage of a cell, we have to erase the

whole flash memory block. Thus, the cell whose threshold voltage is higher than the read level η

will be detected as S1. Assume that S0 and S1 denote the data “1” and “0” respectively. If a “1”

is attempted to be written to this cell, an error results. However, “0” can be written into this cell.

Thus, these cells can be regarded as stuck-at 0 defects in Fig. 2.1. If some of the cells regarded as

stuck-at 0 defects may be “1” due to the read noise Zread, those errors can be regarded as random

errors and corrected by the standard ECC.

The defect information of stuck-at 0 defects can be obtained by just one read operation before

writing the i-th WL. Before writing the i-th WL, the read operation is performed at the given read

level, i.e., pre-read operation. When the read level for the pre-read operation, i.e., pre-read level

ηpre is the same as the read level η, the cells whose threshold voltages are higher than the read

level η can be identified by the pre-read operation. Thus, the encoder can incorporate the side
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Figure 3.5: Change from the 2D planar flash memory channel with the ICI to the model of memory with
defective cells by one pre-read operation.

information of defects and reduce the errors by highly interfered cells.

Using only one pre-read operation before writing, the flash memory channel with the ICI in

(3.4) can be changed into (2.8) of binary memory with defective cells. In (2.8) of memory with

defective cells, X , Y , and Z are the binary vectors. In contrast, X , Y , and Z of (3.4) are real

values. Note the difference between X + S2D in (3.4) and X ◦ S in (2.8). Now, we can combat

the ICI by coding schemes for memory with defective cells.

It is worth mentioning that S does not reveal the BL-to-BL ICI from the same WL and the

ICI from the (i+1)-th WL, which are subsequent ICI since the pre-read operation is done before

the write operations of i-th and (i+ 1)-th WLs.

However, the effect of these subsequent ICI can be alleviated by changing the pre-read level.

Suppose that the pre-read level ηpre is lower than the read level η as shown in Fig. 3.6. A cell
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Figure 3.6: Vulnerable cells can also be regarded as stuck-at 0 defects by setting a pre-read level such that
ηpre < η.

whose threshold voltage is between ηpre and η is a vulnerable cell although it is not a stuck-at 0

defect. When the data “1” is written to this cell, the ISPP cannot change the threshold voltage of

this cell and its threshold voltage is near η. Thus, it is vulnerable to the subsequent ICI and read

noise. On the other hand, the cell’s threshold voltage will be higher than a verify level of S1 by

the ISPP if the data “0” is written to this cell. Note that the verify level of S1 is higher than the

read level η.

Thus, by setting a pre-read level such that ηpre < η, we can regard all the cells whose threshold

voltages are higher than the pre-read level ηpre as stuck-at 0 defects. Using coding with side

information of defects, only the data “0” will be written to these cells. Thus, we can obtain more

noise margin between S0 and S1 and prevent the subsequent ICI and read noise.

MLC

We can extend our proposed scheme to MLC flash memory. Most MLC flash memories adopt

the multi-page architecture [17]. In 2 bits per cell flash memories, the least significant bit (LSB)

and most significant bit (MSB) are mapped to two separate pages: LSB page and MSB page.

Since one page is the unit of data that is written and read at one time, the ECC should be applied

within the same page.

Fig. 3.7 explains the most widely used MLC write operation in [18]. At the LSB page writing

stage, the cell can be written from “11” to “x0” as a temporary state just like SLC write operation.
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Figure 3.7: Extension to MLC flash memories.

Before writing the MSB page, a read operation is required to detect the LSB page data. If the

threshold voltage of a cell is lower than ηtemp, then we decide that this cell is in the erase state

S0 (11) and the corresponding LSB data is 1. During the MSB page writing stage, this cell

is programmed to either S0 or S1 depending on the MSB page data. Otherwise, the cell is in

the temporary state (x0) and its LSB data is 0. This cell is programmed to either S2 or S3

corresponding to the MSB page data. It is worth mentioning that the MSB page write operation

can be separated by two sets of SLC write depending on the LSB page data: 1) from S0 to S0 or
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S1 and 2) from temporary state to S2 or S3.

The ICI from the next WL can be reduced by performing MSB page writing for a selected WL

after writing the LSB page of next WL [18]. The ICI from writing the LSB page in (i + 1)-WL

can be compensated during writing the MSB page in i-th WL due to the page address ordering

in Fig. 3.7 (b). The details of multi-page architecture and page address ordering can be found

in [17, 18].

If the LSB page data detection is erroneous, the finally programmed state can be wrong.

Suppose that the LSB page data 1 is misread as 0 because the threshold voltage of corresponding

cell is higher than ηtemp. If the MSB page data is 1, then the final state will be S3 (10) instead of

S0 (11) [73, 74]. Hence, an error happens in the LSB page. We call this error as internal error,

which can result in a large magnitude error (e.g., from S0 to S3 and vice versa).

However, many more errors than internal errors happen between S1 and S2. The reason is that

the noise margin between S1 and S2 is much smaller than that of erase state S0 (11) and temporary

state (x0). Most LSB page errors between S1 and S2 are not related to the side information of

stuck-at 0 defects obtained by read at the pre-read level ηpre,0. Instead, they depend on the noise

margin between S1 and S2 decided during the MSB write operation. Hence, we do not apply the

proposed scheme for LSB page although the proposed scheme can reduce the internal errors in

the LSB page.

For the MSB page, the proposed scheme can improve the decoding failure probability by

using the side information. Before writing the MSB page, two pre-read operations at the pre-

read levels of ηpre,1 and ηpre,2 are required to obtain the side information. A cell whose threshold

voltage is between ηpre,1 and ηtemp will be regarded as a stuck-at 0 defect. Also, a cell whose

threshold voltage is higher than ηpre,2 is regarded as a stuck-at 1 defect. By using this side

information of defects, the proposed scheme can improve the decoding failure probability. The

proposed scheme can be extended to three and more bits per cell MLC flash memories by the

same way.
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3.3.3 Dirty Paper vs. Dirty Flash Memory

We explain that the unique asymmetry property of write and erase operations of flash memory

connects two notable examples of Gelfand-Pinsker problem: writing on dirty paper and memory

with defective cells.

Imagine a sheet of lined paper (Costa considered a sheet of blank paper in [36]). A flash

memory block is a sheet of paper and each WL corresponds to a row between lines. If a row

between lines is spacious, then the writer can easily write a message between lines.

In order to write more messages on a sheet of paper, the writer tries to narrow the space be-

tween lines (i.e., scaling down). However, as the space between lines narrows, it is more difficult

to write a message without crossing the lines (i.e., ICI). Eventually, after writing a message in

a narrower space, the adjacent rows have more dirty spots (i.e., stuck-at defects) due to the ink

marks crossing the line. One way to solve this problem is to erase the dirty spots in a corre-

sponding row before writing. However, erasing a row is not permitted because of the asymmetry

between write and erase operations in flash memory.

Now we consider another option instead of erasing a row before writing. Assume that the

writer knows the location of the dirty spots, but the reader cannot distinguish between the mes-

sage and the dirt [36]. Hence, the problem of writing on flash memory with the ICI can be

considered as a Costa’s writing on dirty paper, i.e., writing on dirty flash memory. Since the dirty

spots are changed into stuck-at defects by the pre-read operation, writing on dirty flash memory

is equivalent to writing on (flash) memory with stuck-at defects. Thus, writing on dirty paper

and coding for memory with stuck-at defects can be bridged in 2D planar flash memory.

3.3.4 Simulation Results

We present the simulation results of proposed scheme for 2D planar flash memories. The simu-

lation parameters are summarized in Table. 3.1. The initial threshold voltage distribution (after

erasing a flash memory block) is assumed to be the Gaussian distribution N (−4, 12). ISPP was
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Table 3.1: Simulation Parameters of 2D Planar Flash Memory

Parameters Values

Architecture All bit-line (ABL)

Initial threshold voltage
N
(
−4, 12

)
distribution

Verify levels
For SLC, ν1 = 1

For MLC, ν1 = 1, ν2 = 2.5, ν3 = 4.5

Incremental step voltage For SLC and LSB of MLC, ∆Vpp = 1

of ISPP For MSB of MLC, ∆Vpp = 0.25(
γWL-to-WL, γBL-to-BL, γDiag

)
α (0.1, 0.08, 0.006)

Zread of (3.6) N
(

0, σ2
Zread

)

implemented with the parameters of the verify level for Si, i.e., νi and the incremental step volt-

age ∆Vpp. The variance of initial threshold voltage distribution and the incremental step voltage

∆Vpp work for Zwrite of (3.5), which precedes the ICI.

The ICI S2D is calculated by (3.1) where the coupling ratios are (γWL-to-WL, γBL-to-BL, γDiag) =

α (0.1, 0.08, 0.006). The scaling factor α represents the ICI strength, and the ratios between

γWL-to-WL, γBL-to-BL, and γDiag are taken from [4]. These ratios can be different for each product of

flash memory. The read noise Zread after the ICI is assumed to the N
(
0, σ2

Zread

)
.

Most of our simulation results were based on PBCH codes. The possible parameter sets of

[n = 1023, k = 923, l] PBCH codes are presented in Table 2.1. However, the proposed scheme

can be combined with additive encoding LDPC codes. After obtaining the defect information

corresponding the ICI by the proposed scheme, this defect information can be incorporated by

additive encoding LDPC codes [69, 70]. In the two-dimensional magnetic recording (TDMR)

channel where the soft decision value is obtained without the read speed degradation, [70] shows

that additive encoding LDPC codes with defect information corresponding to the channel state

of TDMR improve the decoding failure probability of LDPC codes.

Fig. 3.8 shows that the proposed scheme can improve the threshold distribution by using the
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Figure 3.8: The improvement of threshold voltage distribution by proposed scheme (SLC, n = 1023, k =
923, R = 0.90, α = 1.2, σZread = 0.25, ηpre = −1.4).

side information of highly interfered cells and vulnerable cells, which are regarded as stuck-at

defects. In contrast, the standard channel coding schemes cannot improve the threshold voltage

distribution.

The improvement of threshold voltage distribution depends on the redundancy allocation

(l, r) and the pre-read level ηpre. Fig. 3.9 (a) shows this relation where raw bit error rates (BER)

are plotted instead of threshold voltage are reduced by allocating more redundancy l for masking

defects, which leads to the improvement of threshold voltage distributions.

Note that the improvement of raw BER levels off if the coding masks most of cells regarded

as stuck-at defects. Once the raw BER levels off, we should not waste more redundancy l for

masking defects because the total redundancy l+ r = n− k is fixed. If r is too small, we cannot

correct random errors due to the read noise Zread well. For lower pre-read level ηpre, more cells

are regarded as stuck-at defects, so more redundancy l for masking defects is required to mask

stuck-at defects. The pre-read level does not affect the raw BER if l = 0 because the coding

ignores the side information of defects for l = 0.

Fig. 3.9 (b) shows that P (m̂ 6= m) is improved by the proposed scheme. If l > 0, then
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Figure 3.9: The improvement of raw BER and probability of decoding failure by the proposed scheme
(SLC, n = 1023, k = 923, R = 0.90, α = 1.2, σZread = 0.25). If l = 0, then the side information is
ignored, which is equivalent to the BCH code.

the encoder uses the side information of defects to improve P (m̂ 6= m). Note that P (m̂ 6= m)

depends on the pre-read level ηpre since it controls the number of cells regarded as defects. In

order to minimize P (m̂ 6= m), we should choose the optimal redundancy allocation (l∗, r∗). For

lower ηpre, more cells are regarded as stuck-at defects. More defects require more redundancy for
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Figure 3.10: Comparison of P (m̂ 6= m) (SLC, n = 1023, k = 923, R = 0.90).

l. For the given simulation results in Fig. 3.9 (b), the pre-read level ηpre = −1.4 and (l∗, r∗) =

(40, 60) minimizes P (m̂ 6= m), which was improved from 2.1 × 10−5 to 1.1 × 10−6 by using

the side information of defects.

Fig. 3.10 compares P (m̂ 6= m) of BCH codes and our proposed scheme based on PBCH

codes where l was optimized for each channel parameters α and σZread . Also, the upper bound

on P (m̂ 6= m) by (2.62) is close to the simulation results. The raw BER and the empirical
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Figure 3.11: Comparison of P (m̂ 6= m) for BCH codes, proposed scheme, and LDPC codes (SLC,
R = 0.89, α = 1.4).

probability of stuck-at defects are used for p and β in (2.62), respectively. By using this upper

bound, we can estimate P (m̂ 6= m) quickly without the computationally demanding Monte-

Carlo simulations especially for very low P (m̂ 6= m).

Fig. 3.10 (b) shows that the gain of scaling factor α by proposed scheme is around 0.1.

We can claim that α ∝ 1
D

where D denotes the distances between flash memory cells because

the parasitic capacitances are inversely proportional to D. Since the density of 2D planar flash

memory is proportional to 1
D2 , we can claim that the density gain is about 19%

(
= 1.22

1.12

)
for

P (m̂ 6= m) ≈ 10−6 in Fig. 3.10 (b).

In Fig. 3.11, we compare P (m̂ 6= m) of BCH codes, proposed scheme based on PBCH

codes, and LDPC codes. LDPC codes with column weight four came from [75] and the read lev-

els are chosen to maximize the mutual information [22]. For P (m̂ 6= m) ≈ 10−5, the proposed

scheme based on PBCH codes is comparable to LDPC code with 2 reads although the read speed

performance is the same as LDPC code with 1 read. Since the read speed degradation is more

critical than write speed degradation in many memory system applications, the proposed scheme

has an advantage over soft decision decoding of LDPC codes. In addition, the proposed scheme
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based on PBCH codes does not suffer from error floor and can be estimated by the upper bound

in (2.62). If we are willing to accept the read speed degradation, then the proposed scheme can

be combined with LDPC codes, i.e., additive encoding LDPC codes.

Fig. 3.12 (a) shows that the proposed scheme can improve the threshold voltage distribution

of MLC flash memories. Fig. 3.12 (b) shows the improvement of P (m̂ 6= m) of the MSB page

data by the proposed scheme.

3.4 Harnessing Intentional Interference for 3D Vertical Flash

Memory

In this section, we propose a coding scheme that reduces the effect of fast detrapping in 3D

vertical flash memories. In order to compensate the charge loss by fast detrapping, we take

advantage of the intentional ICI controlled by coding with side information corresponding to fast

detrapping.

3.4.1 Channel Model of 3D Vertical Flash Memory

By taking into account fast detrapping, the 3D vertical flash memory channel model can be

modified from the 2D planar flash memory channel model of (3.6) as follows.

Y = V + S3D + Zread = V + S3D + Zfast + Zrandom (3.9)

where Zread = Zfast + Zrandom. Zfast denotes the noise due to fast detrapping. All the other read

noise sources are represented by Zrandom. In addition, S3D denotes the ICI of the 3D vertical flash

memory. As shown in (3.3), S3D of (i, j, k) cell is given by

S3D = ∆ICIV(i,j,k) = γWL-to-WL
(
∆V(i−1,j,k) + ∆V(i+1,j,k)

)
.
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Figure 3.12: The improvement of threshold voltage distribution and P (m̂ 6= m) (MLC, n = 1023, k =
923, R = 0.90).

3.4.2 Proposed Scheme for 3D Vertical Flash Memory: Harnessing ICI by

Coding

In order to reduce the effect of fast detrapping using coding with side information, we should first

obtain the side information corresponding to fast detrapping. Fig. 3.13 (a) shows the threshold
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Figure 3.13: Fast detrapping and identifying cells that suffer from fast detrapping.

voltage distribution before fast detrapping happens. After writing the i-th WL, some of cells in

S1 immediately suffer from fast detrapping and their threshold voltages decrease as shown in

Fig. 3.13 (b).

The cells suffering from fast detrapping can be identified using two read operations at the

read level η and the identify level ζ , as shown in Fig. 3.13 (c). If a cell’s threshold voltage is

between η and ζ , we can claim that this cell suffers from fast detrapping and the encoder obtains

the location of this cell, which is the side information about fast detrapping.
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Figure 3.14: Intentional ICI for compensating fast detrapping. The cell C(i+1,j,k) will be regarded as
stuck-at 0 (“S1”) defect for the intentional ICI.

If the encoder holds the original data of the i-th WL, we can obtain this side information of

fast detrapping by just one read operation since we do not need to apply the read operation at the

read level η. By combining the original data and the binary data obtained from the read operation

at the identify level ζ , the encoder can identify the cells suffering from fast detrapping.

The identify level ζ does not need to be the same as the verify level ν. We can change the

identify level ζ by taking into account the strength of fast detrapping. The number of identified

cells depend on the identify level ζ .

Now the encoder knows the side information corresponding to fast detrapping in cells of the

i-th WL. The side information represents the locations of identified cells, which suffer from fast

detrapping. The next step is to use this side information during encoding.

The key idea is to compensate the effect of the fast detrapping in the i-th WL by controlling

the intentional ICI from the (i + 1)-th WL. The intentional ICI can compensate the decrease

of threshold voltage due to fast detrapping since the ICI increases the threshold voltage of the

interfered cell. Note that fast detrapping results in charge loss, which decreases the corresponding

cells’ threshold voltages.

Assume that a cellC(i,j,k) in Fig. 3.14 suffered from fast detrapping, which has been identified

by the read operations. If the upper cell C(i+1,j,k) is written into S1, the ICI from C(i+1,j,k) will

increase the threshold voltage of C(i,j,k) during increasing the threshold voltage of C(i+1,j,k) from
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S0 to S1. If C(i+1,j,k) is written into S0, the threshold voltage of C(i+1,j,k) remains at the initial

erase state S0, so the ICI from C(i+1,j,k) is absent.

Thus, in order to compensate the effect of fast detrapping, the upper cell C(i+1,j,k) of the

identified cell C(i,j,k) should be written into S1 which is mapped into binary data “0” as shown in

Fig. 3.13 (a).

As a technique to control the intentional ICI properly, we formulate the problem of control-

ling the intentional ICI into memory with defective cells. Since the cell C(i+1,j,k) in Fig. 3.14

should store the data “0” (i.e., S1) for the intentional ICI, we will regard this cell C(i+1,j,k) as

stuck-at 0 defect. Then, the additive encoding tries to make the codeword’s element correspond-

ing the cell C(i+1,j,k) become “0.” After writing the controlled data into the (i + 1)-th WL, the

ICI from the cell C(i+1,j,k) increases the threshold voltage of the cell C(i,j,k), which compensates

the threshold voltage decrease of the cell C(i,j,k) due to fast detrapping.

The proposed scheme can be extended to MLC flash memories. For 2 bits per cell 3D vertical

flash memories, suppose that the MSB page write operation is done in the i-th WL. Because of

page address ordering in Fig. 3.7 (b), the (i + 1)-th WL’s LSB page is written before the MSB

page write operation of i-th WL. Hence, the cells in the (i + 1)-th WL will be in S0 (11) or

temporary state (x0) as shown in Fig. 3.7 (a). Before writing the MSB page of the (i+ 1)-th WL,

we can identify a cell C(i,j,k) suffering from fast detrapping among the program states (S1, S2,

and S3) by read operations.

For the intentional ICI, we should increase the threshold voltage of the upper cell C(i+1,j,k).

In Fig. 3.7 (a), we can observe that the the threshold voltage of C(i+1,j,k) can be increased from

S0 (11) to S1 (01) or from temporary state (x0) to S3 (10). Hence, the MSB page data of C(i+1,j,k)

should be regarded as a stuck-at 0 defect if C(i+1,j,k) is in S0 (11). Also, the MSB page data of

C(i+1,j,k) should be regarded as a stuck-at 1 defect if C(i+1,j,k) is in temporary state (x0).

In summary, the encoder obtains the locations of identified cells which are suffering from

fast detrapping in the i-th WL before writing the (i+ 1)-th WL. These locations can be obtained

by reading at the identify levels, which would degrade the write speed performance. For the
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intentional ICI, the upper cells in the (i + 1)-th WL of the identified cell in the i-th WL will be

regarded as stuck-at defects. Note that the side information of fast detrapping in the i-th WL is

changed into the side information of defects in the (i + 1)-th WL. Hence, we can harness the

intentional ICI by a coding technique for memory with defects.

3.4.3 Simulation Results

In this section, simulation results are presented. We use the same simulation parameters as

in Table 3.1 besides the noise due to fast detrapping and coupling ratio. The noise due to fast

detrappingZfast is assumed to be the Gaussian distributionN
(
−0.2, σ2

Zfast

)
by taking into account

experimental results in [9]. We applied [n = 1023, k = 923, l] PBCH codes with the two-step

encoding scheme in Table 2.1.

Fig. 3.15 (a) shows that controlling ICI by coding with side information can compensate

the effect of fast detrapping. After compensating the fast detrapping by the intentional ICI, the

threshold voltage distribution can be improved. Fig. 3.15 (b) shows that P (m̂ 6= m) can be

improved by the proposed scheme. If the redundancy l for masking defects is zero, it means

that the side information of fast detrapping is ignored. Otherwise, the encoder uses the side

information of fast detrapping to improve P (m̂ 6= m). Note that P (m̂ 6= m) depends on the

identify level ζ since it controls the number of identified cells, which is equivalent to the number

of cells regarded as stuck-at defects in the upper WL. Also, the optimal redundancy allocation

(l∗, r∗) to minimize P (m̂ 6= m) depends on the identify level ζ . For larger ζ , the number of

cells identified as defects increases, which requires more redundancy for masking defects. For

the given parameters in Fig. 3.15 (b), the identify level of ζ = 0.2 minimizes P (m̂ 6= m).

Fig. 3.16 compares P (m̂ 6= m) of BCH codes and our proposed scheme. In Fig. 3.16 (a),

σZfast of fast detrapping is varied from 0.4 to 0.5 for the given random noise of σZrandom = 0.2.

By using the side information of fast detrapping, we can significantly improve P (m̂ 6= m) for

different σZfast . Also, Fig. 3.16 (b) compares P (m̂ 6= m) for different σZrandom for the given σZfast =
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Figure 3.15: The improvement of threshold voltage distribution and P (m̂ 6= m) (SLC, n = 1023, k =
923, R = 0.90, σZfast = 0.4, σZrandom = 0.2).

0.40. It is worth mentioning that the improvement of P (m̂ 6= m) becomes significant as the fast

detrapping Zfast dominates the random noise Zrandom.
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Figure 3.16: Comparison of P (m̂ 6= m) for different σZfast of fast detrapping and σZrandom (SLC, n =
1023, k = 923, R = 0.90).

3.5 Conclusion

Our proposed schemes can combat and harness the ICI via coding with side information at the

encoder. For 2D planar flash memory, the proposed scheme combats the ICI, which is a primary

challenge in 2D planar flash memory. For 3D vertical flash memory, we harness the intentional
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ICI via coding to compensate the effect of fast detrapping, which is a problem of 3D vertical

flash memory. Because of the unique properties of flash memory, both problems of combating

and harnessing the ICI were cast as the coding problem of memory with defective cells. Our

proposed coding schemes can improve the data reliability at the cost of decrease in write speed

performance whereas soft decision decoding schemes degrade the read speed.
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Chapter 4

Coding for Resistive Memory

4.1 Introduction

Among several nonvolatile memory technologies, resistive memories have attracted significant

research interest recently. The resistive memories are nonvolatile memories that store data by

changing the resistance of each memory cell. Phase change memories (PCM) and resistive ran-

dom access memories (RRAM or ReRAM) are major technologies of resistive memories.

The advantages of resistive memories are scalability, non-volatility, fast speed, and rewritabil-

ity [2, 11, 12, 13, 14]. First, the potential scalability to the nanometer regime is one of the most

important advantages of resistive memories over dynamic random access memories (DRAM) and

flash memories [15, 16]. Unlike DRAM, resistive memories are nonvolatile memories, so refresh

operations as in DRAM are unnecessary. Resistive memories can realize the MLC and be stacked

in 3D with a compact cross-point architecture for higher density. Moreover, resistive memory

technologies are expected to offer better speed performance than flash memories [12, 14]. The

resistive memories also allow rewriting the data without erase operation, which is an advantage

over flash memories where a number of cells should be erased to rewrite a single memory cell.

Two important challenges of resistive memories are write endurance and write power con-

sumption. The write endurance refers to the fact that the repeated writes cause resistive mem-
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ory cells to become unreliable. The write endurance is a critical characteristic because higher

endurance broadens the application areas where frequent write operations are required [12]. Al-

though the write endurance of resistive memories is better than that of flash memories, their

write endurance is worse than DRAM. In order to open up many potential applications such as

embedded memory, the write endurance should be improved substantially [12, 14].

The write operation of resistive memories requires higher power consumption than the read

operation so as to change the physical states of memory cells. Especially, the increase of resis-

tance of PCM cell needs a substantial power [12, 13]. This inherent write power consumption

problem is an important hurdle for the increase of write bandwidth because the high write power

prohibits writing of many bits in parallel [13].

In order to explore coding approaches to improve write endurance and power consumption

of resistive memories, a proper channel model is important. We rely on the channel model

of memory with stuck-at defects [37] because a heavily cycled (i.e., rewritten) memory cell’s

resistance can not be modulated any more due to unique physical mechanisms of resistive mem-

ories [12, 13, 14]. Hence, a cell suffering from write endurance problem can be regarded as a

stuck-at defect from the perspective of storing data.

Based on this model of memory with stuck-at defect (i.e., defect channel model), we propose

locally rewritable codes (LWC).1 Inspired by the repair locality defined for distributed storage

systems, we introduce the rewriting locality for resistive memories. When a single stuck-at defect

happens, we derive the upper bounds on the writing cost. These upper bounds explicitly show

that a small value of rewriting locality can reduce the problems of write endurance and power

consumption. Note that a small value of repair locality is preferred for fast repair of single disk

node failure.

In addition, we provide the construction of LWC. We show that existing construction methods

of locally repairable codes (LRC) can be used to construct LWC due to the duality between LRC

1LWC instead of LRC is used as the acronym of locally rewritable codes so as to distinguish them from locally
repairable codes (LRC).
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Figure 4.1: Cell distribution of resistive memories. Note that x ∈ Q = {0, 1, . . . , q − 1} where q = 2b

represents the channel input of the given channel model.

and LWC. Afterwards, we investigate the LWC with error correcting capability for resistive

memories suffering from random errors as well as write endurance problem.

4.2 Basics of Resistive Memories

Resistive memories store data by modulating the resistance of each memory cell. The write

operation includes the set operation and the reset operation. The set operation is the switching

event from the high resistance state (HRS) to the low resistance state (LRS). Conversely, the

switching event from LRS to HRS is called the reset operation as shown in Fig. 4.1 (a). To read

the data from a cell, a small read voltage is applied that does not affect the resistance state of the

memory cell to detect whether the cell is lower or higher than the given read level. Hence, the

write operation requires much higher power consumption than the read operation [12, 14].

Although the write endurance characteristic of resistive memories is better than flash mem-

ories, the write endurance should be improved substantially for the embedded memory applica-

tions and storage class memory applications where frequent write operations are required [14].
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PCM and RRAM have unique physical mechanisms that result in write endurance problem,

which will be explained in the subsequent subsections. However, the outcomes of write en-

durance problem have commonality that the resistance state of a cell suffering from write en-

durance problem can not be changed by the set operation or reset operation. From the perspective

of storing data, this heavily rewritten cell can be regarded as a stuck-at defect as will be explained

in Section 2.2.1.

4.2.1 Phase Change Memories (PCM)

PCM has shown great promise as a storage class memory due to its superior resistance ratio,

scalability, and high speed performance. PCM consists of chalcogenide materials like Ge-Sb-Te

(GST), which are known to have two stable resistance states [12]. As shown in Fig. 4.2, the LRS

corresponds to a crystalline structure of the chalcogenide material, whereas the HRS corresponds

to an amorphous structure.

In PCM, the write operations including set and reset operations consume much more power

than the read operation. The set operation is brought about by applying a long and low-power

heat pulse to the device. The reset operation is done by pulsing the device with a short and high-

power heat pulse that melts the chalcogenide, thus amorphizing it. The reset operation consumes

the largest power since the cell needs to reach the melting temperature as shown in Fig. 4.2. To

read the stored data, the resistance of the cell is measured by passing an electrical current small

enough not to disturb the current state [2, 12].

One of the main challenges for the storage class memory application is its limited write

endurance. From the point of view of the data, this endurance problems can be interpreted as

stuck-at defects. Such stuck-at defects may either appear in as-fabricated devices due to process

variations or may be generated during the rewriting (i.e., cycling) process.

The stuck-at defects are classified into: (1) stuck-at LRS defect which corresponds to the

cell in LRS being unable to reset to HRS and (2) stuck-at HRS defect which corresponds to the
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Figure 4.2: Principle of PCM. Starting from the amorphous phase with large resistance, a current pulse is
applied. After sufficiently long pulse heats the material above the minimum crystallization temperature Tx
to crystallize the material, the resistance is low (set operation). After the larger and short pulse is applied
to heat the material above the melting temperature Tm, the material is melt-quenched and returns to the
amorphous (reset operation). Different colors represent different atoms (such as Ge, Sb, and Te in the
commonly used GeSbTe compounds) in the phase change materials [2].

cell in HRS incapable of being set to LRS for the same operating conditions. The stuck-at LRS

defect is traditionally attributed to the formation of crystallites in the amorphous state that do not

melt during reset operation due to local inhomogeneities [76]. This causes the HRS to gradually

move towards the LRS with cycling. Similarly, the stuck-at HRS is attributed to the formation of

voids in the materials and their eventual agglomeration [77]. This causes the material to become

inhomogeneous and often insufficient heating during the set operation.

4.2.2 Resistive Random-Access Memories (RRAM)

RRAM is a resistance change memory that relies on micro-structural change in the material

in order to modulate the resistance of each cell. As shown in Fig. 4.3, the RRAM cell con-

sists of a metal–oxide–metal (MOM) stack in which the sub-oxide is typically TaOx, HfOx or

TiOx. RRAM can be integrated with conventional complementary metal–oxide–semiconductor

(CMOS) in a simple way, using a material set compatible with the conventional CMOS fabrica-

tion environment and process temperatures.

The RRAM device has to go through a one-time programming process known as forming to

become a resistive switching memory. The forming process involves the application of a high

voltage pulse that causes the oxide to breakdown and forms a conductive filament shunting the

two metal electrodes [14, 78].
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Figure 4.3: Direct current–voltage characteristics of the RRAM device showing forming and switching
processes and a physical mechanism of filament formation and dissolution.

The LRS of RRAM memory cell corresponds to the shunted conductive filament. This fil-

ament can be disconnected by applying a voltage of the opposite polarity. Once the conductive

filament is disconnected, the device resistance increases, and the device is said to be in the HRS.

The device can now be cycled between LRS and HRS by applying voltages of opposite polarity

as shown in Fig. 4.3.

Similar to PCM, the write operation of RRAM consumes more than an order of magnitude

power compared to the read operation. This is due to the read operation being based on capacitive

sensing, in which the bitline capacitor is discharged through the resistive memory cell and thus

needing only relative references, making read a low-power process.

RRAM also suffers from write endurance problem [14, 79, 80]. The stuck-at LRS defects

have been attributed to the widening of the conductive filament [81]. Once the filament widens,

the device resistance drops and the reset power is insufficient to disconnect the filament. This

causes the cell to be permanently set to LRS. The widening of the filament is thought of as a

stochastic increase in the number of oxygen vacancies in the filament during the set and form-

ing operation. It can be explained by an incomplete retraction of oxygen vacancies during the

previous reset [82]. Similarly, the device can also suffer from a stuck-at HRS defect if the de-

98



0 0.5 1 1.5 2 2.5
0

20

40

60

80

100

120

140

160

180

200

| ∆ log
10

R |

W
ri
te

 p
o
w

e
r 

c
o
n
s
u
m

p
ti
o
n
 (

µ
A

)

Figure 4.4: Relation between resistance change and write power consumption. The RRAM cells were
200 nm TiN-TaOx-TiN stack and show reliable resistive switching behavior. These cells were fabricated
at Carnegie Mellon University with the same material as in [3].

vice undergoes over-reset [83]. In this process, the oxygen vacancies are retracted irreversibly,

making the device stuck-at HRS defect.

4.3 Writing Cost

We define two writing costs: rewriting cost and initial writing cost which are related to power

consumption and write endurance. Based on experimental data from real RRAM devices, we

explain why high writing costs are harmful to write endurance and increase power consumption.

4.3.1 Power Consumption and Endurance in RRAM Devices

From the experimental data, we investigate the characteristics of write power consumption and

write endurance in RRAM devices. First, we evaluated the increase in power as a function of

resistance change. The resistance change implies filament completion and then growth. Recent

work [84] demonstrates that devices that experience a higher power switching pulse form a larger

filament. Since the finding of [84] indicated that the power density remains nearly constant for

different power values, it follows that the change in logR is directly proportional to the power

99



10
0

10
2

10
4

10
6

10
8

10
3

10
4

10
5

10
6

10
7

Cycles (# of rewrites)

R
e
s
is

ta
n
c
e
, 
R

 (
Ω

)

(a) Stuck-at HRS

10
0

10
2

10
4

10
6

10
8

10
3

10
4

10
5

10
6

10
7

Cycles (# of rewrites)

R
e
s
is

ta
n
c
e
, 
R

 (
Ω

)
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Figure 4.5: Write endurance characteristics of 85 nm RRAM cells. The raw data of these experimental
results came from IMEC.

consumption.

Fig. 4.4 shows an increase in the write power as the device gradually goes from HRS to LRS

using 100 ns pulses of increasing amplitude. The x-axis shows a change in logR of the device.

Since the states of resistive memories depend on logR [12, 14], we can claim that the write

power consumption is proportional to the state change in Fig. 4.1 where x-axis denotes logR.
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Fig. 4.5 shows the write endurance characteristics of 85 nm RRAM cells. IMEC provided

these experimental data which were presented in [80]. Only 17 cells were plotted in Fig. 4.5.

However, we obtained experimental data from more than 500 cells and observed similar charac-

teristics.

From Fig. 4.5, we can claim that the probability of defect β depends on the number of

rewrites. As the number of rewrites increases, more cells will become stuck-at defects. When

the number of rewrites is 108, the resistances of 16 cells among 17 cells are higher than 105 in

Fig. 4.5 (a). Also, 16 cells among 17 cells have lower resistance than 104 in Fig. 4.5 (b).

One property of write endurance is that the stuck-at defect is not directly proportional to the

change in logR. The experimental results in [80] show that the different set operation voltages

(e.g., 1.5V and 2.5V) result in similar write endurance failures. Hence, we can claim that the

number of rewrites is a valid measure of write endurance.

4.3.2 Writing Cost: Rewriting Cost and Initial Writing Cost

We define the rewriting cost using `0-norm and `1-norm.

Definition 4.1 (Rewriting Cost) Suppose that m was stored by x in n cells. If x′ is rewritten to

these n cells to store the updated m′, the rewriting costs are given by

∆`0(m,m′) = ‖x− x′‖0 (4.1)

∆`1(m,m′) = ‖x− x′‖1 (4.2)

where we assume that the channel state vector s in (2.5) does not change and both c and c′ mask

stuck-at defects.

Remark 4.2 ∆`0(m,m′) represents the number of cells to be rewritten whereas ∆`1(m,m′)

corresponds to the sum of resistance state changes during rewriting. Since the write power

consumption depends on the change in logR as shown in Fig. 4.4, we can claim that ∆`1(m,m′)
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is a good measure of write power consumption. With regards to write endurance, experimental

results in [80] support that ∆`0(m,m′) is a good measure.

Example 4.3 Suppose that q = 4, n = 6, s = (3, 0, λ, 1, λ, λ), and x = (3, 0, 2, 1, 0, 1). Also,

suppose that x′ = (3, 0, 1, 1, 3, 1) is rewritten to these n cell without an stuck-at error, i.e., ε = 0.

Then, ∆`0(m,m′) = ‖ (3, 0, 2, 1, 0, 1) − (3, 0, 1, 1, 3, 1) ‖0 = ‖ (0, 0, 1, 0,−3, 0) ‖0 = 2. Also,

∆`1(m,m′) = ‖ (0, 0, 1, 0,−3, 0) ‖1 = 4.

Remark 4.4 For SLC (i.e., q = 2), ∆`0(m) = ∆`1(m) and ∆`0(m,m′) = ∆`1(m,m′).

Definition 4.5 (Initial Writing Cost) Suppose that m was stored by its codeword c in the initial

stage of n cells where all the normal cells are set to zeros. The initial writing costs are given by

∆`0(m) = ‖x‖0 − ‖sU‖0 (4.3)

∆`1(m) = ‖x‖1 − ‖sU‖1 (4.4)

where the location of defects U was defined in Definition 2.1. Also, ‖sU‖0 denotes the number

of stuck-at defects whose stuck-at values are nonzero. ‖sU‖1 represents the `1-norm of stuck-at

values among n cells.

We cannot write in defective cells (i.e., stuck-at defects) because their stuck-at values are

fixed. If the encoder succeeds to mask stuck-at defects, the stuck-at defects do not affect the

initial writing cost. ∆`0(m) represents the number of normal cells to be written whereas ∆`1(m)

corresponds to the sum of resistance state changes in normal cells during initial writing.

Example 4.6 Suppose that q = 4, n = 6, s = (3, 0, λ, 1, λ, λ). If x = (3, 0, 2, 1, 0, 1) was

written without a stuck-at error, i.e., ε = 0, then ∆`0(m) = ‖x‖0−‖sU‖0 = 4− 2 = 2, which is

the number of normal cells to be written. Also, ∆`1(m) = ‖x‖1 − ‖sU‖1 = 7− 4 = 3, which is

the sum of state changes in normal cells.

Remark 4.7 In general, the rewriting cost is more important than the initial writing cost since

most of write operations will be of the rewriting type. If a device has a write endurance limit
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of 10000 cycles, 9999 write operations will be of the rewriting type whereas only the first is the

initial write operation (i.e., 0.01%). However, there may be some storage applications such as

for archival storage, where the initial writing cost is critical.

4.4 Rewriting Locality and Locally Rewritable Codes

4.4.1 Motivation and a Toy Example

As a toy example, suppose that n-cell binary memory has a single stuck-at defect. It is easy to

see that this stuck-at defect can be handled by the following simple technique [37].

c = (m, 0) + 1n · p (4.5)

where c ∈ Fn2 , m ∈ Fk2, p ∈ F2 and k = n− 1. Note thatW(0) = 0 andW(1) = 1.

Suppose that i-th cell is a defect whose stuck-at value is si ∈ {0, 1}. If i ∈ [n − 1] and

si = mi, or if i = n and sn = 0, then p should be 0. Otherwise, p = 1. Thus, p decides whether

to flip m or not. This simple coding scheme is optimal since it achieves the following upper

bound in [37] with equality.

n− t−
⌈

log2 ln 2t
(
n

t

)⌉
≤ log2M≤ n− t (4.6)

whereM is the number of codewords and t is the number of stuck-at defects among n cells. For

linear block codes, k = log2M, i.e., k ≤ n− 1.

If there is no stuck-at defect among n cells, then we can store m by writing c = (m, 0)

(i.e., p = 0). Now, consider the case when the stored message needs to be updated causing m

to become m′. Usually, ‖m − m′‖ � n, which happens often when updating files. Instead

of storing m′ into another group of n cells, it is more efficient to store m′ by rewriting only

‖m −m′‖ cells. For example, suppose that m′i 6= mi for an i ∈ [k] and m′j = mj for all other
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j ∈ [k] \ i. Then, we can store k bits m′ by rewriting only one cell.

An interesting problem arises when a cell to be rewritten is defective. Suppose that i-th

cell is a stuck-at defect whose stuck-at value is si. If si = mi 6= m′i, then we should write

c = (m, 0) for storing m. However, in order to store the updated information m′, we should

write c′ = c = (m, 1) where p = 1. Thus, n− 1 cells should be rewritten to update one bit data

m′i without a stuck-at error. The same thing happens when si = m′i 6= mi. When considering

write endurance and power consumption, rewriting n− 1 cells is a high price to pay for dealing

with one bit stuck-at error.

In order to relieve this burden, we change (4.5) by introducing an additional parity bit as

follows.

c =
(
m[1: k

2
], 0,m[ k

2
+1:k], 0

)
+G0p

=
(
m[1: k

2
], 0,m[ k

2
+1:k], 0

)
+

1n
2

0n
2

0n
2

1n
2

 (p1, p2) (4.7)

where k = n − 2. For simplicity, we assume that n is even. Then, 1n
2

and 0n
2

are all-ones

and all-zeros column vectors with n/2 elements. By introducing an additional parity bit, we can

reduce the number of rewriting cells from n− 1 to n
2
− 1.

This idea is similar to the concept of Pyramid codes which are the early LRC [85]. For n disk

nodes, single parity check codes can repair one node failure (i.e., single erasure) by

1Tn ĉ = 0 (4.8)

where ĉ represents the recovered codeword from disk node failures. Assuming that ci is erased

due to a node failure, ci can be recovered by ĉi = ci =
∑

j∈[n]\i cj . For this recovery, we should

access n − 1 disk nodes which degrades the repair speed. For more efficient repair process, we
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can add a new parity bit as follows (i.e., k = n− 2).

HT ĉ =

1n
2

0n
2

0n
2

1n
2


T

ĉ = 0 (4.9)

Then, a failed node ci can be repaired by accessing only n
2
−1 nodes. Note that the repair locality

of (4.9) is n
2
−1 whereas the repair locality of (4.8) is n−1 which is the simple but effective idea

of Pyramid codes.

An interesting observation is that G0 of (4.7) is the same as H of (4.9). In addition, the

number of resistive memory cells to be rewritten is equal to the number of disk nodes to be

accessed in distributed storage systems. This observation will be further discussed in Section 4.5.

4.4.2 Rewriting Locality and Locally Rewritable Codes

First, we define the write function as follows.

Definition 4.8 (Write Function) For a bijective functionW : Fq → Q,W is called write func-

tion if

W(0) = 0. (4.10)

Lemma 4.9 IfW is a write function andW(c) = x, then ‖x‖0 = ‖c‖0.

Proof: ‖x‖0 = supp(W(c)) = supp(c) = ‖c‖0 where supp(W(c)) = supp(c) because

ofW(c) 6= 0 for any c 6= 0 by Definition 4.8.

Next, we show the following simple lemma based on Lemma 4.9, Definition 4.5, and Defini-

tion 4.1.

Lemma 4.10 If m is encoded by (2.23), the initial writing cost ∆`0(m,m′) is given by

∆`0(m) = ‖(m,0) + c0‖0 − ‖sU‖0. (4.11)
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If m is updated to m′ and both are encoded by (2.23), then the rewriting cost ∆`0(m,m′) is

given by

∆`0(m,m′) = ‖(m−m′,0) + (c0 − c′0)‖0 . (4.12)

Proof: By Lemma 4.9 and Definition 4.5, we can show that the initial writing cost ∆`0(m)

is given by

∆`0(m) = ‖x‖0 − ‖sU‖0 = ‖c‖0 − ‖sU‖0 = ‖(m,0) + c0‖0 − ‖sU‖0.

The rewriting cost ∆`0(m,m′) is given by

∆`0(m,m′) = ‖x− x′‖0 = ‖c− c′‖0 (4.13)

= ‖(m−m′,0) + (c0 − c′0)‖0 (4.14)

where (4.13) follows from Definition 4.1 and Lemma 4.9. Also, (4.14) follows from (2.23).

Now we introduce the information rewriting locality and parity rewriting locality which af-

fect initial writing cost and rewriting cost.

Definition 4.11 (Information Rewriting Locality) Suppose that mi for i ∈ [k], i.e., informa-

tion (message) part, should be updated to m′i 6= mi and the corresponding i-th cell is a stuck-at

defect. If mi can be updated to m′i without a stuck-at error by rewriting at most r? other cells,

then the i-th coordinate has information rewriting locality r?.

Lemma 4.12 If the i-th coordinate for i ∈ [k] has information rewriting locality r?, then there

exists c0 ∈ C0 such that i ∈ supp(c0) and ‖c0‖0 ≤ r? + 1.

Proof: For m and m′, suppose that mi 6= m′i for an i ∈ [k] and mj = m′j for all

other j ∈ [k] \ i. Note that i-th cell is a stuck-at defect whose stuck-at value is si. We should

consider the following cases: 1) W(mi) 6= W(m′i) = si, 2) W(m′i) 6= W(mi) = si, and 3)

W(mi) 6=W(m′i),W(mi) 6= si andW(m′i) 6= si.
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ForW(mi) 6=W(m′i) = si, c = (m,0n−k) + c0 and c′ = (m′,0n−k) whereW(mi + c0,i) =

W(m′i) = si and i ∈ supp(c0) to mask this i-th coordinate’s defect by (2.23). By contraposition,

suppose that min ‖c′0‖0 ≥ r? + 2. The information rewriting locality of i is at least r? + 1 since

∆`0(m,m′) = ‖(m−m′,0) + c0‖0 (4.15)

= ‖(c0,1, · · · ,mi −m′i + c0,i, · · · , c0,n)‖0 (4.16)

=
∥∥c0\i

∥∥
0
≥ r? + 1. (4.17)

where (4.15) follows from (4.12) and c′0 = 0. (4.16) follows from mj = m′j for all other

j ∈ [k] \ i. (4.17) follows from mi + c0,i = m′i and the assumption of min ‖c0‖0 ≥ r? + 2.

ForW(m′i) 6=W(mi) = si, the proof is similar.

For mi 6= m′i,W(mi) 6= si andW(m′i) 6= si, c = (m,0n−k) + c0 and c′ = (m′,0n−k) + c′0.

We can pick c′0 = αc0 (where α ∈ Fq) such that i ∈ supp(c0) = supp(c′0) andW(mi + c0,i) =

W(m′i + c′0,i) = si. By constraposition, suppose that min ‖c0‖0 = min ‖c′0‖0 ≥ r? + 2. Then we

can show that the information rewriting locality of i-th coordinate is at least r? + 1 by the similar

method.

Definition 4.13 (Parity Rewriting Locality) Suppose that only one nonzero symbol mi for i ∈

[k] should be stored to the initial stage of n cells (i.e., all the cells are set to zeros) and there is a

stuck-at defect in the parity location j for j ∈ [k+ 1 : n] and sj 6= 0. If mi can be stored without

a stuck-at error by writing at most r? + 1 cells, then the j-th coordinate has parity rewriting

locality r?.

Lemma 4.14 If the j-th coordinate for j ∈ [k+ 1 : n] has parity rewriting locality r?, then there

exists c0 ∈ C0 such that j ∈ supp(c0) and ‖c0‖0 ≤ r? + 1.

Proof: Suppose that m should be stored to the initial stage of n cells where mi 6= 0 for an

i ∈ [k] andmi′ = 0 for all other i′ ∈ [k]\i. By (2.23), c = (m,0n−k)+c0 such that j ∈ supp(c0)

andW(c0,j) = sj to mask this j-th coordinate’s defect. Hence,
∥∥c\j∥∥0

represents the number of
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cells to be written because of Lemma 4.9 andW(cj) = sj .

By contraposition, suppose that min ‖c′0‖0 ≥ r? + 2. If i /∈ supp(c0) for i ∈ [k], then we

should write both mi and ‖c0\j‖0 ≥ r? + 1, i.e., at least r? + 2 cells.

For the parity rewriting locality r?, there should exist c0 such that j ∈ supp(c0) and ‖c0‖0 ≤

r? + 1 in order to mask this j-th coordinate defect. If i ∈ supp(c0), then it is possible to store

mi without a stuck-at error by writing ‖c0\j‖0 ≤ r? cells because W(cj) = W(c0,j) = sj . If

i /∈ supp(c0), we should write both mi and ‖c0\j‖0, i.e., at most r? + 1 cells.

Definition 4.15 (Rewriting Locality) If both information rewriting locality and parity rewriting

locality are r?, then we define that the rewriting locality is r?.

Based on the definition of rewriting locality, locally rewritable codes (LWC) are defined as

follows.

Definition 4.16 (Locally Rewritable Codes) An (n, k, d?, r?) LWC code is an (n, k) code with

minimum distance d? and rewriting locality r?.

As the repair locality of LRC is meaningful only for single disk failure, the rewriting locality

is valid when there is only one stuck-at defect among n cells. In distributed storage systems, the

most common case is a single node failure among n nodes [85].

As shown in Fig. 4.5, below a certain number of rewrites (e.g., the write endurance limit

recommended by memory manufacturers), we can expect that β is considerably low and the

number of defects among n cells is usually zero or one. Hence, a small value of rewriting

locality can suppress the increase in the number of rewrites. If multiple stuck-at defects happen

after many rewrites, rewriting locality is not a good measure. Nevertheless, the LWC guarantees

masking up to d? − 1 stuck-at defects by (2.25).

4.4.3 Upper Bounds on Rewriting Cost and Initial Writing Cost

We derive the upper bounds on rewriting cost and initial writing cost when a single stuck-at

defect occurs. These upper bounds show that rewriting locality r? is an important parameter for
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write endurance and power consumption.

First, we derive the upper bound on rewriting cost and initial writing cost based on `0-norm.

Theorem 4.17 Suppose that m is updated to m′ by LWC with rewriting locality r?. If there is a

single stuck-at defect in n cells, then the rewriting cost ∆`0(m,m′) is given by

∆`0(m,m′) ≤ ‖m−m′‖0 + r? − 1. (4.18)

Proof: The proof is given in Appendix 4.7.

Corollary 4.18 If m is stored in the initial stage of n cells with a single stuck-at defect, then the

initial writing cost ∆`0(m) is given by

∆`0(m) ≤ ‖m‖0 + r?. (4.19)

Proof: The proof is given in Appendix 4.8.

Now we derive the upper bounds on rewriting cost and initial writing cost based on `1-norm,

which are given by (4.2) and (4.4).

Theorem 4.19 Suppose that m is updated to m′ by LWC with rewriting locality r?. If there is a

single stuck-at defect in n cells, then the rewriting cost ∆`1(m,m′) is given by

∆`1(m,m′) ≤ ‖W(m)−W(m′)‖1 + (q − 1)r? − 1. (4.20)

Proof: The proof is given in Appendix 4.9.

Corollary 4.20 If m is stored in the initial stage of n cells with a single stuck-at defect, then the

initial writing cost ∆`1(m) is given by

∆`1(m) ≤ ‖W(m)‖1 + (q − 1)r?. (4.21)

Proof: The proof is given in Appendix 4.10.
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For q = 2, note that (4.20) and (4.21) are equivalent to (4.18) and (4.19), respectively.

We can observe that a smaller value of rewriting locality r? reduces these upper bounds on

rewriting cost and initial writing cost. From Theorem 4.17 and Corollary 4.18, we can claim

that a smaller r? can reduce the number of cells to be rewritten (or initially written). Also,

Theorem 4.19 and Corollary 4.20 show that a smaller r? decreases the sum of resistance state

changes during rewriting (or initial writing). Hence, these upper bounds show that the LWC with

a small rewriting locality r? can improve write endurance and power consumption.

4.5 Constructions of Locally Rewritable Codes

In this section, we investigate the construction of LWC. We point out the duality between LRC

and LWC, which indicates that existing construction methods of LRC can be used to construct

LWC. Afterwards, we investigate the LWC with error correcting capability for resistive memories

suffering from random errors as well as write endurance problem.

4.5.1 Locally Repairable Codes

We briefly summarize LRC which is an important new class of codes for distributed storage

systems [85, 86]. An (n, k, d, r) LRC is a code of length n with information (message) length

k, minimum distance d, and repair locality r. If a symbol in the LRC-coded data is lost due to

a single node failure, its value can be repaired (i.e., reconstructed) by accessing at most r other

symbols [85, 86].

One way to ensure fast repair is to use low repair locality such that r � k at the cost of

decreased minimum distance d. The relation between d and r is shown to be [86]

d ≤ n− k −
⌈
k

r

⌉
+ 2. (4.22)

It is worth mentioning that this upper bound is a generalization of the Singleton bound. The LRC
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achieving this bound with equality are called optimal. Recently, constructions and properties of

LRC have been investigated [85, 86, 87, 88, 89, 90, 91, 92, 93].

4.5.2 Construction of Locally Rewritable Codes

We investigate construction of (n, k, d?, r?) LWC. We will observe the duality between cyclic

LRC and cyclic LWC, which allows us to construct LWC by using the existing construction

methods of LRC. First, we define cyclic LWC as follows.

Definition 4.21 If C0 is cyclic, then the LWC is called cyclic.

Lemma 4.22 Let C0 denote a cyclic code whose minimum distance is d0. Then, corresponding

cyclic LWC’s rewriting locality is r? = d0 − 1.

Proof: Due to the property of cyclic codes, there exists c0 ∈ C0 such that i ∈ supp(c0)

and ‖c0‖ = d0 for any i ∈ [n]. Thus, the rewriting locality is at most r? = d0 − 1.

From the definition of d? in (2.25), d? = d⊥0 which is the minimum distance of C⊥0 (namely,

dual code of C0). Thus, the parameters of cyclic LWC are given by

(d?, r?) = (d⊥0 , d0 − 1). (4.23)

In [91, 92], an equivalent relation for cyclic LRC was given by

(d, r) = (d, d⊥ − 1). (4.24)

Comparing (4.23) and (4.24), we observe the duality between LRC and LWC. This duality is

important since it indicates that we can construct LWC using existing construction methods of

LRC as shown in the following theorem.

Theorem 4.23 Suppose that HLRC ∈ Fn×(n−k)
q is the parity check matrix of cyclic LRC CLRC with
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(d, r) = (d, d⊥ − 1). By setting G0 = HLRC, we can construct cyclic LWC CLWC with

(d?, r?) = (d, d⊥ − 1). (4.25)

Proof: By setting G0 = HLRC, the LWC’s codeword c ∈ CLWC is given by

c = (m,0) +HLRC · p. (4.26)

From the definition of d? in (2.25), d? is given by

d? = min
x 6=0

HT
LRCx=0

‖x‖

which is equivalent to the minimum distance d of CLRC. Hence,

d? = d⊥0 = d. (4.27)

From (4.23) and (4.27), r? = d0 − 1 = d⊥ − 1.

Remark 4.24 (Optimal Cyclic LWC) Theorem 4.23 shows that the optimal cyclic (n, k, d, r)

LRC can be used to construct the optimal cyclic (n, k, d?, r?) LWC such that

d? = n− k −
⌈
k

r?

⌉
+ 2. (4.28)

Hence, the optimal LWC can be constructed from the optimal LRC.

Remark 4.25 (LWC Bound) From Theorem 4.23 and Remark 4.24, we can claim the following

bound for LWC.

d? ≤ n− k −
⌈
k

r?

⌉
+ 2 (4.29)

which is equivalent to the bound for LRC given by (4.22).
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Table 4.1: Duality of LRC and LWC

(n, k, d, r) LRC (n, k, d?, r?) LWC

Application
Distributed storage systems Resistive memories

(system level) (physical level)

Channel Erasure channel Defect channel

Encoding c = GLRCm c = (m,0) +HLRCp

Decoding HT
LRCĉ = 0 GT

LRCc = m̂

Bound d ≤ n− k −
⌈
k
r

⌉
+ 2 d? ≤ n− k −

⌈
k
r?

⌉
+ 2

Trade-off
d (reliability) vs. d? (reliability) vs.

r (repair efficiency) r∗ (rewriting efficiency)

In Table 4.1, the dual properties of LRC and LWC are summarized. For the LRC, there is a

trade-off between minimum distance d and repair locality r. In order to obtain a smaller r for

fast repair, we should decrease d which degrades the reliability of stored data. For the LWC, this

trade-off exists between minimum distance d? and rewriting locality r?. At the cost of d?, we can

improve write endurance and power consumption of resistive memories. Both trade-off relations

for LRC and LWC can be described by the same bound due to this duality.

4.5.3 Locally Rewritable Codes with Error Correcting Capability

Although write endurance and power consumption are important problems of resistive memo-

ries, we should consider random errors also due to variability and several physical mechanisms,

especially for MLC resistive memories.

Definition 4.26 (LWC with Error Correcting Capability) An (n, k, d?, r?, t̃ ) LWC code is de-

fined as (n, k, d?, r?) LWC with random-error correcting capability of t̃.

We can construct (n, k, d?, r?, t̃ ) LWC codes based on partitioned cyclic codes in Sec-

tion 2.2.4 and the duality of LRC and LWC as follows:

1. By using the duality between LRC and LWC, set g0(x) = hLRC(x) where hLRC(x) is the

parity polynomial of (n, n− l, d, r) LRC. Note that l denotes the redundancy for masking
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defects and deg(g0(x)) = deg(hLRC(x)) = n− l.

2. Among generator polynomials of (n, k + l, d̃ = 2t̃ + 1) codes, choose g(x) satisfying

g(x) | hLRC(x) of (2.28) where deg(g(x)) = n− k − l.

3. From (2.29), c(x) = m(x)g(x) + p(x)hLRC(x).

Corollary 4.27 From the above construction, we can construct an (n, k, d? = d, r? ≤ d̃+r−1, t̃)

LWC where d̃ = 2t̃+ 1.

Proof: Due to the properties of partitioned cyclic codes, d? depends on only g0(x). If

g0(x) = hLRC(x), then d? = d. Also, t̃ is decided by g(x) for g(x) | hLRC(x) which means that

g(x) | c(x) = m(x)g(x) + p(x)hLRC(x).

The rewriting locality r? is decided by g(x) and hLRC(x). Let [0 : n− 1] instead of [n] denote

the coordinate of a codeword for polynomial notation. Suppose that mi for i ∈ [0 : k − 1], i.e.,

information (message) part, should be updated to m′i 6= mi and the corresponding i-th cell is a

stuck-at si defect and mj = m′j for all other j ∈ [0 : k − 1] \ i. We can claim that

‖c(x)− c′(x)‖0 = ‖(m(x)−m′(x))g(x) + (p(x)− p′(x))hLRC(x)‖0 (4.30)

≤ ‖(mi −m′i)xi · g(x)‖0 + ‖(pv − p′v)xv · hLRC(x)‖0 − 2 (4.31)

= ‖g(x)‖0 + ‖hLRC(x)‖0 − 2 (4.32)

≤ d̃+ r − 1 (4.33)

where (4.31) follows from mig0x
i + pvhLRC,i−vx

i = m′ig0x
i + p′vhLRC,i−vx

i = six
i for i ≥ v

where g0 denotes the constant term of g(x). Due to the properties of cyclic codes, we can choose

‖g(x)‖0 = d̃ and ‖hLRC(x)‖0 = r + 1. By Definition 4.11 and (4.33), the information rewriting

locality is at most d̃+ r − 1.
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Suppose that only one nonzero symbol mi should be stored to the initial stage of n cells and

there is a stuck-at defect in the parity location j for j ∈ [k : n− 1]. Then,

‖c(x)‖0 = ‖mix
ig(x) + pvx

vhLRC(x)‖0 (4.34)

≤ ‖g(x)‖0 + ‖hLRC(x)‖0 − 1 (4.35)

≤ d̃+ r (4.36)

where (4.35) follows from pvhLRC,j−vx
j = sjx

j . Due to the properties of cyclic codes, we can

choose ‖g(x)‖0 = d̃ and ‖hLRC(x)‖0 = r+ 1. By Definition 4.13 and (4.36), the parity rewriting

locality is at most d̃+ r − 1.

Fact 4.28 From the definitions in (2.25) and (2.27), an (n, k, d?, r?, t̃ ) LWC code guarantees

masking up to d? − 1 stuck-at defects and correcting up to t̃ random errors where t̃ =
⌊
d̃−1

2

⌋
(bxc is the largest integer not greater than x).

Candidates for g(x) can be constructed by standard code construction methods such as BCH

codes and Reed-Solomon (RS) codes. We should choose a proper g(x) among these candidates

to satisfy the condition of PLBC, i.e., g(x) | hLRC(x). By using the property of partitioned cyclic

codes [40], we can claim the following relation between g(x) and gLRC(x).

Fact 4.29 Since gLRC(x)hLRC(x) = xn − 1 by definition of parity polynomial, we can claim that

g(x) and gLRC(x) should not share any common roots in order to satisfy g(x) | hLRC(x).

Example 4.30 We can construct a binary (n, k, d?, r?, t̃ ) = (15, 6, 2, 4, 1) LWC where l = 5.

Note that the parity size for correcting random errors is n − k − l = 4. In [90], the parity

polynomial of (n = 15, n − l = 10, d = 2, r = 2) LRC is given by hLRC(x) = x10 + x5 + 1.

First set g0(x) = hLRC(x). For t̃ = 1, we can choose a generator polynomial g(x) = x4 + x+ 1

such that g(x) | hLRC(x) by (n = 15, k + l = 11, d̃ = 3) BCH code construction. Note that

r? ≤ d̃ + r − 1 = 4. Then, the codeword of LWC with (n, k, d?, r?, t̃ ) = (15, 6, 2, 4, 1) is given

by c(x) = (x4 + x+ 1)m(x) + (x10 + x5 + 1)p(x).
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4.6 Conclusion

Inspired by LRC for distributed storage systems, we proposed LWC to improve write endurance

and power consumption of resistive memories. We derived the upper bounds on rewriting cost

and initial writing cost showing that a small value of rewriting cost is helpful for write endurance

and power consumption. Also, we pointed out the duality between LRC and LWC, which makes

it possible to construct LWC by using existing construction methods of LRC. In addition, we

investigated the constructions of LWC with error correcting capability for random errors.

4.7 Proof of Theorem 4.17

First, suppose that the single defect’s coordinate is i ∈ [k] and its stuck-at value is si. Ifmi = m′i,

then c = (m,0) + c0 and c′ = (m′,0) + c0. By Lemma 4.10 and c′0 = c0, ∆`0(m,m′) =

‖m−m′‖0.

IfW(mi) 6=W(m′i) = si, then c = (m,0) + c0 and c′ = (m′,0). Note that i ∈ supp(c0) to

mask the stuck-at defect in i-th coordinate. Then,

∆`0(m,m′) = ‖(m−m′,0) + c0‖0 = ‖(m−m′,0)\i + (c0)\i‖0 (4.37)

≤ ‖(m−m′,0)\i‖0 + ‖(c0)\i‖0 (4.38)

= ‖m−m′‖0 + ‖c0‖0 − 2 (4.39)

≤ ‖m−m′‖0 + r? − 1 (4.40)

where (4.37) follows from mi −m′i + c0,i = 0 (i.e.,W(mi + c0,i) =W(m′i) = si). Also, (4.39)

follows from mi 6= m′i and c0,i 6= 0 and (4.40) follows from Lemma 4.12.

ForW(m′i) 6=W(mi) = si, we can show (4.18) by a similar method.

If mi 6= m′i, W(mi) 6= si and W(m′i) 6= si, then c = (m,0) + c0 and c′ = (m′,0) + c′0.
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Both c and c′ can mask the defect by setting c′0 = αc0 where α ∈ Fq and α 6= 1. Then,

∆`0(m,m′) = ‖(m−m′,0) + (1− α)c0‖0 = ‖(m−m′,0)\i + (1− α)(c0)\i‖0 (4.41)

≤ ‖(m−m′,0)\i‖0 + ‖(c0)\i‖0 (4.42)

≤ ‖m−m′‖0 + r? − 1 (4.43)

where (4.41) follows from mi−m′i+(1−α)c0,i = 0 (i.e.,W(mi+ c0,i) =W(m′i+αc0,i) = si).

Next, suppose that the single defect’s coordinate is i ∈ [k + 1 : n]. Since c = (m,0) + c0

and c′ = (m′,0) + c0, the rewriting cost is ∆`0(m,m′) = ‖m−m′‖0.

4.8 Proof of Corollary 4.18

First, suppose that the single defect’s coordinate is i ∈ [k] and its stuck-at value is si. IfW(mi) =

si, then c = (m,0). From (4.11) and c0 = 0,

∆`0(m) = ‖m‖0 − ‖si‖0 ≤ ‖m‖0. (4.44)

IfW(mi) 6= si = 0 (i.e., ‖sU‖0 = ‖si‖0 = 0), then

∆`0(m) = ‖(m,0) + c0‖0 = ‖(m,0)\i + (c0)\i‖0 (4.45)

≤ ‖m‖0 + ‖c0‖0 − 2 (4.46)

≤ ‖m‖0 + r? − 1 (4.47)

where (4.45) follows fromW(mi+c0,i) = si = 0. Also, (4.46) follows frommi 6= 0 and c0,i 6= 0

and (4.47) follows from Lemma 4.12.
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IfW(mi) 6= si 6= 0 (i.e., ‖sU‖0 = ‖si‖0 = 1), then

∆`0(m) = ‖(m,0) + c0‖0 − 1 ≤ ‖m‖0 + ‖c‖0 − 1 ≤ ‖m‖0 + r? (4.48)

where (4.48) follows from Lemma 4.12.

Next suppose that the single defect’s coordinate is j ∈ [k+1 : n]. If sj = 0, then c = (m,0).

Hence, ∆`0(m) = ‖m‖0. If sj 6= 0, then c = (m,0) + c0. We can show that ∆`0(m) ≤

‖m‖0 + r? by the similar method of (4.48).

4.9 Proof of Theorem 4.19

Let U = {i} denote the defect location. Also, we define J = {j : mj 6= m′j, for j ∈ [k]} where

|J | = ‖m−m′‖0.

First, suppose that the single defect’s coordinate is i ∈ [k] and its stuck-at value is si. If

mi = m′i, then i /∈ J and i ∈ supp(c0). By additive encoding, c = (m,0) + c0 and c′ =

(m′,0) + c′0 = (m′,0) + c0 where c′0 = c0, which means thatW(cj) = W(c′j) for any j /∈ J .

The rewriting cost is given by

∆`1(m,m′) = ‖x− x′‖1 = ‖W(c)−W(c′)‖1 =
∑
j∈J

∣∣W(cj)−W(c′j)
∣∣. (4.49)

If J ∩ supp(c0) = ∅, then

∆`1(m,m′) =
∑
j∈J

∣∣W(cj)−W(c′j)
∣∣ =

∑
j∈J

∣∣W(mj)−W(m′j)
∣∣ = ‖W(m)−W(m′)‖1 .

(4.50)
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Otherwise (i.e., J ∩ supp(c0) 6= ∅),

∆`1(m,m′) =
∑

j∈J\supp(c0)

∣∣W(mj)−W(m′j)
∣∣+

∑
j∈J∩supp(c0)

∣∣W(mj + c0,j)−W(m′j + c0,j)
∣∣

≤ ‖W(m)−W(m′)‖1 + (q − 1)r? − 1 (4.51)

where (4.51) follows from

∑
j∈J\supp(c0)

∣∣W(mj)−W(m′j)
∣∣ ≤ ‖W(m)−W(m′)‖1 − 1 (4.52)

because of |J \ supp(c0)| < |J | and
∣∣W(mj)−W(m′j)

∣∣ ≥ 1 for j ∈ J . Also,

∑
j∈J∩supp(c0)

∣∣W(mj + c0,j)−W(m′j + c0,j)
∣∣ ≤ (q − 1)r?

where 1 ≤ |J ∩ supp(c0)| ≤ r? because of Lemma 4.12 and the fact that i /∈ J and i ∈ supp(c0)

for the defect location i ∈ [k].

IfW(mi) 6= W(m′i) = si, then c = (m,0) + c0 and c′ = (m′,0) where c′0 = 0. It is clear

that i ∈ J and i ∈ supp(c0). Hence, i ∈ J ∩ supp(c0) andW(ci) = W(c′i), which means that

mi + c0,i = m′i. Then,

∆`1(m,m′) = ‖W(c)−W(c′)‖1 =
∑

j∈J∪supp(c0)

∣∣W(cj)−W(c′j)
∣∣

=
∑

j∈J\supp(c0)

∣∣W(mj)−W(m′j)
∣∣+

∑
j∈supp(c0)\{i}

∣∣W(cj)−W(c′j)
∣∣

≤ ‖W(m)−W(m′)‖1 + (q − 1)r? − 1 (4.53)

where (4.53) follows from (4.52) and |supp(c0) \ {i}| = r?.

ForW(m′i) 6=W(mi) = si, the proof is similar to (4.53).

If W(mi) 6= W(m′i), W(mi) 6= si and W(m′i) 6= si, then c = (m,0) + c0 and c′ =
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(m′,0) + c′0. By setting c′0 = αc0 for α ∈ Fq, supp(c0) = supp(c′0). Note that i ∈ J ∩ supp(c0)

andW(ci) =W(c′i). Then,

∆`1(m,m′) = ‖W(c)−W(c′)‖1

=
∑

j∈J\supp(c0)

∣∣W(mj)−W(m′j)
∣∣+

∑
j∈supp(c0)\{i}

∣∣W(cj)−W(c′j)
∣∣

≤ ‖W(m)−W(m′)‖1 + (q − 1)r? − 1 (4.54)

where (4.54) can be shown by the same way of (4.53).

Next, suppose that the single defect’s coordinate is i ∈ [k + 1 : n] where i /∈ J and i ∈

supp(c0). Note that c = (m,0) + c0 and c′ = (m′,0) + c0. The rewriting cost is given by

∆`1(m,m′) =
∑
j∈J

∣∣W(cj)−W(c′j)
∣∣ ≤ ‖W(m)−W(m′)‖1 + (q − 1)r? − 1 (4.55)

where (4.55) can be shown by the same claim of (4.50) and (4.51).

From (4.50), (4.51), (4.53), (4.54), and (4.55), we can claim that (4.20) is true.

4.10 Proof of Corollary 4.20

Let U = {i} denote the defect location and we define J = {j : mj 6= 0 for j ∈ [k]}.

First suppose that the single defect’s coordinate is i ∈ [k] and its stuck-at value is si. If

W(mi) = si, then c = (m,0). By (4.4), the initial writing cost is given by

∆`1(m) = ‖W(c)‖1 − si = ‖W(m)‖1 − si ≤ ‖W(m)‖1. (4.56)
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IfW(mi) 6= si, thenW(ci) =W(mi + ci,0) = si by additive encoding c = (m,0) + c0.

∆`1(m) = ‖W(c)‖1 − si =
∑

j∈J∪supp(c0)

|W(cj)| − si

=
∑

j∈J\supp(c0)

|W(mj)|+
∑

j∈supp(c0)\{i}

|W(cj)| (4.57)

≤ ‖W(m)‖1 + (q − 1)r? (4.58)

where (4.57) follows fromW(ci) =W(mi + ci,0) = si. Also, (4.58) follows from Lemma 4.14.

Suppose that the single defect’s coordinate is i ∈ [k + 1 : n]. If si = 0, then c = (m,0) and

∆`1(m) = ‖W(c)‖1 = ‖W(m)‖1. (4.59)

If si 6= 0, thenW(ci) =W(ci,0) = si by additive encoding c = (m,0)+c0 for i ∈ [k+1 : n].

∆`1(m) =
∑

j∈J∪supp(c0)

|W(cj)| − si =
∑

j∈J\supp(c0)

|W(mj)|+
∑

j∈supp(c0)\{i}

|W(cj)|

≤ ‖W(m)‖1 + (q − 1)r?. (4.60)

From (4.56), (4.58), (4.59), and (4.60), we can claim that ∆(m) ≤ ‖W(m)‖1 + (q − 1)r?.
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Chapter 5

Conclusion

5.1 Thesis Contributions

The main contributions of this dissertation are channel coding schemes that use side information

corresponding physical phenomena in flash memories and resistive memories. This disserta-

tion included (1) coding techniques for the model of memory with stuck-at defects; (2) coding

schemes for combating and harnessing the ICI of flash memories; and (3) coding schemes that

improve write endurance and power consumption of resistive memories.

First, we investigated the coding techniques for memory with stuck-at defects. The idea of

coding for memory with stuck-at defects was employed to handle the problems of flash memories

and resistive memories. The contributions of this dissertation to the study of coding techniques

for memory with stuck-at defects are as follows:

• Formulating the redundancy allocation problem for memory suffering from permanent

stuck-at defects and transient errors.

• Deriving the upper bound on the probability of decoding failure and proposing techniques

to determine the optimal redundancy allocation based on this upper bound.

• Investigating the relations between binary erasure channel (BEC), memory with stuck-at
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defects, binary erasure quantization (BEQ), and write-once memory (WOM).

Based on the coding techniques for the model of memory with stuck-at defects, we proposed

coding schemes for 2D planar flash memories and 3D vertical flash memories. The coding

for memory with stuck-at defects was employed to combat ICI, which is a primary challenge

of 2D planar flash memories. Also, we proposed a coding scheme that reduces the effect of

fast detrapping, a degradation factor in 3D vertical flash memories. The contributions of this

dissertation to the study of coding schemes for flash memories are as follows:

• Proposing a coding scheme that combats the ICI in 2D planar flash memories.

• Developing a coding scheme that harnesses the intentional ICI to reduce the effect of fast

detrapping in 3D vertical flash memories.

• Based on the unique property of asymmetry between write and erase operations of flash

memory, bridging the well-known Gelfand-Pinsker problems: writing on dirty paper and

memory with stuck-at defects.

The final part of this dissertation proposed locally rewritable codes (LWC) to improve write

endurance and power consumption of resistive memories. The dissertation contributions in this

topic are:

• Proposing LWC for resistive memories.

• Defining a novel parameter of rewriting locality and showing that a small value of rewrit-

ing locality of LWC is able to reduce the problems of write endurance and write power

consumption.

• Showing the relation between LWC and locally repairable codes (LRC), which indicates

that existing LRC construction methods can be applied to construct LWC.
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5.2 Future Work

There are many interesting research topics that may come from this dissertation. Here, we discuss

some of future research work.

In this dissertation, we focused on the redundancy allocation of algebraic codes such as

PBCH codes. The redundancy allocation problem of LDPC codes and polar codes is an impor-

tant topic. The analysis based on error exponent may be helpful for this redundancy allocation

problem.

Write efficient memory (WEM) in [94] is an important rewriting model to handle write en-

durance problem. WEM has drawn attention for PCM [95, 96]. The WEM model assumes

that the encoder knows the previously written data, which is also a Gelfand-Pinsker problem.

Although the WEM differs from LWC because WEM does not consider stuck-at defects, the

connection between WEM and LWC can be an interesting research topic.

Recently, LRC with multiple repair alternatives (i.e., availability) has been investigated to

manage hot data in distributed storage systems [97, 98]. We can consider LWC with multiple

rewriting alternatives for resistive memories. When we mask a single defect in resistive memo-

ries, LWC with multiple rewriting alternatives can improve write endurance.

Although we focused on flash memories and resistive memories in this dissertation, there

are various emerging memories such as ferroelectric RAM (FRAM or FeRAM), magnetic RAM

(MRAM), spin transfer torque RAM (STTRAM), carbon nanotube RAM, and polymer memory.

The strong demand for denser, faster, and more reliable storage media motivates the exploration

of these emerging memories. Since each emerging memory technology stores the data based on

different underlying mechanisms, the emerging memories can have uniques advantages as well

as challenges to be addressed.

The fundamental idea in this dissertation could be applied to other emerging memory tech-

nologies: the side information corresponding to adverse phenomena can provide more efficient

coding techniques for memories. Hence, there will be many research opportunities regarding

125



obtaining the side information efficiently and developing coding techniques to properly handle

adverse phenomena in emerging memories.
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